ebook img

2.3 Quantification of aerosol mass PDF

221 Pages·2015·12.58 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview 2.3 Quantification of aerosol mass

ETH Library A new aerosol mass spectrometer for long-term environmental applications: performance assessment and first deployment at the Jungfraujoch Doctoral Thesis Author(s): Fröhlich, Roman Publication date: 2015 Permanent link: https://doi.org/10.3929/ethz-a-010532721 Rights / license: In Copyright - Non-Commercial Use Permitted This page was generated automatically upon download from the ETH Zurich Research Collection. For more information, please consult the Terms of use. Picture source: webcam.switch.ch/jungfraujoch Diss. No. 22862 A new aerosol mass spectrometer for long-term environmental applications: performance assessment and first deployment at the Jungfraujoch Roman Fröhlich 2015 DISS. ETH NO. 22862 A new aerosol mass spectrometer for long-term environmental applications: performance assessment and first deployment at the Jungfraujoch A thesis submitted to attain the degree of DOCTOR OF SCIENCES of ETH ZURICH (Dr. sc. ETH Zurich) presented by Roman Fröhlich Dipl.-Phys. Univ., Technische Universität München (TUM), Germany born on 04.08.1984 citizen of Germany accepted on the recommendation of Prof. Dr. Urs Baltensperger (examiner) Prof. Dr. Alexander Wokaun (co-examiner) Prof. Dr. Erik Swietlicki (co-examiner) Dr. André S.H. Prévôt (co-examiner) 2015 Contents Summary ix Zusammenfassung xi 1 Introduction 1 1.1 Atmospheric aerosols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1.1 Definition and sources . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1.2 Aerosol chemical composition . . . . . . . . . . . . . . . . . . . . . . . 3 1.1.3 Impacts of aerosols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.1.3.1 Climate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.1.3.2 Health . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 1.2 Instrumentation and techniques . . . . . . . . . . . . . . . . . . . . . . . . . . 10 1.2.1 Aerosol chemical speciation monitor (ACSM) . . . . . . . . . . . . . . 10 1.2.1.1 Operational principle . . . . . . . . . . . . . . . . . . . . . . 11 1.2.1.2 ACSM mass spectra & quantification . . . . . . . . . . . . . 13 1.2.2 PMF / ME-2 organic source apportionment . . . . . . . . . . . . . . . 15 1.3 Thesis motivation and overview . . . . . . . . . . . . . . . . . . . . . . . . . . 18 2 The ToF-ACSM 21 2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 2.2 Apparatus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 2.2.1 Operational principle. . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 2.2.2 Time-of-flight mass analyser . . . . . . . . . . . . . . . . . . . . . . . . 26 2.2.3 Data acquisition and analysis . . . . . . . . . . . . . . . . . . . . . . . 26 2.3 Quantification of aerosol mass . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 2.3.1 Calibrations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 2.3.1.1 Inlet flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 2.3.1.2 Baseline and detector . . . . . . . . . . . . . . . . . . . . . . 28 2.3.1.3 m/Q . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 2.3.1.4 Signal-to-mass . . . . . . . . . . . . . . . . . . . . . . . . . . 28 2.3.2 Detection limits. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 2.4 First data set and intercomparisons . . . . . . . . . . . . . . . . . . . . . . . . 34 v Contents 2.4.1 General information . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 2.4.2 Intercomparisons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 2.4.2.1 Q-ACSM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 2.4.2.2 C-ToF-AMS . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 2.4.2.3 Scanning mobility particle sizer and nephelometer . . . . . . 41 2.4.3 High-resolution peak fitting with low-res mass analyser . . . . . . . . 43 2.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 3 Aerosol properties at the Jungfraujoch (3580 m a.s.l.) 49 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 3.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 3.2.1 Measurement site . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 3.2.2 Instrumentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 3.2.3 Bilinear factor analysis with the multilinear engine (ME-2) . . . . . . 54 3.2.4 Back dispersion (BD) clustering . . . . . . . . . . . . . . . . . . . . . 55 3.2.5 Characterising air masses: influence of the planetary boundary layer . 55 3.2.6 Saharan dust events . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 3.3 Results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 3.3.1 Time series & concentrations . . . . . . . . . . . . . . . . . . . . . . . 58 3.3.1.1 Seasonal variations . . . . . . . . . . . . . . . . . . . . . . . . 58 3.3.1.2 Diurnal variations . . . . . . . . . . . . . . . . . . . . . . . . 62 3.3.1.3 Free tropospheric concentrations . . . . . . . . . . . . . . . . 64 3.3.1.4 Geographical aerosol origins . . . . . . . . . . . . . . . . . . 65 3.3.2 Organic mass spectra . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 3.3.2.1 ME-2 results . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 3.3.2.2 f44 vs f43 triangle plots. . . . . . . . . . . . . . . . . . . . . 76 3.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 3.5 Supplementary information . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 4 Intercomparison of ME-2 source apportionment of ACSM data 95 4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 4.2 Methodology and instrument description . . . . . . . . . . . . . . . . . . . . . 98 4.2.1 Site description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 4.2.2 Aerosol mass spectrometers . . . . . . . . . . . . . . . . . . . . . . . . 99 4.2.3 Aethalometer, NO analyser and PTR-MS . . . . . . . . . . . . . . . . 100 x 4.2.4 ME-2 and SoFi tool . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 4.2.5 Model input and data preparation . . . . . . . . . . . . . . . . . . . . 103 4.2.6 Optimisation of ME-2 constraints . . . . . . . . . . . . . . . . . . . . . 104 4.3 Results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 4.3.1 Organic time series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 4.3.2 Organic mass spectra . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 vi Contents 4.3.3 HR-ToF-AMS source apportionment . . . . . . . . . . . . . . . . . . . 109 4.3.4 ACSM (UMR) source apportionment . . . . . . . . . . . . . . . . . . . 112 4.3.5 Intercomparison of source apportionment results . . . . . . . . . . . . 115 4.3.5.1 Time series . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 4.3.5.2 Profiles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117 4.3.5.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . 119 4.3.5.4 ACSM specific recommendations . . . . . . . . . . . . . . . . 122 4.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 4.5 Supplementary information . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125 4.5.1 Supplementary equations, tables and figures . . . . . . . . . . . . . . . 125 4.5.2 UpdateoftheQ-ACSMPMFexportfunctioninrecentanalysissoftware update (version 1.5.5.0) and its influence on the presented dataset . . 146 4.5.3 HR-AMS PMF analysis diagnostics . . . . . . . . . . . . . . . . . . . . 148 4.5.3.1 4 factor unconstrained PMF . . . . . . . . . . . . . . . . . . 148 4.5.3.2 5 factor unconstrained PMF . . . . . . . . . . . . . . . . . . 151 4.5.3.3 8 factor unconstrained PMF . . . . . . . . . . . . . . . . . . 153 4.5.3.4 4 factor constrained PMF . . . . . . . . . . . . . . . . . . . . 157 4.5.3.5 5 factor constrained PMF . . . . . . . . . . . . . . . . . . . . 158 4.5.3.6 Residuals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160 4.5.4 ACSM PMF analysis diagnostics . . . . . . . . . . . . . . . . . . . . . 163 5 Thesis conclusions & outlook 165 List of Tables I List of Figures I References V Acknowledgements XXXIII Curriculum vitae XXXV vii Summary Aerosols cause adverse effects on human health and may play an important (cooling) role in the ongoing climate change, counteracting part of the observed global warming which is caused mainly by atmospheric greenhouse gases. The extent of the effects due to aerosol is still poorly determined. More knowledge about physical and chemical properties of aerosols in all parts of the atmosphere is necessary to reduce the uncertainties and to improve global model simulations. Aerosol chemistry and composition can vary on seasonal scales but also on much shorter time scales e.g. during a day, depending on meteorological processes and location or on nearby sources. For the investigation of the effects, long-term measurements on the order of several months to years with sufficient time resolution to detect variations during a day are necessary. The aerosol chemical speciation monitor (ACSM), a robust on-line mass spectrometer for non-refractory, submicron particulate matter was developed exactly for this task. It combines minimised maintenance requirements, i.e. the possibility of long-term operation with a time resolution of minutes and is able to separate the main constituents of atmospheric aerosol: sulphate, nitrate, ammonium, organics and chloride. Aerosol mass concentrations at very remote sites typically are on the order of µg/m3 or less, too low to measure with the original ACSM (using a quadrupole mass spectrometer) without loosing valuable time resolution. Therefore, the ToF-ACSM equipped with a more sensitive time-of-flight (ToF) mass spectrometer was developed. Performance and suitability for autonomous operation at a remote site (Jungfraujoch, CH, 3580 m a. s. l.) was investigated in this work. A manifold improvement of detection limits compared to the Q-ACSM and good covariance with other, established measurement methods could be demonstrated together with uncomplicated long-term (14 months) operation. Additionally, it was shown that the new ToF technique enabled basic access to enhanced ion separation exceeding the unit mass resolution of the Q-ACSM. Furthermore, the14monthsofToF-ACSMmeasurementattheJungfraujoch(JFJ)provided valuable insights into the Alpine aerosol. The unique location of the JFJ in the central Swiss Alps at an elevation well above typical heights of the planetary boundary layer (PBL) away from all sources makes it an interesting place to study the aerosol of the lower free troposphere (FT), a location where clouds are forming and thus is very important for climate relevant ix

Description:
1.2.1 Aerosol chemical speciation monitor (ACSM) . of large discrepancies (factor 2) found in the signal of the main organic ACSM fragment. CO+.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.