ebook img

2D silicon carbide: computational insights and the observation of SiC nanograin assembly PDF

6.2 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview 2D silicon carbide: computational insights and the observation of SiC nanograin assembly

2D silicon carbide: computational insights and the observation of SiC nanograin assembly Toma Susi1,*, Viera Ska´kalova´1,2, Andreas Mittelberger1, Peter Kotrusz3, Martin Hulman3, Timothy J. Pennycook1, Clemens Mangler1, Jani Kotakoski1, and Jannik C. Meyer1,* 1UniversityofVienna,FacultyofPhysics,Boltzmanngasse5,1090Vienna,Austria 2SlovakUniversityofTechnology(STU),CenterforNanodiagnostics,Vazovova5,81243Bratislava,Slovakia 7 3DanubiaNanoTech,Ilkovicova3,84104Bratislava,Slovakia 1 0 *[email protected]&[email protected] 2 n ABSTRACT a J 5 Whileanincreasingnumberoftwo-dimensional(2D)materials,includinggrapheneandsilicene,havealreadybeenrealized, 2 othershaveonlybeenpredicted. Aninterestingexampleisthetwo-dimensionalformofsiliconcarbide(2D-SiC).Here,we presentanobservationofatomicallythinandhexagonallybondednanosizedgrainsofSiCassemblingtemporarilyingraphene ] oxideporesduringanatomicresolutionscanningtransmissionelectronmicroscopyexperiment. Eventhoughthesesmall i c grainsdonotfullyrepresentthebulkcrystal,simulationsindicatethattheirelectronicstructurealreadyapproachesthatof s 2D-SiC. This is predicted to be flat, but some doubts have remained regarding the preference of Si for sp3 hybridization. - l Exploringanumberofcorrugatedmorphologies,wefindcompletelyflat2D-SiCtohavethelowestenergy. Wefurthercompute r t itsphonondispersion,withaRaman-activetransverseopticalmode,andestimatethecorelevelbindingenergies. Finally,we m studythechemicalreactivityof2D-SiC,suggestingitislikesiliceneunstableagainstmolecularabsorptionorinterlayerlinking. . Nonetheless,itcanformstablevanderWaals-bondedbilayerswitheithergrapheneorhexagonalboronnitride,promisingto t a furtherenrichthefamilyoftwo-dimensionalmaterialsoncebulksynthesisisachieved. m - d n o Introduction c [ Inthewakeofthe2004discoveryofgraphene,thesingle-atomthinformofhexagonalcarbon1,two-dimensional(2D)materials 1 have attracted increasing attention. They can be divided into two classes: inherently layered materials bound by van der v Waalsinteractions,includinghexagonalboronnitride(hBN)2,phosphorene3 andtransitionmetaldichalgonenidessuchas 7 molybdenumdisulphide4; andthosewithnon-planarcovalentbondingintheirbulkform. Animportantclassofthelatter 8 3 consists of the remaining group-IV elements, namely Si, Ge, Sn and Pb. The first of these, composed on Si and named 7 silicene5,6,wasrecentlysynthesizedonsilversubstrates7–9,andfurtherfabricatedintotransistors10. Unlikegraphene,silicene 0 exhibitsachair-likedistortionofthehexagonalrings,resultinginout-of-planecorrugation. Likegraphene,chargecarriersin . 1 siliceneshowaDiracdispersionattheFermilevel6,althoughasmallgapdoesopenduetothestructuraldistortion10. 0 In addition to lattices of either pure C or Si, mixed stoichiometries are possible for 2D forms of silicon carbide (2D- 7 Si C )11,12. Althoughthes2p2 valenceshellstructureofSiissimilartoC,itsgreatercovalentbondingdistanceinmost 1 x 1−x crystalsinhibitsp–poverlap,leadingtosp3hybridization. BulkSiCexistsinover200crystallineforms13,somewiththree- : v dimensionalhexagonalcrystalstructures. Fortheisoatomic2DformSi C (whichwewillsimplycall2D-SiC),aplanar 0.5 0.5 Xi structureidenticaltographenebutwithabonddistanceof1.77-1.79A˚—comparedto1.425A˚ forgraphene,1.89A˚ forbulk SiC,and2.33A˚ forbulksilicon—andalargebandgap(2.5–2.6eV)havebeenpredicted14–16. Arecentclusterexpansionstudy r a exploredthespaceofpossibleC:Simixings,findingthelowestformationenergyfortheisoatomicstoichiometry17. Despitethe explosionofinterestintwo-dimensionalmaterials,no2DformofSiChasyetbeenexperimentallyrealized. Wepresenthereatomicresolutionscanningtransmissionelectronmicroscopy(STEM)observationsofnanosizedgrains ofSiC,foundtoassembleintheporesofgrapheneoxide(GO)18.GOisusefulherefortworeasons: itsdisorderedstructure containsnanometer-sizedholes(asindisorderedgraphene19),andthesynthesisby-productsremainingevenafterpurification provideanamplesourceofmobileCandSiadatoms. Theobservedpatcheswerestablefortensofsecondsundertheintense 60keVelectronirradiation,allowingustocapturehighqualityimagesoftheatomicconfigurations. Theobservedbonding andthemeasuredannulardarkfielddetectorintensitiespreciselymatchaquantitativeimagesimulationbasedonadensity functionaltheory(DFT)model. IncontrasttoearlierobservationsofpureSiclusterdynamicsinagraphenenanopore20,our grainscontainasimilarnumberofCandSiatoms,predominantlyinanalternatingarrangement. a b c d e f 5 Å g h i j k l m n o p q r s t u v w x Figure1. ObservedtimeseriesoftheassemblyofatomicallythinSiCnanograins. Theoverlaidreddashedlinesindicatethe approximatelocationsoftheSiCregions. Thetriangularpatchinpanellwasusedasthebasisforelementalidentification. Wedonotclaimtohavesynthesized2D-SiC,norsuggestthatgrainassemblyisapracticalroutetothebulkmaterial. Nonetheless,itisremarkabletodirectlyobservetheformationofahexagonalSiClattice. Oursimulationsfurtherindicate thattheelectronicstructureinthelargestpatchesdoesalreadyresemblethatofthebulkform,forwhichwecomputemany importantcharacteristicstoguidefurtherexperimentalefforts. Results and discussion Samplesandmicroscopy Our graphene oxide synthesis has been described in detail previously21 (see also Methods). In our transferred samples, a goodcoverageofsingle-layerGOflakeswasfoundonthesupportgrid. Tostudytheirmorphology,weconductedelectron microscopy in a Nion UltraSTEM100 scanning transmission electron microscope operated at 60 kV. While continuously imagingacleanmonolayerareaofaflake,weweresurprisedtoobservetheconversionofadisorderedareasurroundinga smallporeintoahexagonallatticeofalternatingheavierandlighteratoms(Fig.1,timebetweenpanels∼23s,panelssmoothed forclaritywitha0.1A˚ Gaussiankernel). Heavieratomsappearbrighterinimagesrecordedwithanannulardarkfielddetector, sincegreaterCoulombscatteringoftheprobeelectronsoccursfromthenucleiofatomswithmoreprotons(Z-contrast22). A particularlywellresolvedstructureinpanellexhibitedatriangularcrystallinepatchof3×3units,whosestructurecouldbe preciselydeducedfromtheimage. Bycomparisonwithsimulations(shownfurtherbelow)wecanidentifyalllighteratomsas carbon,andtheheavieronesassilicon. Thelighteratomsinsidethepatchappearslightlybrighterthanthecarbonatomsinthe graphenelattice,whichisawellknowneffectofprobetailsinpresenceoftheheavierneighbouringatoms22. Undertheintenseelectronirradiation,thispatchwasnotstableforlong,butlaterintheseriesanotherlargerpatchformed nearthetoprightcorneroftheview(Figure1panelsl,n,p,r-t,v). Thus,eventhoughtheirradiationcontinuouslyperturbs theatomicstructure,thedynamicsarenotfullyrandomandthereseemstobeanenergetictendencytowardsthisperiodic arrangementofatoms. TheassemblyoftheSiClatticemaythusbeconsideredastheresultofbeam-drivensamplingofthe dynamicalpotentialenergylandscape. Interestingly,thelinesofSiatomsindifferentcrystallites,orinthesameoneatdifferent times,donothavethesameangleswithrespecttothegraphenelattice. Thissuggeststhattheporesmerelyactassuitable containingspaces23,anddonothaveastrongroleindirectingtheassembly. Anadditionalexample,startingwithheavieratoms saturatingthereactiveedgeofapore24,25,isshownasSupplementaryFigure1. 2/13 a b 2 Å c d Figure2. ElementalidentificationoftheatomswithintheSiCnanograin. (a)CropofanunprocessedMAADF-STEMimage. (b)SimplifiedatomicSiCmodel. (c)TheexperimentalimagewithnoiseremovedbyaGaussianblur(sigma=0.28A˚),with higherintensitiescolouredtowardswhite. (d)CropofaquantitativeimagesimulationoftheSiCmodel(seetext). Structureidentification Usingtheexperimentalimage(Figure1l)asastartingpoint,wecreatedasimplifiedsymmetricalmodelstructureofsixSi atomsembeddedina9×9supercellofgraphene(150atomsintotal,correspondingtosixatomicsubstitutionsand12missingC atoms)andrelaxeditsatomicstructureviaDFTusingtheGPAWpackage26(Methods). ThebondlengthsbetweentheSiandC variedbetween1.78and1.87A˚,dependingontheatompair. Tocreatealargerstructureforimagesimulations,werepeatedthe cellperiodicallyandcroppedasquareof27.0×25.4A˚ (627atoms)surroundingthepatch. Inaddition,wecreatedaprimitive 2-atomunitcellfor2D-SiC.Byrelaxingthestructureandoptimizingthecellsizeusingthestresstensorinplane-wavemode (Methods),wefoundaplanargroundstatewithaSi–Cbondlengthof1.792A˚.Supercellsofthiswereusedtocalculatea numberofpropertiesofthematerialandcomparethemtothoseoftheprimarybulkforms(Table1). ToidentifytheatomsinFig. 1l,weusedtheQSTEMsoftwarepackage27tofindaquantitativematchofintensitiesbetween experimentalandsimulatedimages. Asweknowthatmostatomsinourfieldofviewarecarbon,wecouldusethegraphene lattice contrast as reference and subtract a background value measured in vacuum in a large hole with the same imaging conditionsfromtherawdatapriortomeasuringtheintensities. Theimagecontrastisinfluencedbylensaberrations(including chromaticaberration28),thermaldiffusescattering29,finitesourcesizeand,importantly,theannulardarkfielddetectorangles. AllthesecanbeaddressedbytheQSTEMsimulationandweresettovaluesrepresentingourexperimentalsetup(Methods). Theimagethussimulated(Figure2d)leadstoaSi/Cintensityratioof2.15(averageforall6Siatomsand10Catoms awayfromtheSiCpatch),withanincreasedintensityontheCatomsnexttoSiduetotheprobetails22(althoughthemodel structurediffersfromtheexperimentalstructureatitsedges,thisdoesnotaffecttheintensitiesofthecentralatoms). Fromthe experimentalimage,wemeasuredaSi/Cintensityratioof2.17,matchingthesimulationwithanerrorofonly1%. Noother impurityelementprovidesasimilarratio. Two-dimensionalsilica30,ontheotherhand,hasamuchlargerlattice,andoxygen atomswouldnotformthreebondsorbebeam-stable31. ThustheinvestigatedstructurecanonlybeSiC,whichisnotsurprising sinceSiisfrequentlyfoundingraphenesamples25,32,especiallyingrapheneoxidepreparedviawetchemistry(althoughits originisstillunknown). WecouldalsoverifythepresenceofSiasamajorcontaminationinthissamplebyelectronenergyloss spectroscopy(SupplementaryFigure2),butindividualatomsweretoomobiletoreliablyconfirmtheiridentitybyspectroscopy. Electronicstructureofthenanograins Theelectronicbandstructureofbulk2D-SiChasalreadybeenextensivelydiscussedintheliterature14,16. Inourcase,the electronicbandgapwasestimatedbyconvergingthebandstructureoftheprimitive2-atomcellupto8unoccupiedbands (Methods),yieldingagapof2.58eV(predictedtobeashighas4.42eVduetounusuallystrongexcitoniceffectsincluded at the G0W0 level of theory15). The overall band structure (Supplementary Figure 3) is in good agreement with earlier simulations15,16. 3/13 a s e at st of y sit n e d al c o L E–E (eV) F b Figure3. Localdensitiesofelectronicstates(LDOS)forSiCnanograinsofdifferentsizesandfor2D-SiC.a)LDOSes projectedontoSi-orC-centredWigner-Seitzcellsof2D-SiCcomparedtothoseoftheSiC-likeatomsinsmallerpatches embeddedintographene(thelegendidentifiesthesizeofthecalculatedSiCgrainandappliestobothpanels). b)Structure modelsusedfortheLDOSprojections(Catomsshowninblack,Siinyellow;framecolourscorrespondtothelinecoloursina). Usingthisbandstructureasastartingpointtoassesswhetherthenanograinsresemblethebulkformintheirproperties, wecalculatedtheWigner-Seitzlocaldensitiesofstate(LDOS,Fig.3a)oftheSiC-likeatomsinasingleSisubstitutionand triangularpatchesofSiCwith3,6and10Siatoms(Fig.3b),andcomparedthemto2D-SiC.Acleartrendtowardsthebulk electronicstructurecanbeobserveddespitethedistortionsintheatomicstructureduetotheembeddingstrain(whichisknown toaffectthebandgapof2D-SiC16),withthe10-Sipatchexhibitingaclearbandgap. Thusitappearsthatdespitetheirsmall size,thelargestpatchesweobservedcouldalreadybeconsideredasnanosizedgrainsofthematerial. Theplanarityandhybridizationof2D-SiC Asidefromtheclearhexagonalbonding,theprojectedbondlengthsinourexperimentalimagesareconsistentwithaplanar 2D-SiCstructure. Intheliterature,simulated2D-SiChastypicallybeencharacterizedasflat14–17,butithasnotbeenclearif therehavebeenenoughatomsinthechosenunitcellstoallowforcorrugation,andwhetherornotthechosencellsizeshave beenimposingstrainthatpreventsbuckling. TheflatnessissomewhatsurprisingconsideringthepropensityofSitoprefersp3 bonding,whichleadstopuckeringinthegroundstateofsilicene6. Furthermore,thelowestenergystructureofananalogous material—two-dimensionalphosphoruscarbide(2D-PC)—wasveryrecentlypredictedtobehighlycorrugated33. Toaddressthis,werancalculationsinrectangular4and8-atomunitcells,startingfromdifferentdegreesofcorrugation andcellsizes,includingstructureswithalternatingC–CandSi–Sibonds(analogoustotheproposedgroundstateof2D-PC).In allcases,thetotalenergyoftherelaxedstructurewasminimizedforSi–Cbonding(consistentwithShietal.17),andlowest foranentirelyplanarstructure(SupplementaryFigure4). Thus,whiletheremaybecompetitionbetweensp2hybridization preferredbyCinitsplanarformandsp3preferredbySi,thegroundstateof2D-SiCisindeedplanar. Baderanalysis34furtherrevealsthattheSi–Cbondin2D-SiCisratherpolarized16,17,withSidonatingalmost1.2electrons toitsthreeCneighbours. Tounderstandthebondhybridizationinmoredetail,weprojectedtheKohn-Shamorbitalsofa 48-atomrectangularsupercelltothemaximallylocalizedWannierorbitals35ofthesp2-bondedcarbosilaneanalogueofethene (SiH CH ),withitsSiandCatomsfixedtothelocationscorrespondingtoasingleSi–Cbond. Theresultingprojectoroverlaps 2 2 wereclosetounity,indicatingthatthesesp2molecularorbitalsprovideagoodrepresentationofthebond. 4/13 V) e y ( g er n e n o n o h P Γ Γ Figure4. Thephononbandstructureof2D-SiCandthecorrespondingdensityofstates(in-planeandout-of-plane componentsareshowninredandblue,respectively). Phononbandstructureandcohesiveenergy Wethencalculatedthephononbandstructureof2D-SiCthroughitsdynamicalmatrix,estimatedbydisplacingeachprimitive cellatombya0.08A˚ displacementinthethreeCartesiandirectionsandcalculatingviaDFTtheforcesonallotheratomsina 7×7supercell(theso-called’frozenphonon’approximation;Methods). Unlikethatofanearliercalculation14,theresulting phononbandstructure(Fig.4)containsnoimaginaryfrequencies,demonstratingthestabilityofthematerial17. Theenergyof theRaman-activetransverseopticalbranchatΓis127meV,anticipatingaG-band-likefeatureat1024cm−1. Itthusseems clearthatfullyplanar2D-SiCindeedisstable,andwhileitscohesiveenergy(PBEfunctional)is0.50eV/atomlowerthanthat of3C-SiC(themainbulkSiCpolymorphshaveverysimilarenergies36),thatdifferenceissmallerthanthatbetweensilicene andmonocrystallineSi(0.64eV/at.). Otherproperties Furtherpropertiesof2D-SiCcanbecomputationallypredicted. Intermsofelectronirradiationstability,Siistooheavyto bedisplacedfromtheSiCstructureataccelerationvoltagesbelow100kV.Wecalculatedthedisplacementthresholdenergy T fortheCatomviaDFTmoleculardynamics(MD),describedindetailpreviously32,37–40. Inbrief, weestimatedT by d d increasingthestartingout-of-planekineticenergyofaselectedCatomuntilitescapedthestructureduringthecourseofan MDsimulation. ForthestructureshowninFig. 2,theenergyrequiredtodisplaceaCatomfromtheSiCpatchisapproximately 13.25eV.Althoughthisishigherthanwhatcanbetransferredtoastaticnucleus,itislowenoughthatatomicvibrationscan enabledisplacements32,40,41 andbondrotations37. ForaCatominbulk2D-SiC(7×7supercell),thethresholdisinstead 15.75eV,leadingtoanegligibledisplacementprobabilityby60keVelectronsatroomtemperature. Thusamacroscopicflake of2D-SiCshouldproveratherstableforlow-voltagemicroscopy. Wealsocalculateditsbulkmodulusbyuniaxiallystraining theoptimal2D-SiCunitcellandfindingtheminimumoftheresultingtotalenergycurve,resultingin98.3GPa. Finally,weestimatedtheC1sandSi2pcorelevelbindingenergiesof2D-SiCviadeltaKohn–Sham(∆KS)totalenergy differencesincludinganexplicitcore-hole42,43 (Methods). TheC1senergywascalculatedat283.265eVandtheSi2pat 101.074eV.Althoughtheabsolutevaluesaresensitivetotheaccuracyofthedescriptionofcore-holescreening,theenergy separationC1s–Si2pof182.19eVshouldcharacterize2D-SiCwell. Table1. Comparisonof2D-SiCpropertieswecalculatedtothoseofthemajorbulkpolytypesreportedintheliterature(from Ref.44unlessotherwiseindicated). Polytype 2D-SiC 6H(α) 4H 3C(β) Symmetry hexagonal hexagonal hexagonal cubic In-planelatticeconstant(A˚) 3.104 3.0810 3.0730 4.3596 Si-Cbondlength(A˚) 1.792 1.89 1.89 1.89 Bandgap(eV) 2.58 3.05 3.23 2.36 Bulkmodulus(GPa) 98.3 220 220 250 Opticalphononenergy(meV) 127 102.8 104.2 104.2 C1s–Si2p(eV) 182.19 181.945 182.346 182.1747 5/13 a b 2.32 Å c d 3.52 Å e f 3.37-3.67 Å Figure5. Calculatedequilibriumstructuresofbilayersof2D-SiCwithitself(a-b),graphene(c-d)andhexagonalboronnitride (hBN,e-f). (a-b)Twolayersof2D-SiCinAA’stackingspontaneouslybondcovalently(all-electronchargedensityisosurface showninthecornerofthecellinb),resultinginaninterlayerdistanceof2.32A˚.Whentheotherlayerisgraphene(c-d)or hBN(e-f),theequilibriumdistancesandbindingenergiesaretypicalforvanderWaalsbonding. (NotethattheresultinghBN structureisslightlybuckledduetolatticemismatchinthechosenunitcell.) Reactivityandbilayers Consideringthelargechargetransferandunconventionalhybridizationoftheflatstructure,wesuspectedthat2D-SiCmightbe chemicallyreactive. Tostudythiscomputationally,wefirsthydrogenatedamonolayerof2D-SiCwithatomicH(inanalogyto graphane48). TheHpreferentiallybondswithC,withaformationenergyof0.79eVwithrespecttothechemicalpotentialof H . However,asecondHbondstoSiontheoppositesideoftheplane,resultinginahighlycorrugatedstructurewhenthecell 2 isallowedtorelax,bringingtheformationenergydownto-1.23eV.Thus,similartosiliceneandphosphorene49,50,2D-SiC likelyisunstableinair. Finally,toestimatethestabilityof2D-SiCinbilayers,wecompletedseveralcalculationsusingavanderWaalsexchange correlationfunctional51 (intheplane-wavemode,seeMethods). First,weinitializedasimulationwithtwo2D-SiClayers 4A˚ apartineachofthefivepossiblestackingorders(inanalogytohBN52).AlthoughAB,AB’,A’BandAAstackingresulted instablebilayers,thelowestenergy(by34,41,54and55meV/atom,respectively)isobtainedforAA’stackingwheretheSi arelocatedovertheCandviceversa(Fig. 5a). Minimizingtheforcesbringsthetwolayerstowithin2.32A˚ ofeachother, inducingaslightcorrugationoftheplanes. Theresidualstressesoftheunitcellindicatethatitssizepreventsthestructure fromreachingits(three-dimensional)groundstate,andanalysisoftheall-electrondensitybetweenthelayersclearlyindicates covalentbonding(Fig. 5b),inalmostperfectanalogytobilayersilicene53. ThisconfirmsthatnovanderWaalsbondedlayered equivalentof2D-SiCcanexist,inagreementwithitsabsenceamongtheknownphasesofbulkSiC.However,whentheother layerisinsteadeithergraphene(a5×5supercellofgraphenehasonlya0.5%latticemismatchtoa4×4supercellof2D-SiC) orhBN(-1.4%mismatch),theequilibriumdistancesare∼3.5A˚ withbindingenergiesof∼56meVperatom(finite-difference mode,seeMethods),bothconsistentwithvanderWaalsbonding. Thissuggeststhatencapsulationcouldbeusedtoprotect 2D-SiCfromtheatmospherewithoutseriouslyaffectingitsproperties. Conclusions Inconclusion,ouratomicresolutionscanningtransmissionelectronmicroscopyobservationsprovidethefirstdirectexperimental indicationthatatwo-dimensionalformofsiliconcarbidemayexist. Poresingrapheneoxideactastemplatingspaces,with theelectronbeameffectivelyprovidinganenergyinputsothattheSi-Cconfigurationspaceisexplored. Duringthisprocess, mobileadatomsofCandSiprovideachemicalsource. Asrevealedbyextensivesimulations,thegroundstateofbulk2D-SiC isindeedcompletelyplanar,withsp2hybridizationoftheSi–Cbond. ThelargechargetransferfromSitoCandthepreference ofSiforsp3hybridizationrenderthelayerchemicallyreactiveandunstableinbilayers,similartoseveralother2Dmaterials. However,oursimulationsindicatethatbilayersof2D-SiCwitheithergrapheneorhexagonalboronnitridearestable,makingit apromisingcandidateforincorporationintolayeredvanderWaalsheterostructures54. 6/13 Methods Samplepreparation Graphitepowder(purity99.9995%,2-15µmflakes,AlfaAesar)wasmixedintosulphuricacid,andthenpotassiumperman- ganateandsodiumnitrateaddedportion-wise. Fortheoxidation,waterwasaddedandthereactionmixtureheatedto98◦Cfor 3weeks. Terminatingthereactionwasfollowedbyfiltering,washing,anddrying. Toexfoliatetheresultinggraphiteoxide powderintosingle-layerflakes,itwasmixedwithdeionizedwater,vigorouslystirredfor24h,followedbybathsonication for3h,tipsonicationfor30min,andfinallybathsonicationforafurther1h. TopreparetheTEMsamples,aAusupport gridcoveredwithaholeycarbonfilm(Quantifoil(cid:13)R)wasdippedintoawater-baseddispersionfor1minandthenrinsedin isopropanolanddriedinair55. Electronmicroscopy The Nion UltraSTEM100 scanning transmission electron microscope was operated at 60 kV in near-ultrahigh vacuum (∼2×10−7Pa). ThebeamcurrentduringtheexperimentswasafewtensofpA,correspondingtoadoserateofapproximately 1×107e−/A˚2s. Thebeamconvergencesemianglewas35mradandthesemi-angularrangeofthemedium-angleannulardark field(MAADF)detectorwas60–80mrad. Densityfunctionaltheory ThelargercellcalculationswereconductedusingtheGPAWfinite-differencemodewitha0.18A˚ gridspacingand3×3×1 Monkhorst-Packk-points. Fortheplane-wavecalculations,weusedacutoffenergyof600eV(increasedto700eVforthe bandstructure)and45×45×1k-points. ThePerdew-Burke-Ernzerhof(PBE)functionalwasusedtodescribeexchangeand correlation,exceptforthebilayersimulationswhereweusedtheC09functional51. Forcalculatingthephononbandstructure,weusedinsteadthelocaldensityapproximation(LDA)andaΓ-centredk-point mesh of 42×42×1 was used to sample the Brillouin zone. A fine computational grid spacing of 0.16 A˚ alongside strict convergencecriteriaforthestructuralrelaxation(forces<10−5 eV/A˚ peratom)andtheself-consistencycycle(changein eigenstates<10−13eV2perelectron)ensuredaccurateforces. Forthecorelevelcalculations,anextraelectronwasintroducedintothevalencebandtoensurechargeneutrality,and supercellsupto9×9insizeusedtoconfirmthatspuriousinteractionsbetweenperiodicimagesofthecoreholewereminimized. Althoughspin-orbitinteractionwasnotincludedintheSi2pcalculation,itsbindingenergycanbetakentocorrespondtothe 2p levelandasplittingof0.63eVinferredfromtheory. 3/2 Imagesimulation OurQSTEMparameterswere: chromaticaberrationcoefficientof1mmwithanenergyspreadof0.3eV;sphericalaberration coefficientof1µm;thermaldiffusescatteringincludedviafrozenphononmodellingwithatemperatureof300K;additional instabilities(suchassamplevibration)simulatedbyblurringtheresultingimage(Gaussiankernelwithasigmaof0.39A˚); andthemedium-angleannulardark-fielddetectoranglerangesettotheexperimentalrangeof60–80mrad. Shotnoisewas removedfromthefilteredexperimentalimageofFig. 2cbyblurringitwithaGaussiankernel(sigmaof0.28A˚). References 1. Geim,A.K.&Novoselov,K.S. Theriseofgraphene. Nat.Mater.6,183–191(2007). 2. Watanabe,K.,Taniguchi,T.&Kanda,H. Direct-bandgappropertiesandevidenceforultravioletlasingofhexagonalboron nitridesinglecrystal. Nat.Mater.3,404(2004). 3. Li,L.etal. Blackphosphorusfield-effecttransistors. NatureNanotechnology9,372–377(2014). 4. Wang, Q. H., Kalantar-Zadeh, K., Kis, A., Coleman, J. N. & Strano, M. S. Electronics and optoelectronics of two- dimensionaltransitionmetaldichalcogenides. NatureNanotechnology7,699–712(2012). 5. Takeda,K.&Shiraishi,K. TheoreticalpossibilityofstagecorrugationinSiandGeanalogsofgraphite. Phys.Rev.B50, 14916–14922(1994). 6. Cahangirov,S.,Topsakal,M.,Aktu¨rk,E.,S¸ahin,H.&Ciraci,S. Two-andone-dimensionalhoneycombstructuresof siliconandgermanium. Phys.Rev.Lett.102,236804(2009). 7. Lalmi,B.etal. Epitaxialgrowthofasilicenesheet. AppliedPhysicsLetters97(2010). 8. Aufray,B.etal. Graphene-likesiliconnanoribbonsonAg(110): Apossibleformationofsilicene. AppliedPhysicsLetters 96(2010). 7/13 9. Vogt,P.etal. Silicene: Compellingexperimentalevidenceforgrapheneliketwo-dimensionalsilicon. Phys.Rev.Lett.108, 155501(2012). 10. Tao,L.etal. Silicenefield-effecttransistorsoperatingatroomtemperature. NatureNanotechnology10,227–231(2015). 11. Zhou,L.-J.,Zhang,Y.-F.&Wu,L.-M. SiC siligrapheneandnanotubes: Noveldonormaterialsinexcitonicsolarcells. 2 NanoLetters13,5431–5436(2013). 12. Gao, G., Ashcroft, N. W. & Hoffmann, R. The unusual and the expected in the Si/C phase diagram. Journal of the AmericanChemicalSociety135,11651–11656(2013). 13. Cheung,R. IntroductiontoSiliconCarbideMicroelectromechanicalSystems(MEMS),chap.1,1–17(ImperialCollege Press,London,2012). 14. S¸ahin,H.etal. Monolayerhoneycombstructuresofgroup-IVelementsandIII-Vbinarycompounds: First-principles calculations. Phys.Rev.B80,155453(2009). 15. Hsueh,H.C.,Guo,G.Y.&Louie,S.G. ExcitoniceffectsintheopticalpropertiesofaSiCsheetandnanotubes. Phys.Rev. B84,085404(2011). 16. Lin,X.etal. Abinitiostudyofelectronicandopticalbehavioroftwo-dimensionalsiliconcarbide. J.Mater.Chem.C1, 2131–2135(2013). 17. Shi,Z.,Zhang,Z.,Kutana,A.&Yakobson,B.I. Predictingtwo-dimensionalsiliconcarbidemonolayers. ACSNano9, 9802–9809(2015). 18. Dikin,D.A.etal. Preparationandcharacterizationofgrapheneoxidepaper. Nature448,457–460(2007). 19. Robertson,A.W.etal. Atomicstructureofgraphenesubnanometerpores. ACSNano9,11599–11607(2015). 20. Lee,J.,Zhou,W.,Pennycook,S.J.,Idrobo,J.-C.&Pantelides,S.T. DirectvisualizationofreversibledynamicsinaSi 6 clusterembeddedinagraphenepore. Nature4,1650(2013). 21. Ska´kalova´,V.etal. Electronictransportincompositesofgraphiteoxidewithcarbonnanotubes. Carbon72,224–232 (2014). 22. Krivanek,O.L.etal. Atom-by-atomstructuralandchemicalanalysisbyannulardark-fieldelectronmicroscopy. Nature 464,571–574(2010). 23. Zhao,J.etal. Free-standingsingle-atom-thickironmembranessuspendedingraphenepores. Science343,1228–1232 (2014). 24. Zan,R.,Ramasse,Q.M.,Bangert,U.&Novoselov,K.S. Graphenereknitsitsholes. NanoLetters12,3936–3940(2012). 25. Chen,Q.etal. Elongatedsilicon–carbonbondsatgrapheneedges. ACSNano10,142–149(2016). 26. Enkovaara,J.etal. ElectronicstructurecalculationswithGPAW:areal-spaceimplementationoftheprojectoraugmented- wavemethod. J.Phys.Condens.Matter22,253202(2010). 27. Koch,C. DeterminationofCoreStructurePeriodicityandPointDefectDensityalongDislocations. Ph.D.thesis,Arizona StateUniversity(2002). 28. Kuramochi, K.etal. Effectofchromaticaberrationonatomic-resolvedsphericalaberrationcorrectedSTEMimages. Ultramicroscopy110,36–42(2009). 29. Forbes, B.etal. Thermaldiffusescatteringintransmissionelectronmicroscopy. Ultramicroscopy111, 1670–1680 (2011). 30. Huang,P.Y.etal. Directimagingofatwo-dimensionalsilicaglassongraphene. NanoLett.12,1081–1086(2012). 31. Tararan,A.,Zobelli,A.,Benito,A.M.,Maser,W.K.&Ste´phan,O. Revisitinggrapheneoxidechemistryviaspatially- resolvedelectronenergylossspectroscopy. ChemistryofMaterials28,3741–3748(2016). 32. Susi,T.etal. Silicon–carbonbondinversionsdrivenby60-keVelectronsingraphene. Phys.Rev.Lett.113,115501(2014). 33. Guan,J.,Liu,D.,Zhu,Z.&Toma´nek,D. Two-dimensionalphosphoruscarbide:Competitionbetweensp2andsp3bonding. NanoLetters16,3247–3252(2016). 34. Tang,W.,Sanville,E.&Henkelman,G. Agrid-basedbaderanalysisalgorithmwithoutlatticebias. J.Phys.: Condens. Matter21,084204(2009). 35. Thygesen,K.S.,Hansen,L.B.&Jacobsen,K.W. PartlyoccupiedWannierfunctions. Phys.Rev.Lett.94,026405(2005). 8/13 36. Ka¨ckell,B.,P.;Wenzien&Bechstedt,F. InfluenceofatomicrelaxationsonthestructuralpropertiesofSiCpolytypesfrom abinitiocalculations. Phys.Rev.B50,17037–17046(1994). 37. Kotakoski,J.etal. Stone-Wales-typetransformationsincarbonnanostructuresdrivenbyelectronirradiation. Phys.Rev.B 83,245420(2011). 38. Susi, T. et al. Atomistic description of electron beam damage in nitrogen-doped graphene and single-walled carbon nanotubes. ACSNano6,8837–8846(2012). 39. Kotakoski,J.,Santos-Cottin,D.&Krasheninnikov,A.V. Stabilityofgrapheneedgesunderelectronbeam: Equilibrium energeticsversusdynamiceffects. ACSNano6,671–676(2012). 40. Susi,T.etal. Isotopeanalysisinthetransmissionelectronmicroscope. NatureCommunications7,13040(2016). 41. Meyer,J.C.etal. Accuratemeasurementofelectronbeaminduceddisplacementcrosssectionsforsingle-layergraphene. Phys.Rev.Lett.108,196102(2012). 42. Ljungberg,M.P.,Mortensen,J.J.&Pettersson,L.G.M. Animplementationofcorelevelspectroscopiesinarealspace projectoraugmentedwavedensityfunctionaltheorycode. J.ElectronSpectros.RelatedPhenom.184,427–439(2011). 43. Susi,T.,Mowbray,D.J.,Ljungberg,M.P.&Ayala,P. CalculationofthegrapheneC1scorelevelbindingenergy. Phys. Rev.B91,081401(2015). 44. IoffeInstitute. Propertiesofsiliconcarbide. URLhttp://www.ioffe.ru/SVA/NSM/Semicond/SiC/. 45. Binner,J.&Zhang,Y. CharacterizationofsiliconcarbideandsiliconpowdersbyXPSandzetapotentialmeasurement. JournalofMaterialsScienceLetters20,123–126(2001). 46. Johansson,L.,Owman,F.&Ma˚rtensson,P. Aphotoemissionstudyof4HSiC(0001). SurfaceScience360,483–488 (1996). 47. Parrill,T.M.&Chung,Y.W. Surfaceanalysisofcubicsiliconcarbide(001). SurfaceScience243,96–112(1991). 48. Sofo,J.O.,Chaudhari,A.S.&Barber,G.D. Graphane: Atwo-dimensionalhydrocarbon. Phys.Rev.B75,153401(2007). 49. Molle,A.etal. Hinderingtheoxidationofsilicenewithnon-reactiveencapsulation. AdvancedFunctionalMaterials23, 4340–4344(2013). 50. Wood,J.D.etal. Effectivepassivationofexfoliatedblackphosphorustransistorsagainstambientdegradation. Nano Letters14,6964–6970(2014). 51. Cooper,V.R. VanderWaalsdensityfunctional: Anappropriateexchangefunctional. Phys.Rev.B81,161104(2010). 52. Constantinescu,G.,Kuc,A.&Heine,T. Stackinginbulkandbilayerhexagonalboronnitride. Phys.Rev.Lett.111,036104 (2013). 53. Padilha,J.E.&Pontes,R.B. Free-standingbilayersilicene: Theeffectofstackingorderonthestructural,electronic,and transportproperties. TheJournalofPhysicalChemistryC119,3818–3825(2015). 54. Geim,A.K.&Grigorieva,I.V. VanderWaalsheterostructures. Nature499,419–425(2013). 55. Meyer,J.C.etal.Directimagingoflatticeatomsandtopologicaldefectsingraphenemembranes.NanoLett.8,3582–3586 (2008). Acknowledgements WethankMichaelWalterandMiguelCaroforusefuldiscussions. T.S.acknowledgesfundingfromtheAustrianScienceFund (FWF)viaprojectP28322-N36andtheViennaScientificClusterforcomputationalresources. V.S.wassupportedbythe FWFviaprojectAI0234411/21,andthroughprojectsVEGA1/1004/15andUVP,OPVaV-2011/4.2/01-PN.A.M.andJ.C.M. acknowledgefundingbytheFWFprojectP25721-N20andtheEuropeanResearchCouncilGrantNo. 336453-PICOMAT.T.J.P. wassupportedbytheEuropeanUnion’sHorizon2020researchandinnovationprogrammeundertheMarieSkłodowska-Curie grant agreement No. 655760 – DIGIPHASE, and J.K. by the Wiener Wissenschafts-, Forschungs- und Technologiefonds (WWTF)viaprojectMA14-009. Author contributions statement T.S.conductedtheDFTsimulationsanddraftedthemanuscript. V.S.conceivedofthestudy,conductedelectronmicroscopy, andsupervisedthesamplesynthesis. A.M.simulatedtheSTEMimages. P.K.andM.H.synthesizedthesamples. T.J.P.and C.M.participatedinelectronmicroscopy. J.K.andJ.C.M.supervisedthestudy. Allauthorsreviewedthemanuscript. 9/13 Additional information CompetingfinancialinterestsTheauthorsdeclarenocompetingfinancialinterests. 10/13

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.