2D silicon carbide: computational insights and the observation of SiC nanograin assembly Toma Susi1,*, Viera Ska´kalova´1,2, Andreas Mittelberger1, Peter Kotrusz3, Martin Hulman3, Timothy J. Pennycook1, Clemens Mangler1, Jani Kotakoski1, and Jannik C. Meyer1,* 1UniversityofVienna,FacultyofPhysics,Boltzmanngasse5,1090Vienna,Austria 2SlovakUniversityofTechnology(STU),CenterforNanodiagnostics,Vazovova5,81243Bratislava,Slovakia 7 3DanubiaNanoTech,Ilkovicova3,84104Bratislava,Slovakia 1 0 *[email protected]&[email protected] 2 n ABSTRACT a J 5 Whileanincreasingnumberoftwo-dimensional(2D)materials,includinggrapheneandsilicene,havealreadybeenrealized, 2 othershaveonlybeenpredicted. Aninterestingexampleisthetwo-dimensionalformofsiliconcarbide(2D-SiC).Here,we presentanobservationofatomicallythinandhexagonallybondednanosizedgrainsofSiCassemblingtemporarilyingraphene ] oxideporesduringanatomicresolutionscanningtransmissionelectronmicroscopyexperiment. Eventhoughthesesmall i c grainsdonotfullyrepresentthebulkcrystal,simulationsindicatethattheirelectronicstructurealreadyapproachesthatof s 2D-SiC. This is predicted to be flat, but some doubts have remained regarding the preference of Si for sp3 hybridization. - l Exploringanumberofcorrugatedmorphologies,wefindcompletelyflat2D-SiCtohavethelowestenergy. Wefurthercompute r t itsphonondispersion,withaRaman-activetransverseopticalmode,andestimatethecorelevelbindingenergies. Finally,we m studythechemicalreactivityof2D-SiC,suggestingitislikesiliceneunstableagainstmolecularabsorptionorinterlayerlinking. . Nonetheless,itcanformstablevanderWaals-bondedbilayerswitheithergrapheneorhexagonalboronnitride,promisingto t a furtherenrichthefamilyoftwo-dimensionalmaterialsoncebulksynthesisisachieved. m - d n o Introduction c [ Inthewakeofthe2004discoveryofgraphene,thesingle-atomthinformofhexagonalcarbon1,two-dimensional(2D)materials 1 have attracted increasing attention. They can be divided into two classes: inherently layered materials bound by van der v Waalsinteractions,includinghexagonalboronnitride(hBN)2,phosphorene3 andtransitionmetaldichalgonenidessuchas 7 molybdenumdisulphide4; andthosewithnon-planarcovalentbondingintheirbulkform. Animportantclassofthelatter 8 3 consists of the remaining group-IV elements, namely Si, Ge, Sn and Pb. The first of these, composed on Si and named 7 silicene5,6,wasrecentlysynthesizedonsilversubstrates7–9,andfurtherfabricatedintotransistors10. Unlikegraphene,silicene 0 exhibitsachair-likedistortionofthehexagonalrings,resultinginout-of-planecorrugation. Likegraphene,chargecarriersin . 1 siliceneshowaDiracdispersionattheFermilevel6,althoughasmallgapdoesopenduetothestructuraldistortion10. 0 In addition to lattices of either pure C or Si, mixed stoichiometries are possible for 2D forms of silicon carbide (2D- 7 Si C )11,12. Althoughthes2p2 valenceshellstructureofSiissimilartoC,itsgreatercovalentbondingdistanceinmost 1 x 1−x crystalsinhibitsp–poverlap,leadingtosp3hybridization. BulkSiCexistsinover200crystallineforms13,somewiththree- : v dimensionalhexagonalcrystalstructures. Fortheisoatomic2DformSi C (whichwewillsimplycall2D-SiC),aplanar 0.5 0.5 Xi structureidenticaltographenebutwithabonddistanceof1.77-1.79A˚—comparedto1.425A˚ forgraphene,1.89A˚ forbulk SiC,and2.33A˚ forbulksilicon—andalargebandgap(2.5–2.6eV)havebeenpredicted14–16. Arecentclusterexpansionstudy r a exploredthespaceofpossibleC:Simixings,findingthelowestformationenergyfortheisoatomicstoichiometry17. Despitethe explosionofinterestintwo-dimensionalmaterials,no2DformofSiChasyetbeenexperimentallyrealized. Wepresenthereatomicresolutionscanningtransmissionelectronmicroscopy(STEM)observationsofnanosizedgrains ofSiC,foundtoassembleintheporesofgrapheneoxide(GO)18.GOisusefulherefortworeasons: itsdisorderedstructure containsnanometer-sizedholes(asindisorderedgraphene19),andthesynthesisby-productsremainingevenafterpurification provideanamplesourceofmobileCandSiadatoms. Theobservedpatcheswerestablefortensofsecondsundertheintense 60keVelectronirradiation,allowingustocapturehighqualityimagesoftheatomicconfigurations. Theobservedbonding andthemeasuredannulardarkfielddetectorintensitiespreciselymatchaquantitativeimagesimulationbasedonadensity functionaltheory(DFT)model. IncontrasttoearlierobservationsofpureSiclusterdynamicsinagraphenenanopore20,our grainscontainasimilarnumberofCandSiatoms,predominantlyinanalternatingarrangement. a b c d e f 5 Å g h i j k l m n o p q r s t u v w x Figure1. ObservedtimeseriesoftheassemblyofatomicallythinSiCnanograins. Theoverlaidreddashedlinesindicatethe approximatelocationsoftheSiCregions. Thetriangularpatchinpanellwasusedasthebasisforelementalidentification. Wedonotclaimtohavesynthesized2D-SiC,norsuggestthatgrainassemblyisapracticalroutetothebulkmaterial. Nonetheless,itisremarkabletodirectlyobservetheformationofahexagonalSiClattice. Oursimulationsfurtherindicate thattheelectronicstructureinthelargestpatchesdoesalreadyresemblethatofthebulkform,forwhichwecomputemany importantcharacteristicstoguidefurtherexperimentalefforts. Results and discussion Samplesandmicroscopy Our graphene oxide synthesis has been described in detail previously21 (see also Methods). In our transferred samples, a goodcoverageofsingle-layerGOflakeswasfoundonthesupportgrid. Tostudytheirmorphology,weconductedelectron microscopy in a Nion UltraSTEM100 scanning transmission electron microscope operated at 60 kV. While continuously imagingacleanmonolayerareaofaflake,weweresurprisedtoobservetheconversionofadisorderedareasurroundinga smallporeintoahexagonallatticeofalternatingheavierandlighteratoms(Fig.1,timebetweenpanels∼23s,panelssmoothed forclaritywitha0.1A˚ Gaussiankernel). Heavieratomsappearbrighterinimagesrecordedwithanannulardarkfielddetector, sincegreaterCoulombscatteringoftheprobeelectronsoccursfromthenucleiofatomswithmoreprotons(Z-contrast22). A particularlywellresolvedstructureinpanellexhibitedatriangularcrystallinepatchof3×3units,whosestructurecouldbe preciselydeducedfromtheimage. Bycomparisonwithsimulations(shownfurtherbelow)wecanidentifyalllighteratomsas carbon,andtheheavieronesassilicon. Thelighteratomsinsidethepatchappearslightlybrighterthanthecarbonatomsinthe graphenelattice,whichisawellknowneffectofprobetailsinpresenceoftheheavierneighbouringatoms22. Undertheintenseelectronirradiation,thispatchwasnotstableforlong,butlaterintheseriesanotherlargerpatchformed nearthetoprightcorneroftheview(Figure1panelsl,n,p,r-t,v). Thus,eventhoughtheirradiationcontinuouslyperturbs theatomicstructure,thedynamicsarenotfullyrandomandthereseemstobeanenergetictendencytowardsthisperiodic arrangementofatoms. TheassemblyoftheSiClatticemaythusbeconsideredastheresultofbeam-drivensamplingofthe dynamicalpotentialenergylandscape. Interestingly,thelinesofSiatomsindifferentcrystallites,orinthesameoneatdifferent times,donothavethesameangleswithrespecttothegraphenelattice. Thissuggeststhattheporesmerelyactassuitable containingspaces23,anddonothaveastrongroleindirectingtheassembly. Anadditionalexample,startingwithheavieratoms saturatingthereactiveedgeofapore24,25,isshownasSupplementaryFigure1. 2/13 a b 2 Å c d Figure2. ElementalidentificationoftheatomswithintheSiCnanograin. (a)CropofanunprocessedMAADF-STEMimage. (b)SimplifiedatomicSiCmodel. (c)TheexperimentalimagewithnoiseremovedbyaGaussianblur(sigma=0.28A˚),with higherintensitiescolouredtowardswhite. (d)CropofaquantitativeimagesimulationoftheSiCmodel(seetext). Structureidentification Usingtheexperimentalimage(Figure1l)asastartingpoint,wecreatedasimplifiedsymmetricalmodelstructureofsixSi atomsembeddedina9×9supercellofgraphene(150atomsintotal,correspondingtosixatomicsubstitutionsand12missingC atoms)andrelaxeditsatomicstructureviaDFTusingtheGPAWpackage26(Methods). ThebondlengthsbetweentheSiandC variedbetween1.78and1.87A˚,dependingontheatompair. Tocreatealargerstructureforimagesimulations,werepeatedthe cellperiodicallyandcroppedasquareof27.0×25.4A˚ (627atoms)surroundingthepatch. Inaddition,wecreatedaprimitive 2-atomunitcellfor2D-SiC.Byrelaxingthestructureandoptimizingthecellsizeusingthestresstensorinplane-wavemode (Methods),wefoundaplanargroundstatewithaSi–Cbondlengthof1.792A˚.Supercellsofthiswereusedtocalculatea numberofpropertiesofthematerialandcomparethemtothoseoftheprimarybulkforms(Table1). ToidentifytheatomsinFig. 1l,weusedtheQSTEMsoftwarepackage27tofindaquantitativematchofintensitiesbetween experimentalandsimulatedimages. Asweknowthatmostatomsinourfieldofviewarecarbon,wecouldusethegraphene lattice contrast as reference and subtract a background value measured in vacuum in a large hole with the same imaging conditionsfromtherawdatapriortomeasuringtheintensities. Theimagecontrastisinfluencedbylensaberrations(including chromaticaberration28),thermaldiffusescattering29,finitesourcesizeand,importantly,theannulardarkfielddetectorangles. AllthesecanbeaddressedbytheQSTEMsimulationandweresettovaluesrepresentingourexperimentalsetup(Methods). Theimagethussimulated(Figure2d)leadstoaSi/Cintensityratioof2.15(averageforall6Siatomsand10Catoms awayfromtheSiCpatch),withanincreasedintensityontheCatomsnexttoSiduetotheprobetails22(althoughthemodel structurediffersfromtheexperimentalstructureatitsedges,thisdoesnotaffecttheintensitiesofthecentralatoms). Fromthe experimentalimage,wemeasuredaSi/Cintensityratioof2.17,matchingthesimulationwithanerrorofonly1%. Noother impurityelementprovidesasimilarratio. Two-dimensionalsilica30,ontheotherhand,hasamuchlargerlattice,andoxygen atomswouldnotformthreebondsorbebeam-stable31. ThustheinvestigatedstructurecanonlybeSiC,whichisnotsurprising sinceSiisfrequentlyfoundingraphenesamples25,32,especiallyingrapheneoxidepreparedviawetchemistry(althoughits originisstillunknown). WecouldalsoverifythepresenceofSiasamajorcontaminationinthissamplebyelectronenergyloss spectroscopy(SupplementaryFigure2),butindividualatomsweretoomobiletoreliablyconfirmtheiridentitybyspectroscopy. Electronicstructureofthenanograins Theelectronicbandstructureofbulk2D-SiChasalreadybeenextensivelydiscussedintheliterature14,16. Inourcase,the electronicbandgapwasestimatedbyconvergingthebandstructureoftheprimitive2-atomcellupto8unoccupiedbands (Methods),yieldingagapof2.58eV(predictedtobeashighas4.42eVduetounusuallystrongexcitoniceffectsincluded at the G0W0 level of theory15). The overall band structure (Supplementary Figure 3) is in good agreement with earlier simulations15,16. 3/13 a s e at st of y sit n e d al c o L E–E (eV) F b Figure3. Localdensitiesofelectronicstates(LDOS)forSiCnanograinsofdifferentsizesandfor2D-SiC.a)LDOSes projectedontoSi-orC-centredWigner-Seitzcellsof2D-SiCcomparedtothoseoftheSiC-likeatomsinsmallerpatches embeddedintographene(thelegendidentifiesthesizeofthecalculatedSiCgrainandappliestobothpanels). b)Structure modelsusedfortheLDOSprojections(Catomsshowninblack,Siinyellow;framecolourscorrespondtothelinecoloursina). Usingthisbandstructureasastartingpointtoassesswhetherthenanograinsresemblethebulkformintheirproperties, wecalculatedtheWigner-Seitzlocaldensitiesofstate(LDOS,Fig.3a)oftheSiC-likeatomsinasingleSisubstitutionand triangularpatchesofSiCwith3,6and10Siatoms(Fig.3b),andcomparedthemto2D-SiC.Acleartrendtowardsthebulk electronicstructurecanbeobserveddespitethedistortionsintheatomicstructureduetotheembeddingstrain(whichisknown toaffectthebandgapof2D-SiC16),withthe10-Sipatchexhibitingaclearbandgap. Thusitappearsthatdespitetheirsmall size,thelargestpatchesweobservedcouldalreadybeconsideredasnanosizedgrainsofthematerial. Theplanarityandhybridizationof2D-SiC Asidefromtheclearhexagonalbonding,theprojectedbondlengthsinourexperimentalimagesareconsistentwithaplanar 2D-SiCstructure. Intheliterature,simulated2D-SiChastypicallybeencharacterizedasflat14–17,butithasnotbeenclearif therehavebeenenoughatomsinthechosenunitcellstoallowforcorrugation,andwhetherornotthechosencellsizeshave beenimposingstrainthatpreventsbuckling. TheflatnessissomewhatsurprisingconsideringthepropensityofSitoprefersp3 bonding,whichleadstopuckeringinthegroundstateofsilicene6. Furthermore,thelowestenergystructureofananalogous material—two-dimensionalphosphoruscarbide(2D-PC)—wasveryrecentlypredictedtobehighlycorrugated33. Toaddressthis,werancalculationsinrectangular4and8-atomunitcells,startingfromdifferentdegreesofcorrugation andcellsizes,includingstructureswithalternatingC–CandSi–Sibonds(analogoustotheproposedgroundstateof2D-PC).In allcases,thetotalenergyoftherelaxedstructurewasminimizedforSi–Cbonding(consistentwithShietal.17),andlowest foranentirelyplanarstructure(SupplementaryFigure4). Thus,whiletheremaybecompetitionbetweensp2hybridization preferredbyCinitsplanarformandsp3preferredbySi,thegroundstateof2D-SiCisindeedplanar. Baderanalysis34furtherrevealsthattheSi–Cbondin2D-SiCisratherpolarized16,17,withSidonatingalmost1.2electrons toitsthreeCneighbours. Tounderstandthebondhybridizationinmoredetail,weprojectedtheKohn-Shamorbitalsofa 48-atomrectangularsupercelltothemaximallylocalizedWannierorbitals35ofthesp2-bondedcarbosilaneanalogueofethene (SiH CH ),withitsSiandCatomsfixedtothelocationscorrespondingtoasingleSi–Cbond. Theresultingprojectoroverlaps 2 2 wereclosetounity,indicatingthatthesesp2molecularorbitalsprovideagoodrepresentationofthebond. 4/13 V) e y ( g er n e n o n o h P Γ Γ Figure4. Thephononbandstructureof2D-SiCandthecorrespondingdensityofstates(in-planeandout-of-plane componentsareshowninredandblue,respectively). Phononbandstructureandcohesiveenergy Wethencalculatedthephononbandstructureof2D-SiCthroughitsdynamicalmatrix,estimatedbydisplacingeachprimitive cellatombya0.08A˚ displacementinthethreeCartesiandirectionsandcalculatingviaDFTtheforcesonallotheratomsina 7×7supercell(theso-called’frozenphonon’approximation;Methods). Unlikethatofanearliercalculation14,theresulting phononbandstructure(Fig.4)containsnoimaginaryfrequencies,demonstratingthestabilityofthematerial17. Theenergyof theRaman-activetransverseopticalbranchatΓis127meV,anticipatingaG-band-likefeatureat1024cm−1. Itthusseems clearthatfullyplanar2D-SiCindeedisstable,andwhileitscohesiveenergy(PBEfunctional)is0.50eV/atomlowerthanthat of3C-SiC(themainbulkSiCpolymorphshaveverysimilarenergies36),thatdifferenceissmallerthanthatbetweensilicene andmonocrystallineSi(0.64eV/at.). Otherproperties Furtherpropertiesof2D-SiCcanbecomputationallypredicted. Intermsofelectronirradiationstability,Siistooheavyto bedisplacedfromtheSiCstructureataccelerationvoltagesbelow100kV.Wecalculatedthedisplacementthresholdenergy T fortheCatomviaDFTmoleculardynamics(MD),describedindetailpreviously32,37–40. Inbrief, weestimatedT by d d increasingthestartingout-of-planekineticenergyofaselectedCatomuntilitescapedthestructureduringthecourseofan MDsimulation. ForthestructureshowninFig. 2,theenergyrequiredtodisplaceaCatomfromtheSiCpatchisapproximately 13.25eV.Althoughthisishigherthanwhatcanbetransferredtoastaticnucleus,itislowenoughthatatomicvibrationscan enabledisplacements32,40,41 andbondrotations37. ForaCatominbulk2D-SiC(7×7supercell),thethresholdisinstead 15.75eV,leadingtoanegligibledisplacementprobabilityby60keVelectronsatroomtemperature. Thusamacroscopicflake of2D-SiCshouldproveratherstableforlow-voltagemicroscopy. Wealsocalculateditsbulkmodulusbyuniaxiallystraining theoptimal2D-SiCunitcellandfindingtheminimumoftheresultingtotalenergycurve,resultingin98.3GPa. Finally,weestimatedtheC1sandSi2pcorelevelbindingenergiesof2D-SiCviadeltaKohn–Sham(∆KS)totalenergy differencesincludinganexplicitcore-hole42,43 (Methods). TheC1senergywascalculatedat283.265eVandtheSi2pat 101.074eV.Althoughtheabsolutevaluesaresensitivetotheaccuracyofthedescriptionofcore-holescreening,theenergy separationC1s–Si2pof182.19eVshouldcharacterize2D-SiCwell. Table1. Comparisonof2D-SiCpropertieswecalculatedtothoseofthemajorbulkpolytypesreportedintheliterature(from Ref.44unlessotherwiseindicated). Polytype 2D-SiC 6H(α) 4H 3C(β) Symmetry hexagonal hexagonal hexagonal cubic In-planelatticeconstant(A˚) 3.104 3.0810 3.0730 4.3596 Si-Cbondlength(A˚) 1.792 1.89 1.89 1.89 Bandgap(eV) 2.58 3.05 3.23 2.36 Bulkmodulus(GPa) 98.3 220 220 250 Opticalphononenergy(meV) 127 102.8 104.2 104.2 C1s–Si2p(eV) 182.19 181.945 182.346 182.1747 5/13 a b 2.32 Å c d 3.52 Å e f 3.37-3.67 Å Figure5. Calculatedequilibriumstructuresofbilayersof2D-SiCwithitself(a-b),graphene(c-d)andhexagonalboronnitride (hBN,e-f). (a-b)Twolayersof2D-SiCinAA’stackingspontaneouslybondcovalently(all-electronchargedensityisosurface showninthecornerofthecellinb),resultinginaninterlayerdistanceof2.32A˚.Whentheotherlayerisgraphene(c-d)or hBN(e-f),theequilibriumdistancesandbindingenergiesaretypicalforvanderWaalsbonding. (NotethattheresultinghBN structureisslightlybuckledduetolatticemismatchinthechosenunitcell.) Reactivityandbilayers Consideringthelargechargetransferandunconventionalhybridizationoftheflatstructure,wesuspectedthat2D-SiCmightbe chemicallyreactive. Tostudythiscomputationally,wefirsthydrogenatedamonolayerof2D-SiCwithatomicH(inanalogyto graphane48). TheHpreferentiallybondswithC,withaformationenergyof0.79eVwithrespecttothechemicalpotentialof H . However,asecondHbondstoSiontheoppositesideoftheplane,resultinginahighlycorrugatedstructurewhenthecell 2 isallowedtorelax,bringingtheformationenergydownto-1.23eV.Thus,similartosiliceneandphosphorene49,50,2D-SiC likelyisunstableinair. Finally,toestimatethestabilityof2D-SiCinbilayers,wecompletedseveralcalculationsusingavanderWaalsexchange correlationfunctional51 (intheplane-wavemode,seeMethods). First,weinitializedasimulationwithtwo2D-SiClayers 4A˚ apartineachofthefivepossiblestackingorders(inanalogytohBN52).AlthoughAB,AB’,A’BandAAstackingresulted instablebilayers,thelowestenergy(by34,41,54and55meV/atom,respectively)isobtainedforAA’stackingwheretheSi arelocatedovertheCandviceversa(Fig. 5a). Minimizingtheforcesbringsthetwolayerstowithin2.32A˚ ofeachother, inducingaslightcorrugationoftheplanes. Theresidualstressesoftheunitcellindicatethatitssizepreventsthestructure fromreachingits(three-dimensional)groundstate,andanalysisoftheall-electrondensitybetweenthelayersclearlyindicates covalentbonding(Fig. 5b),inalmostperfectanalogytobilayersilicene53. ThisconfirmsthatnovanderWaalsbondedlayered equivalentof2D-SiCcanexist,inagreementwithitsabsenceamongtheknownphasesofbulkSiC.However,whentheother layerisinsteadeithergraphene(a5×5supercellofgraphenehasonlya0.5%latticemismatchtoa4×4supercellof2D-SiC) orhBN(-1.4%mismatch),theequilibriumdistancesare∼3.5A˚ withbindingenergiesof∼56meVperatom(finite-difference mode,seeMethods),bothconsistentwithvanderWaalsbonding. Thissuggeststhatencapsulationcouldbeusedtoprotect 2D-SiCfromtheatmospherewithoutseriouslyaffectingitsproperties. Conclusions Inconclusion,ouratomicresolutionscanningtransmissionelectronmicroscopyobservationsprovidethefirstdirectexperimental indicationthatatwo-dimensionalformofsiliconcarbidemayexist. Poresingrapheneoxideactastemplatingspaces,with theelectronbeameffectivelyprovidinganenergyinputsothattheSi-Cconfigurationspaceisexplored. Duringthisprocess, mobileadatomsofCandSiprovideachemicalsource. Asrevealedbyextensivesimulations,thegroundstateofbulk2D-SiC isindeedcompletelyplanar,withsp2hybridizationoftheSi–Cbond. ThelargechargetransferfromSitoCandthepreference ofSiforsp3hybridizationrenderthelayerchemicallyreactiveandunstableinbilayers,similartoseveralother2Dmaterials. However,oursimulationsindicatethatbilayersof2D-SiCwitheithergrapheneorhexagonalboronnitridearestable,makingit apromisingcandidateforincorporationintolayeredvanderWaalsheterostructures54. 6/13 Methods Samplepreparation Graphitepowder(purity99.9995%,2-15µmflakes,AlfaAesar)wasmixedintosulphuricacid,andthenpotassiumperman- ganateandsodiumnitrateaddedportion-wise. Fortheoxidation,waterwasaddedandthereactionmixtureheatedto98◦Cfor 3weeks. Terminatingthereactionwasfollowedbyfiltering,washing,anddrying. Toexfoliatetheresultinggraphiteoxide powderintosingle-layerflakes,itwasmixedwithdeionizedwater,vigorouslystirredfor24h,followedbybathsonication for3h,tipsonicationfor30min,andfinallybathsonicationforafurther1h. TopreparetheTEMsamples,aAusupport gridcoveredwithaholeycarbonfilm(Quantifoil(cid:13)R)wasdippedintoawater-baseddispersionfor1minandthenrinsedin isopropanolanddriedinair55. Electronmicroscopy The Nion UltraSTEM100 scanning transmission electron microscope was operated at 60 kV in near-ultrahigh vacuum (∼2×10−7Pa). ThebeamcurrentduringtheexperimentswasafewtensofpA,correspondingtoadoserateofapproximately 1×107e−/A˚2s. Thebeamconvergencesemianglewas35mradandthesemi-angularrangeofthemedium-angleannulardark field(MAADF)detectorwas60–80mrad. Densityfunctionaltheory ThelargercellcalculationswereconductedusingtheGPAWfinite-differencemodewitha0.18A˚ gridspacingand3×3×1 Monkhorst-Packk-points. Fortheplane-wavecalculations,weusedacutoffenergyof600eV(increasedto700eVforthe bandstructure)and45×45×1k-points. ThePerdew-Burke-Ernzerhof(PBE)functionalwasusedtodescribeexchangeand correlation,exceptforthebilayersimulationswhereweusedtheC09functional51. Forcalculatingthephononbandstructure,weusedinsteadthelocaldensityapproximation(LDA)andaΓ-centredk-point mesh of 42×42×1 was used to sample the Brillouin zone. A fine computational grid spacing of 0.16 A˚ alongside strict convergencecriteriaforthestructuralrelaxation(forces<10−5 eV/A˚ peratom)andtheself-consistencycycle(changein eigenstates<10−13eV2perelectron)ensuredaccurateforces. Forthecorelevelcalculations,anextraelectronwasintroducedintothevalencebandtoensurechargeneutrality,and supercellsupto9×9insizeusedtoconfirmthatspuriousinteractionsbetweenperiodicimagesofthecoreholewereminimized. Althoughspin-orbitinteractionwasnotincludedintheSi2pcalculation,itsbindingenergycanbetakentocorrespondtothe 2p levelandasplittingof0.63eVinferredfromtheory. 3/2 Imagesimulation OurQSTEMparameterswere: chromaticaberrationcoefficientof1mmwithanenergyspreadof0.3eV;sphericalaberration coefficientof1µm;thermaldiffusescatteringincludedviafrozenphononmodellingwithatemperatureof300K;additional instabilities(suchassamplevibration)simulatedbyblurringtheresultingimage(Gaussiankernelwithasigmaof0.39A˚); andthemedium-angleannulardark-fielddetectoranglerangesettotheexperimentalrangeof60–80mrad. Shotnoisewas removedfromthefilteredexperimentalimageofFig. 2cbyblurringitwithaGaussiankernel(sigmaof0.28A˚). References 1. Geim,A.K.&Novoselov,K.S. Theriseofgraphene. Nat.Mater.6,183–191(2007). 2. Watanabe,K.,Taniguchi,T.&Kanda,H. Direct-bandgappropertiesandevidenceforultravioletlasingofhexagonalboron nitridesinglecrystal. Nat.Mater.3,404(2004). 3. Li,L.etal. Blackphosphorusfield-effecttransistors. NatureNanotechnology9,372–377(2014). 4. Wang, Q. H., Kalantar-Zadeh, K., Kis, A., Coleman, J. N. & Strano, M. S. Electronics and optoelectronics of two- dimensionaltransitionmetaldichalcogenides. NatureNanotechnology7,699–712(2012). 5. Takeda,K.&Shiraishi,K. TheoreticalpossibilityofstagecorrugationinSiandGeanalogsofgraphite. Phys.Rev.B50, 14916–14922(1994). 6. Cahangirov,S.,Topsakal,M.,Aktu¨rk,E.,S¸ahin,H.&Ciraci,S. Two-andone-dimensionalhoneycombstructuresof siliconandgermanium. Phys.Rev.Lett.102,236804(2009). 7. Lalmi,B.etal. Epitaxialgrowthofasilicenesheet. AppliedPhysicsLetters97(2010). 8. Aufray,B.etal. Graphene-likesiliconnanoribbonsonAg(110): Apossibleformationofsilicene. AppliedPhysicsLetters 96(2010). 7/13 9. Vogt,P.etal. Silicene: Compellingexperimentalevidenceforgrapheneliketwo-dimensionalsilicon. Phys.Rev.Lett.108, 155501(2012). 10. Tao,L.etal. Silicenefield-effecttransistorsoperatingatroomtemperature. NatureNanotechnology10,227–231(2015). 11. Zhou,L.-J.,Zhang,Y.-F.&Wu,L.-M. SiC siligrapheneandnanotubes: Noveldonormaterialsinexcitonicsolarcells. 2 NanoLetters13,5431–5436(2013). 12. Gao, G., Ashcroft, N. W. & Hoffmann, R. The unusual and the expected in the Si/C phase diagram. Journal of the AmericanChemicalSociety135,11651–11656(2013). 13. Cheung,R. IntroductiontoSiliconCarbideMicroelectromechanicalSystems(MEMS),chap.1,1–17(ImperialCollege Press,London,2012). 14. S¸ahin,H.etal. Monolayerhoneycombstructuresofgroup-IVelementsandIII-Vbinarycompounds: First-principles calculations. Phys.Rev.B80,155453(2009). 15. Hsueh,H.C.,Guo,G.Y.&Louie,S.G. ExcitoniceffectsintheopticalpropertiesofaSiCsheetandnanotubes. Phys.Rev. B84,085404(2011). 16. Lin,X.etal. Abinitiostudyofelectronicandopticalbehavioroftwo-dimensionalsiliconcarbide. J.Mater.Chem.C1, 2131–2135(2013). 17. Shi,Z.,Zhang,Z.,Kutana,A.&Yakobson,B.I. Predictingtwo-dimensionalsiliconcarbidemonolayers. ACSNano9, 9802–9809(2015). 18. Dikin,D.A.etal. Preparationandcharacterizationofgrapheneoxidepaper. Nature448,457–460(2007). 19. Robertson,A.W.etal. Atomicstructureofgraphenesubnanometerpores. ACSNano9,11599–11607(2015). 20. Lee,J.,Zhou,W.,Pennycook,S.J.,Idrobo,J.-C.&Pantelides,S.T. DirectvisualizationofreversibledynamicsinaSi 6 clusterembeddedinagraphenepore. Nature4,1650(2013). 21. Ska´kalova´,V.etal. Electronictransportincompositesofgraphiteoxidewithcarbonnanotubes. Carbon72,224–232 (2014). 22. Krivanek,O.L.etal. Atom-by-atomstructuralandchemicalanalysisbyannulardark-fieldelectronmicroscopy. Nature 464,571–574(2010). 23. Zhao,J.etal. Free-standingsingle-atom-thickironmembranessuspendedingraphenepores. Science343,1228–1232 (2014). 24. Zan,R.,Ramasse,Q.M.,Bangert,U.&Novoselov,K.S. Graphenereknitsitsholes. NanoLetters12,3936–3940(2012). 25. Chen,Q.etal. Elongatedsilicon–carbonbondsatgrapheneedges. ACSNano10,142–149(2016). 26. Enkovaara,J.etal. ElectronicstructurecalculationswithGPAW:areal-spaceimplementationoftheprojectoraugmented- wavemethod. J.Phys.Condens.Matter22,253202(2010). 27. Koch,C. DeterminationofCoreStructurePeriodicityandPointDefectDensityalongDislocations. Ph.D.thesis,Arizona StateUniversity(2002). 28. Kuramochi, K.etal. Effectofchromaticaberrationonatomic-resolvedsphericalaberrationcorrectedSTEMimages. Ultramicroscopy110,36–42(2009). 29. Forbes, B.etal. Thermaldiffusescatteringintransmissionelectronmicroscopy. Ultramicroscopy111, 1670–1680 (2011). 30. Huang,P.Y.etal. Directimagingofatwo-dimensionalsilicaglassongraphene. NanoLett.12,1081–1086(2012). 31. Tararan,A.,Zobelli,A.,Benito,A.M.,Maser,W.K.&Ste´phan,O. Revisitinggrapheneoxidechemistryviaspatially- resolvedelectronenergylossspectroscopy. ChemistryofMaterials28,3741–3748(2016). 32. Susi,T.etal. Silicon–carbonbondinversionsdrivenby60-keVelectronsingraphene. Phys.Rev.Lett.113,115501(2014). 33. Guan,J.,Liu,D.,Zhu,Z.&Toma´nek,D. Two-dimensionalphosphoruscarbide:Competitionbetweensp2andsp3bonding. NanoLetters16,3247–3252(2016). 34. Tang,W.,Sanville,E.&Henkelman,G. Agrid-basedbaderanalysisalgorithmwithoutlatticebias. J.Phys.: Condens. Matter21,084204(2009). 35. Thygesen,K.S.,Hansen,L.B.&Jacobsen,K.W. PartlyoccupiedWannierfunctions. Phys.Rev.Lett.94,026405(2005). 8/13 36. Ka¨ckell,B.,P.;Wenzien&Bechstedt,F. InfluenceofatomicrelaxationsonthestructuralpropertiesofSiCpolytypesfrom abinitiocalculations. Phys.Rev.B50,17037–17046(1994). 37. Kotakoski,J.etal. Stone-Wales-typetransformationsincarbonnanostructuresdrivenbyelectronirradiation. Phys.Rev.B 83,245420(2011). 38. Susi, T. et al. Atomistic description of electron beam damage in nitrogen-doped graphene and single-walled carbon nanotubes. ACSNano6,8837–8846(2012). 39. Kotakoski,J.,Santos-Cottin,D.&Krasheninnikov,A.V. Stabilityofgrapheneedgesunderelectronbeam: Equilibrium energeticsversusdynamiceffects. ACSNano6,671–676(2012). 40. Susi,T.etal. Isotopeanalysisinthetransmissionelectronmicroscope. NatureCommunications7,13040(2016). 41. Meyer,J.C.etal. Accuratemeasurementofelectronbeaminduceddisplacementcrosssectionsforsingle-layergraphene. Phys.Rev.Lett.108,196102(2012). 42. Ljungberg,M.P.,Mortensen,J.J.&Pettersson,L.G.M. Animplementationofcorelevelspectroscopiesinarealspace projectoraugmentedwavedensityfunctionaltheorycode. J.ElectronSpectros.RelatedPhenom.184,427–439(2011). 43. Susi,T.,Mowbray,D.J.,Ljungberg,M.P.&Ayala,P. CalculationofthegrapheneC1scorelevelbindingenergy. Phys. Rev.B91,081401(2015). 44. IoffeInstitute. Propertiesofsiliconcarbide. URLhttp://www.ioffe.ru/SVA/NSM/Semicond/SiC/. 45. Binner,J.&Zhang,Y. CharacterizationofsiliconcarbideandsiliconpowdersbyXPSandzetapotentialmeasurement. JournalofMaterialsScienceLetters20,123–126(2001). 46. Johansson,L.,Owman,F.&Ma˚rtensson,P. Aphotoemissionstudyof4HSiC(0001). SurfaceScience360,483–488 (1996). 47. Parrill,T.M.&Chung,Y.W. Surfaceanalysisofcubicsiliconcarbide(001). SurfaceScience243,96–112(1991). 48. Sofo,J.O.,Chaudhari,A.S.&Barber,G.D. Graphane: Atwo-dimensionalhydrocarbon. Phys.Rev.B75,153401(2007). 49. Molle,A.etal. Hinderingtheoxidationofsilicenewithnon-reactiveencapsulation. AdvancedFunctionalMaterials23, 4340–4344(2013). 50. Wood,J.D.etal. Effectivepassivationofexfoliatedblackphosphorustransistorsagainstambientdegradation. Nano Letters14,6964–6970(2014). 51. Cooper,V.R. VanderWaalsdensityfunctional: Anappropriateexchangefunctional. Phys.Rev.B81,161104(2010). 52. Constantinescu,G.,Kuc,A.&Heine,T. Stackinginbulkandbilayerhexagonalboronnitride. Phys.Rev.Lett.111,036104 (2013). 53. Padilha,J.E.&Pontes,R.B. Free-standingbilayersilicene: Theeffectofstackingorderonthestructural,electronic,and transportproperties. TheJournalofPhysicalChemistryC119,3818–3825(2015). 54. Geim,A.K.&Grigorieva,I.V. VanderWaalsheterostructures. Nature499,419–425(2013). 55. Meyer,J.C.etal.Directimagingoflatticeatomsandtopologicaldefectsingraphenemembranes.NanoLett.8,3582–3586 (2008). Acknowledgements WethankMichaelWalterandMiguelCaroforusefuldiscussions. T.S.acknowledgesfundingfromtheAustrianScienceFund (FWF)viaprojectP28322-N36andtheViennaScientificClusterforcomputationalresources. V.S.wassupportedbythe FWFviaprojectAI0234411/21,andthroughprojectsVEGA1/1004/15andUVP,OPVaV-2011/4.2/01-PN.A.M.andJ.C.M. acknowledgefundingbytheFWFprojectP25721-N20andtheEuropeanResearchCouncilGrantNo. 336453-PICOMAT.T.J.P. wassupportedbytheEuropeanUnion’sHorizon2020researchandinnovationprogrammeundertheMarieSkłodowska-Curie grant agreement No. 655760 – DIGIPHASE, and J.K. by the Wiener Wissenschafts-, Forschungs- und Technologiefonds (WWTF)viaprojectMA14-009. Author contributions statement T.S.conductedtheDFTsimulationsanddraftedthemanuscript. V.S.conceivedofthestudy,conductedelectronmicroscopy, andsupervisedthesamplesynthesis. A.M.simulatedtheSTEMimages. P.K.andM.H.synthesizedthesamples. T.J.P.and C.M.participatedinelectronmicroscopy. J.K.andJ.C.M.supervisedthestudy. Allauthorsreviewedthemanuscript. 9/13 Additional information CompetingfinancialinterestsTheauthorsdeclarenocompetingfinancialinterests. 10/13