ebook img

260. R. J. Weiblen, C. R. Menyuk, L. E. Busse, L. B. Shaw, J. S. Sanghera, and I. D. Aggarwal PDF

16 Pages·2016·2.87 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview 260. R. J. Weiblen, C. R. Menyuk, L. E. Busse, L. B. Shaw, J. S. Sanghera, and I. D. Aggarwal

Optimized moth-eye anti-reflective structures for As S chalcogenide optical 2 3 fibers R.J.Weiblen,1,∗C.R.Menyuk,1L.E.Busse,2L.B.Shaw,2 J. S.Sanghera,2andI.D.Aggarwal3 1DepartmentofComputerScienceandElectricalEngineering,TRC203,Universityof MarylandBaltimoreCounty,1000HilltopCircle,Baltimore,MD21250,USA 2NavalResearchLaboratory,Code5620,Washington,D.C.20375,USA 3SoteraDefenseSolutions,Crofton,MD21114,USA ∗[email protected] Abstract: We computationally investigate moth-eye anti-reflective nanostructures imprinted on the endfaces of As S chalcogenide optical 2 3 fibers.Withagoalofmaximizingthetransmissionthroughtheendfaces,we investigatetheeffectofchangingtheparametersofthestructure,including theheight,width,period,shape,andangle-of-incidence.Usingtheseresults, we design two different moth-eye structures that can theoretically achieve almost99.9%averagetransmisisonthroughanAs S surface. 2 3 © 2016 OpticalSocietyofAmerica OCIScodes:(050.6624)Subwavelengthstructures;(060.2390)Fiberoptics,infrared. Referencesandlinks 1. LordRayleigh,“Onreflectionofvibrationsattheconfinesoftwomediabetweenwhichthetransitionisgradual,” Proc.LondonMath.Soc.S1–11,51–56(1879). 2. C.G.BernhardandW.H.Miller,“Acornealnipplepatternininsectcompoundeyes,”ActaPhysiol.Scand.56, 385–386(1962). 3. D. G. Stavenga, S. Foletti, G. Palasantzas, and K. Arikawa, “Light on the moth-eye corneal nipple array of butterflies,”Proc.Biol.Sci.273,661–667(2006). 4. S.Chattopadhyay,Y.F.Huang,Y.J.Jen,A.Ganguly,K.H.Chen,andL.C.Chen,“Anti-reflectingandphotonic nanostructures,”MaterialsSci.EngRev.69,1–35(2010). 5. J.Kulakofsky,W.Lewis,M.Robertson,T.Moore,andG.Krishnan,”Designinghigh-powercomponentsfor opticaltelecommunications,”Proc.SPIE4679,198(2002). 6. S.A.BodenandD.M.Bagnall,“Optimizationofmoth-eyeantireflectionschemesforsiliconsolarcells,”Prog. Photovolt:Res.Appl.18,195–203(2010). 7. Y.Ou,D.Corell,C.Dam-Hansen,P.Petersen,andH.Ou,”Antireflectivesub-wavelengthstructuresforim- provementoftheextractionefficiencyandcolorrenderingindexofmonolithicwhitelight-emittingdiode,” Opt. Express19,A166–A172(2011). 8. D. S. Hobbs, B. D. MacLeod, and J. R. Riccobono, “Update on the development of high performance anti- reflectingsurfacereliefmicro-structures,”Proc.SPIE6545,65450Y(2007). 9. T.Hoshino,M.Itoh,andT.Yatagai,“Antireflectivegratingintheresonancedomainfordisplays,” Appl.Opt. 46,648–656(2007). 10. J.Sanghera,C.Florea,L.Busse,L.B.Shaw,F.Miklos,andI.Aggarwal,“ReducedFresnellossesinchalcogenide fibersbyusinganti-reflectivesurfacestructuresonfiberendfaces,” Opt.Express18,26760–26768(2010). 11. N.H.Finkel,B.G.Prevo,O.D.Velev,andL.He,“Orderedsiliconnanocavityarraysinsurface-assisteddesorp- tion/ionizationmassspectrometry,”Anal.Chem.77,1088–1095(2005). 12. S.Y.Chou,P.R.Krauss,andP.J.Renstrom,“Nanoimprintlithography,”J.Vac.Sci.Technol.B14,4129–4133 (1996). 13. M.Kowalczyk,J.Haberko,andP.Wasylczyk,“Microstructuredgradient-indexantireflectivecoatingfabricated onafibertipwithdirectlaserwriting,” Opt.Express22,12545–12550(2014). #258966 Received 11 Feb 2016; revised 20 Apr 2016; accepted 25 Apr 2016; published 2 May 2016 © 2016 OSA 2 May 2016 | Vol. 24, No. 9 | DOI:10.1364/OE.24.010172 | OPTICS EXPRESS 10172 14. B.D.MacLeod,D.S.Hobbs,andE.Sabatino,“MoldableARmicrostructuresforimprovedlasertransmission anddamageresistanceinCIRCMfiberopticbeamdeliverysystems,”Proc.SPIE8016,80160Q(2011). 15. R. J. Weiblen, C. Florea, A. Docherty, C. R. Menyuk, L. B. Shaw, J. Sanghera, L. Busse, and I. Aggarwal, “OptimizingmotheyeantireflectivestructuresformaximumcouplingthroughAs2S3 opticalfibers,”inIEEE PhotonicsConference(IEEE,2012),paperThP3. 16. K.HanandC.-H.Chang“Numericalmodelingofsub-wavelengthanti-reflectivestructuresforsolarmodule applications,”Nanomaterials4,87–128(2014). 17. J.Yamauchi,M.Mita,S.Aoki,andH.Nakano,“AnalysisofantireflectioncoatingsusingtheFD-TDmethod withthePMLabsorbingboundarycondition,”IEEEPhotonicsTechnol.Lett.8,239–241(1996). 18. Z.Y.Yang,D.Q.Zhu,M.Zhao,andM.C.Cao,“Thestudyofanano-porousopticalfilmwiththefinitedifference timedomainmethod,”J.Opt.A:PureAppl.Opt.6,564–568(2004). 19. M.G.MoharamandT.K.Gaylord,“Rigorouscoupled-waveanalysisofplanar-gratingdiffraction,” J.Opt.Soc. Am. 71,811–818(1981). 20. L.Li,“NewformulationoftheFouriermodalmethodforcrossedsurface-reliefgratings,” J.Opt.Soc.Am.A 14,2758–2767(1997). 21. D.S.Hobbs,B.D.MacLeod,E.SabatinoIII,T.M.Hartnett,andR.L.Gentilman,“Laserdamageresistantanti- reflectionmicrostructuresinRaytheonceramicYAG,sapphire,ALON,andquartz,”Proc.SPIE8016,80160T (2011). 22. D.S.Hobbs,“Laserdamagethresholdmeasurementsofanti-reflectionmicrostructuresoperatinginthenearUV andmid-IR,”Proc.SPIE7842,78421Z(2010). 23. C.Florea,L.Busse,S.Bayyab,B.Shaw,I.Aggarwal,andJ.Sanghera,“Anti-reflectivesurfacestructuresin spinelceramicwindows,”inThe10thPacificRimConferenceonCeramicandGlassTechnology(2013),paper S10-014. 24. L.Busse,C.Florea,L.B.Shaw,S.Bayya,G.Villalobos,I.Aggarwal,andJ.Sanghera,“Anti-reflectivesurface structuresforhighenergylaserapplications,”inAnnualDirectedEnergySymposium(2013),paper13-Symp- 053. 25. R.J.Weiblen,C.Florea,L.Busse,L.B.Shaw,C.R.Menyuk,I.Aggarwal,andJ.Sanghera,“Irradianceen- hancment and increased laser damage threshold in As2S3 moth-eye antireflective structures,” Opt. Lett. 40, 4799-4802(2015). 26. R.J.Weiblen,C.Florea,C.R.Menyuk,I.Aggarwal,L.Busse,L.B.Shaw,andJ.Sanghera,“Idealcusp-like motheyeantireflectivestructuresforchalcogenideopticalfibers,”inIEEEPhotonicsConference(2015),paper WI1.4. 27. A.F.Oskooi,D.Roundy,M.Ibanescu,P.Bermel,J.D.Joannopoulos,andS.G.Johnson,“MEEP:aflexible free-softwarepackageforelectromagneticsimulationsbytheFDTDmethod,”Comp.Phys.Comm.181,687– 702(2010) 28. D.RaguinandG.Morris,“Antireflectionstructuredsurfacesfortheinfraredspectralregion,” Appl.Opt.32, 1154–1167(1993). 29. M.Steel,T.White,C.M.deSterke,R.McPhedran,andL.Botten,“Symmetryanddegeneracyinmicrostructured opticalfibers,” Opt.Lett.26,488–490(2001). 30. W.H.Southwell,“Pyramid-arraysurface-reliefstructuresproducingantireflectionindexmatchingonoptical surfaces,” J.Opt.Soc.Am.A8,549–553(1991). 1. Introduction IthasbeenknownsincethetimeofLordRayleighthatmicroscalestructuresonthesurfaceof opticalinterfacesareeffectiveatreducingFresnelreflections[1].Periodicanti-reflective(AR) microstructuresarecalled“moth-eye”structuresbecauseoftheirsimilaritytothemicrostruc- turesontheeyesofnocturnalmoths[2,3].Moth-eyestructuresareabiomimeticmicrostruc- tured AR surface structure that are effective at reducing Fresnel reflections [4]. In the long wavelengthlimit,theyworkbyprovidingagradualchangeoftheeffectiverefractiveindexas lightpropagatesacrosstheair-glassinterface.Theyareespeciallyusefulforhigh-indexmate- rials, which includes most mid-IR materials, such as chalcogenide glasses. Reducing Fresnel reflections from optical interfaces is important in mid-IR applications, where high power and low loss are needed. High power laser radiation that reflects from interfaces can damage in- struments, while insertion or coupling losses can be major contributors to overall losses in a system[5].Hence,mid-IRsystemscanbenefitgreatlybyusingmoth-eyestructurestoreduce reflections from and increasing transmission through interfaces. They are useful in a number ofapplications,includinglasersystems[5],photovoltaics[6],LEDs[7],automotiveglass[8], #258966 Received 11 Feb 2016; revised 20 Apr 2016; accepted 25 Apr 2016; published 2 May 2016 © 2016 OSA 2 May 2016 | Vol. 24, No. 9 | DOI:10.1364/OE.24.010172 | OPTICS EXPRESS 10173 electronicsdisplays[9],andfiberoptics[10]. Moth-eye structures can be imprinted by numerous methods, including wet or dry etch- ing [11], nanoimprint lithography [12], or direct laser writing [13]. Sanghera et al. [10] and MacLeodetal.[14]recentlydemonstratedadirectstampingmethodfornanoimprintingmoth- eyestructuresontheend-facesofchalcogenideopticalfibers,whereARinterfacesarepartic- ularly useful because of the large refractive index difference between air and As S (∼2.45 2 3 atawavelengthofλ =2µm).Thedirectstampingmethodallowsstructurestobeaccurately replicated,andthereflectionasafunctionofwavelengthdependssensitivelyonthestructures andtheirparameters[15],whichmeansthattheymustbeaccuratelymodeled.Becauseinthe structuresstudiedinthiswork,themicrostructurefeaturedimensionsareonthesameorderas thewavelengthoftheincomingradiation(∼1µm),lightinadjacentfeaturesinteracts,andthus neitherthelong-wavelengthaveragerefractiveindexmodelnortheshort-wavelengthrayoptics modelisappropriatetodescribetransmissionthroughmoth-eyestructures.Hence,theymustbe modeledusingrigorouscomputationalmethods[16],suchasthefinite-elementmethod(FEM), thefinite-differencetime-domainmethod(FDTD)[17,18],orrigorouscoupled-waveanalysis (RCWA) [19,20], where the results become exact in principle as the grid size and step size tendtozero(FEMandFDTD)orthenumberofharmonicsbecomesinfinite(RCWA).Wehave simulatedmoth-eyestructuresusingthreemethods,FEM,FDTDandRCWA.Wefindthatthey agreeperfectly,butthatRCWAisthefastestandmostaccuratemethod. Moth-eyestructureshaveseveraladvantagesovertraditionalthin-filmARcoatings,includ- ing environmental tolerance, surface adhesion, single material fabrication, minimal surface preparation, and self-cleaning via the lotus effect [8,10]. Additionally, in recent years it has beenshownthatinmanycasesperiodicmoth-eyestructureshaveahigherlaser-induceddam- agethreshold(LIDT)thandotraditionalAR-coatedsurfaces[21–24].Weexplainedthiseffect intermsoftheboundaryconditionsforMaxwell’sequations[25]. Inthiswork,weoptimizetheshapeanddimensionsofmoth-eyestructuresformaximumin- putandoutputcouplingthroughtheendfacesofAs S opticalfibers.Wepreviouslypresented 2 3 some of these results in brief meeting reports [15,26], but here we show an in-depth investi- gationofallrelevantmoth-eyestructureparameters,includingthestructureshape,dimensions, period,packing,andtheangle-of-incidence.Therestofthispaperisorganizedasfollows:In Sec.2, weverifyourtheoretical modelbycomparingour resultstoexperimentally-measured results. In Secs. 3–5, we report our investigations of the effects of changing the dimensions and period of the moth-eye structures (Sec. 3), changing the angle-of-incidence of the input radiation (Sec. 4), and changing the shape of the moth-eye structure (Sec. 5). We have used the insights of Secs. 2–5 to design and optimize moth-eye structures with nearly ideal 100% transmission,andwereportthesedesignsinSec.6.Finally,Sec.7containstheconclusions. 2. Comparisonofcomputersimulationsandexperiment The goal of the work described in this section is to create and validate a theoretical model thatagreeswiththeresultsforaparticularmoth-eyestructurethatwasexperimentallystudied by Sanghera et al. [10] and is shown in Fig. 1(c). We calculate the transmission of the struc- turedsurfacebysimulatingaplane-waveincidentuponanAs S structuredsurfacetransmit- 2 3 tingmediumusingtheopen-sourcefinite-differencetime-domain(FDTD)computersoftware MEEP [27]. The simulation propagates a wave-packet of specific bandwidth from a vacuum incidentmediumthroughthemicrostructureandthencalculatesthetransmissionandreflection spectrabytakingaharmonictransformofthetime-domainfluxthroughmeasurementsurfaces thataresituatedaboveandbelowthemicrostructuredsurface.Weuseaspatialresolutionof10 nm for all simulations, and we have verified that increasing the resolution does not affect the results.Weutilizetheperiodicityofthestructureandonlysolveforthefieldsinasingleunit #258966 Received 11 Feb 2016; revised 20 Apr 2016; accepted 25 Apr 2016; published 2 May 2016 © 2016 OSA 2 May 2016 | Vol. 24, No. 9 | DOI:10.1364/OE.24.010172 | OPTICS EXPRESS 10174 (c) Fig.1.Schematicviewofamoth-eyeconestructure:(a)Sidecross-sectionview;(b)top viewshowingaunitcell;(c)SEMwith1-µmscale-bar. cell, using Floquet-Bloch boundary conditions. Additionally, for circularly symmetric struc- turesinasquareorhexagonalpackingschemewithnormalincidence,itissufficienttostudy a single polarization of incoming light, since the results do not depend on the polarization in thatcase[28,29].Thecalculatedtransmissionspectrahavebeenverifiedbycomparisonwith thecommercialsoftwarepackageDiffractMOD®byRSOFT,whichusestherigorouscoupled wavealgorithm(RCWA). TheexperimentaltransmissionspectrumwasmeasuredattheNavalResearchLaboratory.In theexperiment,thefiberendfacewasembossedwithamoth-eyestructureusingashimwith the negative of the desired moth-eye pattern. The transmission through the fiber before and afterthemoth-eyestructurewasappliedweretestedusinganFTIRspectrometer.Detailsofthe experimentalsetuptofabricatethemoth-eyestructureaswellasthemeasurementsaregiven indetailin[10]. Theexperimentalshapeismodeledbyatruncatedconewithahemisphericcapthatisfully determined by specifying the cone height, h; the base diameter, w ; the tip diameter, w ; and 2 1√ the lattice constant of the packing, s . Since the features are hexagonally packed, s = 3s . x y x ThesegeometricparametersareshowndiagrammaticallyinFigs.1(a)and1(b).Theconeap- proximation to the experimentally-implemented feature has the following parameters, which canbedeterminedfromtheSEMimage.w =0.2µm,w =0.7µm,h=0.9µm,s =0.92µm, 1 2 x ands =1.59µm.Foralltheoreticalmodels,wesettherefractiveindexnofAs S tobeequal y 2 3 to n=2.45, which is a good approximation to the experimentally-measured value over the wavelengthrangeofinterest. The calculated transmission spectra are shown in Fig. 2 for light that is coupled into and outofanopticalfiber.Thespectraareverysimilaratlongerwavelengthsanddifferforshorter wavelengths for reasons that will be explained shortly. The output coupling exhibits a sharp falloffatshortwavelengths,whiletheinputcouplingdoesnot.Thetransitionfromhightolow transmissionasthewavelengthdecreasesiscalledthediffractionedge,issharp,andoccursat 1.9µmforthisstructure. Figure2alsoshowsthattheexperimentally-measuredtransmissionforlightcoupledoutof thefiberandthedrop-offintransmissionforshorterwavelengthsmatchthetheoreticalresult. The measured transmission spectrum is somewhat lower at longer wavelengths, which could becausedbyaslightlydifferentconeshapeintheexperimentalsystemthaninourtheoretical modeland/orbymateriallosses,whicharenotincludedinourtheoreticalmodel. #258966 Received 11 Feb 2016; revised 20 Apr 2016; accepted 25 Apr 2016; published 2 May 2016 © 2016 OSA 2 May 2016 | Vol. 24, No. 9 | DOI:10.1364/OE.24.010172 | OPTICS EXPRESS 10175 Fig. 2. The theoretical transmission spectra of light coupled into and coupled out of the fiber. The experimental transmission spectrum of light coupled out of the fiber is also shown. The Fresnel limit is the transmission spectrum from a plane-wave coupling into oroutofafiberwithaflatend-face. Fig.3.(a)Couplingoflightintoandoutofthefiberrepresentedgraphically.Theray-optics picturesoflightcoupling(b)outofthestructure,and(c)intothestructure. Finally, Fig. 2 shows the transmission through a bare fiber end-face with no AR structure forcomparison.TheFresnel-limitedtransmissiondependsonlyontherefractiveindicesofthe incidentandtransmittingmediumand,inthiscase,isapproximately83%. 2.1. Couplingintoandoutofafiber Thecouplingoflightintothefiberandthetransmissionoutofthefiberaretwodifferentprob- lems,asschematicallyshowninFig.3(a).Forlongwavelengths,thebehaviorofbothinputand output coupling can be expected to be similar, as the electro-magnetic field will average over the moth-eye surface, effectively homogenizing the refractive index transition and leading to similartransmissionpropertiesinbothdirections. For shorter wavelengths, we expect the transmission properties to be very different. In the #258966 Received 11 Feb 2016; revised 20 Apr 2016; accepted 25 Apr 2016; published 2 May 2016 © 2016 OSA 2 May 2016 | Vol. 24, No. 9 | DOI:10.1364/OE.24.010172 | OPTICS EXPRESS 10176 ray-optics limit, normally incident light will be totally internally reflected inside the cones in the output coupling case, whereas light will be refracted directly into the fiber in the input couplingcase,asshowninFigs.3(b)and3(c).Totalinternalreflectionoccurswhentheangle thattheincidentlightraymakeswiththeconesurface,θ,isgreaterthanthecriticalangle,24◦, asisthecasewithallofthepracticalconedesignsconsidered. This argument gives an intuitive picture of how a structured surface can yield very differ- ent behavior for light coupled into and out of the high index material. However, the coupling at wavelengths close to the size of the structure is complicated due to the interaction of the electromagneticfieldinadjacentconestructures.Thewavelengthatwhichtheinputandout- putcouplingdifferiscalledthediffractionedge,becauseforwavelengthsbelowthediffraction edge,diffractedordersgreaterthanzeroexistinthetransmittedspectrum.Fullnumericalsim- ulations of Maxwell’s equations are therefore required to obtain a qualitative picture of the transmissionspectraaswellasaquantitativeresult. 3. Changingthedimensions Next,weinvestigatechangingthedimensionsofthetruncatedconetodeterminetheeffecton thetransmissionspectrum.Wevaryeachparameterindependently,startingwiththetipwidth. 3.1. Tipwidth The calculated transmission spectra for input and output coupling for different values of the conetipdiameter,w ,areshowninFig.4.Allotherparametersarekeptfixedatw =0.7µm, 1 2 h=0.9µm,s =0.92µm,ands =1.59µm. x y As the cone tip diameter is increased from w =0.1 µm to w =0.7 µm, the transmission 1 1 forwavelengthsabove3.5µmincreases.However,forwavelengthsaround2.8µm,thetrans- mission correspondingly decreases. For output coupling, the transmission drop-off near 2 µm does not change significantly for different values of w . For input coupling, the transmission 1 decreasesbelow2µmasthetipdiameterincreases. (a) (b) Fig.4.Thetransmissionspectraoflightcoupled(a)intoand(b)outofthefiberasthecone tipdiameterw varies.Theothergeometricparametersarew =0.7µm,h=0.9µm,and 1 2 sx=0.92µm.Theexperimentaltransmissionspectrumoflightcoupledoutofthefiberis shownforcomparison(blackdashedline). #258966 Received 11 Feb 2016; revised 20 Apr 2016; accepted 25 Apr 2016; published 2 May 2016 © 2016 OSA 2 May 2016 | Vol. 24, No. 9 | DOI:10.1364/OE.24.010172 | OPTICS EXPRESS 10177 3.2. Basewidth Inthesecondparameterstudy,wevariedthediameterofthebaseofthecone,keepingtheother parameters fixed at w =0.2 µm, h=0.9 µm, and s =0.92 µm. The resulting transmission 1 x spectraversuswavelengthareshowninFig.5.Weseethatforverynarrowcones,withw = 2 0.3 µm, the transmission is only slightly increased above the Fresnel limit of a flat interface, whichisapproximately83%.Forbothinputandoutputcoupling,theslopesofthetransmission spectrabecomeincreasinglysteep,decreasingfromalmost100%transmissionnear2.5µmto around92%transmissionnear5µmatthelargestbasediameterthatweconsider,w =0.9µm, 2 where the base of the cones would be almost touching. For input coupling we see that as w 2 increases,thetransmissionincreasesforallwavelengths.Furthermore,foroutputcoupling,we findthatasw increases,thecutoffat2µmbecomesstronger. 2 (a) (b) Fig.5.Thetransmissionspectraoflightcoupled(a)intoand(b)outofthefiberversusthe conebottomdiameterw .Theothergeometricparametersarew =0.2µm,h=0.9µm, 2 1 andsx=0.92µm.Theexperimentaltransmissionspectrumoflightcoupledoutofthefiber isshownforcomparison(blackdashedline). 3.3. Height Thetransmissionspectraversuswavelengthfordifferentconeheights,h,areshowninFig.6. All other parameters are kept fixed at w =0.2 µm, w =0.7 µm, s =0.92 µm, and s = 1 2 x y 1.59µm.Thetransmissionabove3.5µmincreasesastheconeheightincreases;however,the transmission also decreases slightly with increasing h near a wavelength of 3 µm. The same behavior is seen for both input and output coupling. The height does not greatly affect the transmission below 2 µm for input coupling; for output coupling the transmission increases, although it is still considerably below the Fresnel limit of 83%, and the sharp cutoff is still present. 3.4. Period Thefinalgeometricparameterthatwechangeinourmodelisthelatticespacingortheperiodof thecones,s .Thelatticepackingiskepthexagonal;deviationsfromthispackingbychoosing x s differently would cause different polarizations of light to have different transmission spec- y tra[28,29].Allotherparametersarekeptfixedatw =0.2µm,w =0.7µm,h=0.9µm.The 1 2 resultsareshowninFig.7.Wefindthatthetransmissionincreaseswithdecreasings .Thisre- x #258966 Received 11 Feb 2016; revised 20 Apr 2016; accepted 25 Apr 2016; published 2 May 2016 © 2016 OSA 2 May 2016 | Vol. 24, No. 9 | DOI:10.1364/OE.24.010172 | OPTICS EXPRESS 10178 (a) (b) Fig.6.Thetransmissionspectraoflightcoupled(a)intoand(b)outofthefiberversusthe coneheighth.Theexperimentaltransmissionspectrumoflightcoupledoutofthefiberis shownforcomparison(blackdashedline). sultqualitativelyagreeswiththeresultsofchangingtheconebasediameter:Inbothcases,the packing density of the cones increases, causing the interaction of the fields between cones to increase,whichinturnincreasestheresultingtransmission.Theresultsforoutputcouplingare showninFig.7(b).Inthiscase,wefindthatchangingthelatticeconstantchangesthecut-off ordiffractionedgewavelength,whichincreasesass increases. x (a) (b) Fig. 7. The transmission spectra of light coupled (a) into and (b) out of the fiber versus theconehexagonalpackingspacingsx.Theexperimentaltransmissionspectrumoflight coupledoutofthefiberisshownforcomparison(blackdashedline). 4. Angleofincidence The effect of changing the angle of incidence of the input plane wave is shown in Fig. 8 for angles up to 30◦ for the same moth-eye structure that was discussed in the previous section. For input coupling, the transmission spectrum is almost unaffected by changes in the angle #258966 Received 11 Feb 2016; revised 20 Apr 2016; accepted 25 Apr 2016; published 2 May 2016 © 2016 OSA 2 May 2016 | Vol. 24, No. 9 | DOI:10.1364/OE.24.010172 | OPTICS EXPRESS 10179 of incidence. This result makes sense conceptually, as argued previously from the ray picture in Fig. 3(c). For output coupling, the transmission drops significantly for angles of incidence above10◦,goingtozeroforwavelengthsabove2µmforanincidenceangleof30◦. For single mode fibers the low transmission at non-normal incidence for output coupling wouldnotbeaproblemsincetheangleofincidenceforthefundamentalmodewouldbeclose tonormal;however,formultimodefibersthisissueshouldbetakenintoconsideration. (a) (b) Fig. 8. The transmission spectra of light coupled (a) into and (b) out of the fiber versus theincidenceangleoftheinputplane-wave,φ.Theexperimentaltransmissionspectrumof lightcoupledoutofthefiberisshownforcomparison(blackdashedline). 5. Changingtheshape Inthissection,westudytheeffectofchangingtheshapeofthemoth-eyestructureelement.The shapeswestudyareahalf-ellipsoidalshape,asinusoidalshape,andatruncatedpyramid.The truncatedpyramidelementisaflat-sidedsquarepyramidwiththetopcutoff.Thehalf-ellipsoid structureistheupperhalfofanellipsoidorientedalongthez-axis,whoseheightisgivenbythe equation (cid:34) (cid:18) x (cid:19)2 (cid:18) y (cid:19)2(cid:35)1/2 z(x,y)=h 1− − , (1) w /2 w /2 2 2 wherexandyaretheaxesparalleltothesurface,zistheheightperpendiculartothesurface,h istheelementheight,andw isthebasewidth.Thesinusoidalshapeisgivenbytheupperhalf 2 ofacosinerotatedaroundthez-axis,whichhasaheight (cid:40) π (cid:34)(cid:18) x (cid:19)2 (cid:18) y (cid:19)2(cid:35)1/2(cid:41) z(x,y)=hcos + , (2) w w /2 w /2 2 2 2 whereagainxandydenotetheaxesthatareparalleltothesurface,zdenotestheheightperpen- diculartothesurface,histheelementheight,andw isthebasewidth.Weshowcrosssections 2 ofeachfeatureshapeinFigs.9(a)–(c). #258966 Received 11 Feb 2016; revised 20 Apr 2016; accepted 25 Apr 2016; published 2 May 2016 © 2016 OSA 2 May 2016 | Vol. 24, No. 9 | DOI:10.1364/OE.24.010172 | OPTICS EXPRESS 10180 Fig.9.Cross-sectionof(a)asinusoidalstructure,(b)ahalf-ellipsoidstructure,and(c)a truncatedpyramidstructure.(d)Thepyramidalsurfacefromthetop,showingthepolariza- tionanglesusedinthesimulations. 5.1. Positivestructures First,westudiedpositivestructuresformedfromtheseelementshapes.Positivestructurescor- respondtothegrayareasinFig.9beingAs S ,withthewhiteareas(background)beingair.We 2 3 compare the transmission spectra for positive elements of three different heights h=0.8 µm, 1.2µm,and1.6µmandtwobasewidthsofw =0.7µmand0.9µm.Thepyramidalelement 2 hasanextraparametercomparedtothesinusoidalandhalf-ellipsoidelements,whichisthetop widthw ;forthefollowingcalculations,wesetw =0.15µm.Thepyramidalstructureisalso 1 1 notrotationallysymmetricaboutthez-axis,unliketheothertwostructures,andwilltherefore havedifferenttransmissionpropertiesdependingonthepolarizationoftheincidentlight. The calculated transmission spectra in the case of output coupling for the sinusoidal and half-ellipsoidsurfacesareshowninFigs.10(a)and10(b)respectively.Forthesinusoidalsur- face, the transmission is greater for larger base widths. The transmission is generally flatter for taller elements, although there is little change between h=1.2 µm and h=1.6 µm. For the half-ellipsoid surface, the transmission is greater for larger base widths and is flatter for tallerelements,andthehighesttransmissionisobtainedwhentheelementiswidestandhasa height h=1.2 µm or h=1.6 µm. However, for the half-ellipsoid surface with w =0.7 µm, 2 as the height is increased, the transmission actually drops below the transmission for shorter elements.Asimilardipoccurswiththesinusoidsurface,butitislesssignificant. ThecalculatedtransmissionspectraforthepyramidalsurfaceareshowninFig.11(a).The highest and widest pyramidal structure of h=1.6 µm and w =0.9 µm performs the best of 2 all the shapes considered and has a transmission of almost unity across the wavelength range λ =2–5µm. Figure11(b)showsthetransmissionfordifferentpolarizationstatesoftheincomingelectric field. A polarization angle of φ =0◦ corresponds to the electric field parallel to the sides of thebaseofthepyramidalandapolarizationangleofφ =45◦ correspondstotheelectricfield aligneddiagonallytothebaseofthepyramidal,asshowninFig.9(d).Thetransmissiondrops slightlywhenφ =45◦,comparedtowhenφ =0◦.Weexpectthatthetransmissionforallother polarizationsliesinbetweentheseextremecases. Inmostcases,wefoundthatincreasingthebasewidthandheightoftheelementincreased the transmission across the wavelength range. However, this behavior was not found for all element shapes in all height ranges; for example, the transmission for the half-ellipsoid with basewidthofw =0.7µmisworsefortallerelements.Also,forboththesinusoidalandhalf- 2 ellipsoid elements, there is no improvement in transmission when the height increases from #258966 Received 11 Feb 2016; revised 20 Apr 2016; accepted 25 Apr 2016; published 2 May 2016 © 2016 OSA 2 May 2016 | Vol. 24, No. 9 | DOI:10.1364/OE.24.010172 | OPTICS EXPRESS 10181

Description:
and C.-H. Chang “Numerical modeling of sub-wavelength anti-reflective structures for . neither the long-wavelength average refractive index model nor the that agrees with the results for a particular moth-eye structure that was
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.