ebook img

2.1-watts intracavity-frequency-doubled all-solid-state light source at 671 nm for laser cooling of lithium PDF

1.1 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview 2.1-watts intracavity-frequency-doubled all-solid-state light source at 671 nm for laser cooling of lithium

2.1-watts intracavity-frequency-doubled all-solid-state light source at 671nm for laser cooling of lithium UlrichEismann1,AndreaBergschneider1,2,ChristopheSalomon1and 3 Fre´de´ricChevy1 1 1LaboratoireKastlerBrossel,ENS,UPMC,CNRSUMR8552 0 24rueLhomond,75231Paris,France 2 2PhysikalischesInstitut,Ruprecht-Karls-Universita¨tHeidelberg n ImNeuenheimerFeld226,69120Heidelberg,Germany a [email protected] J 3 Abstract: Wepresentanall-solid-statelasersourceemittingupto2.1W ] of single-frequencylight at 671nm developed for laser cooling of lithium s c atoms. It is based on a diode-pumped, neodymium-doped orthovanadate i t (Nd:YVO4) ring laser operating at 1342nm. Optimization of the thermal p management in the gain medium results in a maximum multi-frequency o outputpowerof2.5Watthefundamentalwavelength.Wedevelopasimple . s theory for the efficient implementation of intracavity second harmonic c i generation,and its application to our system allows us to obtain nonlinear s y conversion efficiencies of up to 88%. Single-mode operation and tuning h is established by adding an etalon to the resonator. The second-harmonic p wavelength can be tuned over 0.5nm, and mode-hop-free scanning over [ more than 6GHz is demonstrated, corresponding to around ten times the 1 laser cavity free spectral range. The output frequency can be locked with v respect to the lithium D-line transitions for atomic physics applications. 9 Furthermore,weobserveparametricKerr-lensmode-lockingwhendetuning 4 thephase-matchingtemperaturesufficientlyfarfromtheoptimumvalue. 4 0 © 2013 OpticalSocietyofAmerica . 1 OCIScodes:(020.1335)Atom optics, (020.3320) Lasercooling, (140.3480) Lasers,diode- 0 pumped,(140.4050)Mode-lockedlasers,(190.2620)Harmonicgenerationandmixing. 3 1 : v Referencesandlinks i X 1. S.Giorgini,L.P.Pitaevskii, andS.Stringari, “Theoryofultracold atomicfermigases,”Rev.Mod.Phys.80, 1215–1274(2008). 2 r 2. C.Chin,R.Grimm,P.Julienne,andE.Tiesinga,“Feshbachresonancesinultracoldgases,”Rev.Mod.Phys.82, a 1225–1286(2010). 3 3. F.Hou,L.Yu,X.Jia,Y.Zheng,C.Xie,andK.Peng,“Experimentalgenerationofopticalnon-classicalstatesof lightwith1.34µmwavelength,”TheEuropeanPhysicalJournalD62,433–437(2011).3 4. F.Camargo,T.Zanon-Willette,T.Badr,N.Wetter,andJ.Zondy,“Tunablesingle-frequencyNd:YVO4BiB3O6 ringlaserat671nm,”IEEEJournalofQuantumElectronics46,804–809(2010). 3,9 5. U.Eismann,F.Gerbier,C.Canalias,A.Zukauskas,G.Tre´nec,J.Vigue´,F.Chevy,andC.Salomon,“Anall-solid- statelasersourceat671nmforcold-atomexperimentswithlithium,”AppliedPhysicsB106,25–36(2012). 3, 5,6,7,8,9,10,11 6. D. Fernandes, F.Sievers, N. Kretzschmar, S. Wu, C. Salomon, and F.Chevy, “Sub-doppler laser cooling of fermionic40Katomsinthree-dimensionalgrayopticalmolasses,”arXivpreprintarXiv:1210.1310(2012).3 7. A.Miffre,M.Jacquey,M.Bu¨chner,G.Tre´nec,andJ.Vigue´,“Atominterferometrymeasurementoftheelectric polarizability oflithium,”TheEuropeanPhysicalJournalD-Atomic,Molecular,OpticalandPlasmaPhysics 38,353–365(2006).3 8. H. Mu¨ller, S.-w. Chiow, Q. Long, S. Herrmann, and S. Chu, “Atom interferometry with up to 24-photon- momentum-transferbeamsplitters,”Phys.Rev.Lett.100,180405(2008). 3 9. I.E.Olivares, A.E.Duarte, E.A.Saravia, andF.J.Duarte, “Lithium isotope separation withtunable diode lasers,”Appl.Opt.41,2973–2977(2002). 3 10. S.A.Payne,L.K.Smith,R.J.Beach,B.H.T.Chai,J.H.Tassano,L.D.DeLoach,W.L.Kway,R.W.Solarz, andW.F.Krupke,“PropertiesofCr:LiSrAIF6crystalsforlaseroperation”,Appl.Opt.33,5526(1994).3 11. L.McDonagh, R.Wallenstein, R.Knappe,andA.Nebel,“High-efficiency 60WTEM00 Nd:YVO4 oscillator pumpedat888nm,”Opt.Lett.31,3297–3299(2006).3 12. G.Tre´nec,W.Volondat,O.Cugat,andJ.Vigue´,“Permanentmagnetsforfaradayrotatorsinspiredbythedesign ofthemagicsphere,”Appl.Opt.50,4788–4797(2011).4 13. P.Laporta andM.Brussard,“Designcriteria formodesizeoptimization indiode-pumped solid-state lasers,” IEEEJournalofQuantumElectronics27,2319–2326(1991).4 14. Y.F.Chen,T.M.Huang,C.F.Kao,C.L.Wang,andS.C.Wang,“Optimizationinscalingfiber-coupledlaser- diodeend-pumpedlaserstohigherpower:influenceofthermaleffect,”IEEEJournalofQuantumElectronics33, 1424–1429(1997). 4 15. W.Rigrod,“Gainsaturationandoutputpowerofopticalmasers,”JournalofAppliedPhysics34,2602–2609 (1963).5 16. E.Khazanov,N.Andreev,A.Mal’shakov,O.Palashov,A.Poteomkin,A.Sergeev,A.Shaykin,V.Zelenogorsky, I.Ivanov,R.Aminetal.,“Compensation ofthermallyinducedmodaldistortions inFaradayisolators,” IEEE JournalofQuantumElectronics40,1500–1510(2004). 5 17. F.Lenhardt, M.Nittmann, T.Bauer, J.Bartschke, andJ.L’huillier, “High-power 888-nm-pumped Nd:YVO4 1342-nmoscillatoroperatingintheTEM00mode,”AppliedPhysicsB96,803–807(2009). 6,11 18. R.Smith,“Theoryofintracavityopticalsecond-harmonicgeneration,”IEEEJournalofQuantumElectronics6, 215–223(1970).6 19. G.D.BoydandD.A.Kleinman,“Parametricinteractionoffocusedgaussianlightbeams,”JournalofApplied Physics39,3597–3639(1968). 7 20. K.Fradkin,A.Arie,A.Skliar,andG.Rosenman,“Tunablemidinfraredsourcebydifferencefrequencygenera- tioninbulkperiodicallypoledKTiOPO4,”AppliedPhysicsLetters74,914–916(1999).7,8,10 21. S.EmanueliandA.Arie,“Temperature-dependent dispersionequationsforKTiOPO4 andKTiOAsO4,”Appl. Opt.42,6661–6665(2003).7,8,10 22. M.Peltz,U.Ba¨der,A.Borsutzky,R.Wallenstein, J.Hellstro¨m,H.Karlsson,V.Pasiskevicius, andF.Laurell, “Opticalparametricoscillatorsforhighpulseenergyandhighaveragepoweroperationbasedonlargeaperture periodicallypoledKTPandRTA,”AppliedPhysicsB73,663–670(2001).7 23. U.Eismann,“Anovelall-solid-statelasersourceforlithiumatomsandthree-bodyrecombinationintheunitary bosegas,”Ph.D.thesis,Universite´PierreetMarieCurie–ParisVI(2012).8,9 24. K.I.Martin,W.A.Clarkson,andD.C.Hanna,“Self-suppressionofaxialmodehoppingbyintracavitysecond- harmonicgeneration,”Opt.Lett.22,375–377(1997). 8,10 25. S. Helmfrid and K. Tatsuno, “Stable single-mode operation of intracavity-doubled diode-pumped Nd:YVO4 lasers:theoreticalstudy,”J.Opt.Soc.Am.B11,436–445(1994).8,10 26. W.Leeb,“Lossesintroducedbytiltingintracavityetalons,”AppliedPhysicsA:MaterialsScience&Processing 6,267–272(1975). 9 27. L.Rothmanetal.,“TheHITRAN2008molecularspectroscopicdatabase,”JournalofQuantitativeSpectroscopy andRadiativeTransfer110,533–572(2009). 9 28. R.DeSalvo,D.J.Hagan,M.Sheik-Bahae,G.Stegeman,E.W.V.Stryland,andH.Vanherzeele,“Self-focusing andself-defocusingbycascadedsecond-ordereffectsinKTP,”Opt.Lett.17,28–30(1992).9 29. S.Holmgren,V.Pasiskevicius,andF.Laurell,“Generationof2.8-pspulsesbymode-lockingaNd:GdVO4laser withdefocusingcascadedkerrlensinginperiodicallypoledKTP,”Opt.Express13,5270–5278(2005).9 30. C. Scha¨fer, C. Fries, C. Theobald, and J. A. L’huillier, “Parametric kerr lens mode-locked, 888nm pumped Nd:YVO4laser,”Opt.Lett.36,2674–2676(2011). 9 31. F.Lenhardt,A.Nebel,R.Knappe,M.Nittmann,J.Bartschke,andJ.A.L’huillier,“Efficientsingle-passsecond harmonicgenerationofacontinuouswaveNd:YVO4-laserat1342nmusingMgO:ppLN,”in“Conferenceon LasersandElectro-Optics,”(OpticalSocietyofAmerica,2010),p.CThEE5.11 1. Introduction Lithiumatomsareoneofthemostversatilespeciesusedforresearchonquantumgases.Nature offers significantly abundantbosonic and fermionic isotopes to the experimentalist, allowing thestudyofbothtypesofquantumstatistics[1]intheatomicphysicslab.Thesimpleyetpow- erfultechniqueofmagneticFeshbachtuningoftheatomicinteractions[2]isthequintessential ingredientfora largenumberof experiments,and itexplainsthe outstandingrole the lithium atomhasplayedinthedevelopmentofthefield. For realizing a degenerate quantum gas, one needs to implement different laser cooling schemes whichtypically requirenear-resonantsingle-frequencylightinputin the watt range. Thebenefitsofall-solid-statedesignslikelargeoutputpower,highreliability,lowmaintenance effort and high intrinsic stability are helpful for realizing light sources that will be welcome toolsforeveryultracoldatomexperiment. We will present in this article an all-solid-state laser emitting multi-watt single-frequency radiationnear671nm.Thediode-pumpeddesignisbasedonneodymium-dopedorthovanadate (Nd:YVO ) as the gain medium, lasing at the fundamental wavelength of 1342nm. Second 4 harmonicgeneration(SHG)isthenestablishedusingperiodically-poledpotassiumtitanylphos- phate(ppKTP)asthenonlinearmedium.Thedevelopmentofanumberofrelatedlasersources has been published recently[3, 4, 5], and the system developed in our group[5] has proven highlyreliableinevery-dayoperationovertheperiodofoneyear.However,thesesourcesare currently limited to output powers in the few-hundred-milliwattsregime. We have identified twomajorlimitationsforpushingtheNd:YVO -SHGconceptintothemulti-wattrange,which 4 are the loss introduced by thermallensing in the gain medium, and the nonlinear conversion efficiency.Therefore,thekeyingredientsofournovelhigh-powerdesignareanimprovedheat managementintheNd:YVO ,andtheimplementationofintracavitySHG,bothofwhichwill 4 be discussed extensively. Furthermore, we carefully specify the important parameters of the laser output and find that it largely satisfies the exigencies of laser cooling. Our source has successfully been used in the implementationof a gray-molassescoolingscheme for lithium atoms,seeRef.[6]. Apart from laser cooling of atoms, more applications in the fields of atomic physics and nonlinearopticsarecurrentlylimitedbytheavailablesingle-frequency671-nmpower.Inatom interferometers,a largerand thusmore homogeneousgaussianbeam can increase the signal- to-noiseratio.Thelargespatialsplittingoftheatomicwavepacketsemployingthelightweight lithium species is favorable[7], and can even be increased using multi-photon Bragg scatte- ring[8]whenhigh-intensitylaserbeamsareemployed.Furthermore,thelithiumD-lineisotope splittingis largeenoughto allowselectiveaddressingoftheisotopesin hotvapors,makinga narrow-bandwidthsourceattractiveforlithiumisotopeseparation[9].Inaddition,thecreation and long-distance transmission of entangled photons in the low-dispersion, low-absorption wavelengthregionofstandardsilicafibersnear1.3µmhasrecentlybeenproposed.Thescheme usestheoutputofasub-thresholdopticalparametricoscillatorinthedegenerateregimepumped byasingle-frequency671-nmlaser[3].Finally,ourlasercouldserveasa low-intensity-noise pumpforCr:LiSAFlasers[10]. The article is organizedas follows: In Section2 we presentthe optimization of the funda- mental laser design. In Section3, we implement intracavity second harmonic generation. In Section4,wereportonthecourseandcontinuousfinetuningbehaviorandnonlinear-Kerr-lens modelocking,andweconcludeinSection5. 2. Thefundamentallaser Afirststeptowardsastablehigh-powerfrequencydoubledlasersourceistheavailabilityofan efficientlasersystematthefundamentalwavelength.Tominimizedetrimentalthermaleffects in the gain medium, the followingpathway has been chosen:A pump wavelength of 888nm in contrastto the former808nm[5] leadsto a lower quantumdefectper absorption-emission cycle[11], and thus to lower heating for a given pump rate. In addition, a larger value for the laser crystal length has been chosen in order to spread the heat input over a bigger vol- ume. Therefore,heattransportfromthe centralregionto the crystalmountis facilitated.The Nd:YVO peaktemperatureislower,andthermalissuesarelessofaconcern. 4 f f FP 2 1 λ/2 E TGG M 2 Nd:YVO 4 M 4 M ppKTP 1 M 3 Fig. 1. (Color online) The laser setup. The pump source, a fiber-coupled diode laser bar(FP), is imaged into the gain medium by a pair of lenses f and f . The Nd:YVO 1 2 4 gainmediumisplacedinafour-mirrorbow-tieringresonatorconsistingofmirrorsM , 1 4 whicharehighlyreflectingat1342nm.Unidirectionaloperationisforcedemployingat−er- biumgalliumgarnet(TGG)-basedFaradayrotatorincombinationwithahalf-waveplate (l /2).Theuseofanetalon(E)allowsforstablesingle-longitudinal-modeoperation.The nonlinearcrystal(ppKTP)isinsertedatthetightfocusbetweenthecurvedmirrorsM and 3 M .Thesecondharmonicoutputbeam(red)istransmittedthroughM .Forthemeasure- 4 3 mentspresentedinSection2,theppKTPwasremovedandthedistanceM -M adjusted 3 4 accordingly,andthehigh-reflectivitymirrorM wasreplacedbyapartlytransmittingout- 2 putcouplingmirror.Thefundamentallaserbeam(green)isthencoupledoutthroughM . 2 A schematic overviewof the laser setup is givenin Fig.1. The outputof an 888-nmfiber- coupled diode laser bar (NA = 0.22, 400µm fiber core diameter) is imaged by two lenses (f =75mm, f =200mm)intothe1.0%at.-dopedNd:YVO crystal.Thecrystal(a-cut,4 1 2 4 4 25mm3,anti-reflectioncoatedonbothsidesfor1342nmand888nm)iswrappedinindiu×m × foilandmountedinawater-cooledcopperblock.ThemirrorsM constituteabow-tiecavity. 1 4 M , M and M are highly reflective at 1342nm, and M is tra−nsmitting at 888nm. M and 1 3 4 1 3 M are concave mirrors with a radius of curvature of 100mm. M is the output coupler for 4 2 which mirrors with different values of transmission are available. The cavity dimensions are M M 300mm,M M M M 210mmandM M 97mm.Forforcingunidirectional 1 2 2 3 1 4 3 4 ≈ ≈ ≈ ≈ operationwe use a Faradayrotator consistingof a terbium-gallium-garnetrod-shapedcrystal (TGG) of 6mm length embedded in a strong permanent magnet [12] in combination with a true-zero-orderhalf-waveplate.An uncoatedinfraredfusedsilica etalonof500µmthickness servesasawavelengthselectiveelement. For maximum power output, it is crucial to optimize the overlap of the pump beam and thecavitymode[13,14].Forsimplicity,weperformthisoperationontheemptylasercavity, consistingofM andtheNd:YVO only.Weapplythemaximumvalueoftheabsorbedpump 1 4 4 power P =−32.5W, and a T =5%-transmissionoutputcoupler(M ). By changingthe abs,max 2 magnificationofthepumpimagingsetupconsistingof f and f ,thetop-hatshapedpumpspot 1 2 diameter was altered between 1080µmand 1400µm, see Fig.2. The size of the cavity mode inthelasercrystalcanbechangedusingthecurvedmirrordistanceM M ,andwasoptimized 3 4 for each data point. The maximum output power is obtained at a pump diameter of around 1300µm,whereitiskeptfortheremainderofthisarticle. Fig. 2. (Color online) (a) Optimization of the output power by changing the pump spot diameter,performedonthelasercavitypresentedinFig.1withalltheintracavityelements removed,exceptfortheNd:YVO4.ForaT =5%outputcoupler(M2),themodeoverlap was optimized for each pump spot diameter by slight adjustments of the curved-mirror distanceM -M .Linesareguidestotheeyeonly.(b)Rigrodanalysis.Theinfraredoutput 3 4 powerPw ismeasuredasafunctionoftheoutputcouplertransmissionT andfittedwith theRigrodmodel(1)forbidirectional(reddiamonds,dashedline)andunidirectional(blue circles,solidline)operationatPabs,max=32.5Wandoptimizedmodeoverlap.Inbothcases the optimum transmission is found at T 5%. The parasitic roundtrip loss determined from the fits yield 10(4)% for the bidirec≈tional and L =16(6)% for the unidirectional case. For both the bidirectional(empty cavity only containingNd:YVO ) and the unidirectional 4 (additionalTGGandhalf-waveplate)operationwemeasuredthemaximumoutputpowerasa functionoftheoutputcouplertransmission,seeFig.2.InbothcasesaT =5%mirrordelivers the maximum fundamentaloutput power Pw . By equating the single-pass gain with the total round-triplossL =L +L =L +T forboththebi-andunidirectionalcases,whereL tot out isthesumoftheparasiticround-triplosses,wefind G Pw =PsatT (cid:20)T +0L −1(cid:21) (1) similarlyto[15],whereP isthesaturationpower,G thesmall-signalgainandL thesumof sat 0 theparasiticround-triplosses.Althoughthisanalysisessentiallyreliesonplanewaves,itcanbe mappedtothemorerealisticcaseoftop-hatpumpbeamsandgaussianlasercavityeigenmodes, aspresentindiode-pumpedsolid-statelasers,see[5]andreferencestherein.Aleast-squaresfit to (1) yieldsL =10(4)%forthe parasitic loss in the bidirectionalcase. In [5] we foundthe lossinanemptyfour-mirrorbow-tiecavityofmirrorsfromthesamebatchtobesmallerthan 1%.Weattributetheremaining9(4)%mainlytoaberrationscausedbythethermallensinthe Nd:YVO . 4 Intheunidirectionalcase,thefittingprocedureyieldsL =16(6)%.Comparedtothebidi- rectionalcase,thedifferenceofL =6(7)%canbeattributedtotheinsertionoftheTGG Faraday crystalandthewaveplate.Indeed,thermaldepolarizationandtheaccompanyinglossisawell- knowneffectinTGG.Itimposesstringentlimitsonpowerscalingofunidirectionalringlasers and Faraday isolators[16]. We observe a dependence of the optimum half-wave plate angle on the circulating intracavity power,which is strong evidenceof this effect. From the fit, we furthermoreobtainthevaluesP =170(50)WandG =0.27(5)forunidirectionaloperation, sat 0 whichareimportantfortheoptimizationofintracavitydoubling,seeSection3. For the now-optimized unidirectional infrared setup, we measure the output power as a function of the absorbed pump power P , see Figure3. As the optimization is performed abs at the maximum absorbed pump power P 32.5W, the laser emission only starts at abs,max ≈ P 28W. After reachingthreshold, the outputpower is unstable and displaysa hysteresis abs ≈ featurebetweenP =29Wand30W.Aftercrossingthehysteresisregion,thelaseremissionis abs stableandonlyweaklydependsonP .Thisbehavioristypicalforhigh-powersolid-statelaser abs designsandhasbeenreportedin[17].Asdiscussedbefore,thermaldepolarizationintheTGG issignificantandcanleadtoachangeofthelasingdirectionandoccasionalbistablebehavior whenincreasingthepumppower.Thus,theangleofthehalf-waveplatehadtobeadjustedfor everydatapointpresentedhere.WekeepthepumppowerconstantatP 32.5Winthe abs,max ≈ remainderofthearticle. Fig. 3. (Color online) Infrared unidirectional output power Pw as a function of the ab- sorbed pump power P .Thesetup isoptimized for themaximal absorbed pump power abs Pabs,max=32.5W.TheoscillationthresholdisfoundatPabs 28W.Thedatashowshys- ≈ teresisbetweenPabs=29Wand30W,asindicatedbythearrowsforincreasingordecreas- ingpumppower.Thisbehavioristypicalforhigh-power designs.Afterasuddenrisethe output power increases only slowlyuntil it eventually reaches themaximum of 2.5W at P .Linesareguidestotheeyeonly. abs,max 3. Efficientintracavitysecond-harmonicgeneration Efficientfrequencydoublingofinfraredlaserscanbeestablishedusingperiodically-polednon- linearcrystalsinanexternalcavity.Usingthismethodatafundamentalwavelengthof1342nm, adoublingefficiencyofP2w /Pw =86%hasbeenobtainedinourfirst-generationsetup[5],and serves as a benchmark.However,a more direct approachfollowed here is intracavity second harmonicgeneration(ICSHG),whichrequiresonlyonecavityandthusrepresentsanimportant simplification. For the analysis of the output power of ICSHG lasers, the ouput coupling loss L =T out discussed in Section2 needs to be replaced by h P, where h is the single-pass doublingeffi- ciency, and P the circulatingintracavity power. Similar to the one foundby R.G. Smith[18], thesolutionfortheSHoutputpowerintheunidirectionalcasereads P G 2 P2w = saxt 0(cid:20)q(x −z )2+x −(x +z )(cid:21) , (2) wherex =h P (4G ) 1 andz =L(4G ) 1 are thedimensionlessoutputcouplingandloss sat 0 − 0 − parameters.Aspointedoutin[18],itisinterestingtonotethatthevaluefortheoptimumoutput coupling L =√G L L is the same for both linear and non-linear output coupling out,opt 0 − mechanisms,anddeliversthesameamountofoutputpower.However,theround-tripparasitic lossL willcontainanadditionalcontributionfromtheinsertionofthenonlinearmedium,such thatP2w /Pw <1foranyrealisticsystem.UsingthefitvaluesfromSection2,wemaximize(2) bychoosinganoptimumsingle-passdoublingefficiencyh =0.10(5)%.W 1. opt − Toevaluateh ,werefertotheBoyd-Kleinmantheoryforfocusedgaussianbeams[19], 2w 3d2L h (T)= ij h[a ,b (T)], (3) pe 0c4nw ,i(T)n2w ,j(T)× wheree isthevacuumpermittivity,cthespeedoflightinvacuum,d isthei,j-thelementof 0 ij thematerial’snonlineartensor,nw ,i(T)thematerial’srefractiveindexalongtheiaxisatangular frequencyw andtemperatureT,andLthenonlinearmaterial’slength.d needstobereplaced ij byd =2d p 1forperiodicallypoled(pp)materials.Thefunction eff ii − a a 2 1 − 0eib (T)t h[a ,a 0,b (T)]= 4a (cid:12)(cid:12) Z 1+it dt (cid:12)(cid:12) , (4) (cid:12) a a (cid:12) (cid:12)− − 0 (cid:12) (cid:12) (cid:12) isthedimensionlessBoyd-Kleinmanfunction[1(cid:12)9].a =L(2z ) (cid:12)1 anda =z (2z ) 1 arethe R − 0 0 R − focusingandoffsetparameters,respectively.z istheRayleighlength,andz istheoffsetofthe R 0 beamfocuswithrespecttothenonlinearmedium’scenter.Thephase-matchingparameterreads b (T)=4p zRl −1 nw ,i(T) n2w ,j(T) l [2L (T)]−1 ,wherel isthevacuumwavelength. TheL (T)termon×ly(cid:8)occursfo−rperiodica−llypoledmate(cid:9)rials,whereL (T)isthepolingperiod, andthetemperaturedependenceresultsfromthermalexpansion. In the intracavity-doubling setup, we replace the output coupling mirror M by a high- 2 reflectivitymirror,cf.Figure1.Thenonlinear,periodically-poledpotassiumtitanylphosphate crystal(ppKTP)isinsertedbetweentheconcavemirrorsM andM .ToaccountfortheppKTP 3 4 refractiveindex,thedistanceM M isincreasedto 106mm.Thenonlinearcrystalhasouter 3 4 ≈ dimensionsof 1 6 18mm3 and is antireflectioncoated at 1342nm and 671nm. Its poling period L =17.6×1µm×is chosen for phase matching at 23.5 C according to the temperature- ◦ dependentSellmeierequationsfrom[20,21].However,inapreviousstudywefoundthephase- matching temperature at 33.2 C[5]. This deviation can be explained by uncertainties on the ◦ reported Sellmeier equations, and the manufacturing tolerance on the ppKTP poling period. The nonlinearcoefficientd =14.5pm.V 1 foundforthe crystalin ourpreliminarystudyis 33 − 14%lowerthanthehighestliteraturevaluereportedsofar[22],probablyduetopolingimper- fections[5].Usingthiscrystalfornonlinearoutputcoupling,wecaneasilyobtainasingle-pass efficiency h >h , such that design considerations are relaxed, and we are able to tune to opt h bychangingthephase-matchingtemperature.Fortemperaturestabilization,thecrystalis opt wrappedinindiumfoilandmountedinatemperature-controlledcopperblock.Thefrequency- doubledlightistransmittedthroughmirrorM . 3 In Fig.4 we present the measurement of the second-harmonic output power as a function of the phase-matching temperature of the ppKTP crystal. We find a maximum of 2.1W of output power at T =36 C, and a second maximum of 1.9W at T =31 C. As expected pm ◦ pm ◦ from Eq.(2), at the perfectphase matchingtemperatureh >h , and the outputpower only opt amountsto1.6W.TheFWHMofthetemperature-tuningcurveamountsto22K.Ascompared tothemaximuminfraredpowerpresentedintheformersection,weobtainamaximumdoubling efficiencyof88%.Theexcellentmodequalityofthesecond-harmoniclightisconfirmedbya single-modefibercouplingefficiencylargerthan80%. Togaindeeperinsightinourdata,weemploytheICSHGtheory(Eqs.(2)-(4)).Weinclude theadditionalparasiticintracavitylossduetothepresenceoftheetalonandthenonlinearcrys- tal,whichamountstoL =0.6(1)%.Thus,thetheorypredictsamaximumSHoutputpower add Fig. 4. (Color online) Output power as a function of the phase-matching temperature (points, blue lines are a guide to the eye only). The data shows a double-peak structure of1.9W/2.1Wofoutputpowerslightlyoffoftheoptimumphase-matchingtemperature of 33.2 C (central vertical line). A simpletheoretical model presented inthe text (dash- ◦ dottedpurpleline)describesthedatawellinthecentralhigh-conversionregion,usingthe known temperature dependence of the single-pass doubling efficiency, which is propor- tionaltothedimensionlessBoyd-Kleinmanfunctionh(T)[dashedgoldline,Eq.(4)].The dashed vertical line indicates the perfect phase-matching temperature of Tpm =33.2◦C, whereb (Tpm) 0.Theverticallineswitharrowsindicatethetemperatureregionswhere ≃ self-modelockingoccurs,cf.Section4. of2.1W,asisfoundexperimentally.ThevalueofL iscompatibletothesumoftheppKTP add insertionlossmeasuredindependently[5]andthe calculatedwalk-offlossforthe etalon[23]. FromanABCD-matrixformalismweobtainthecavityeigenmode,yieldingz =11.5mmand R z =3mm. At perfect phase matching, we obtain h=0.40, yielding a SH output power of 0 1.6W, which is in excellentagreementwith our findings. This gives us further confidencein our previously measured value of d [5]. The temperature-dependentKTP refractive indices 33 andthethermalexpansioncoefficientofthepolingperiodwerepresentedin[20,21].We ad- justb byanadditiveconstantinordertoaccountforthemeasuredphasematchingcondition b (T=33.2 C)=0,asjustifiedbefore.Thetheory(solidpurplelineinFig.4)describesthedata ◦ wellinthecentralhighconversionregion,andyieldsthecharacteristicdouble-peakstructure. Outside of the central region, the circulating intracavity power rises significantly and the power-dependent thermal depolarization loss would need to be accounted for in our simple model.Ascomparedtothetheory,thedatadisplayslessevidenceofdips.Thiscanbeexplained byathermalsmearingeffectduetoresidualabsorptionintheppKTPatlargepowers,yielding a spatial dependenceof the phase-matchingparameter b (T). Outside of the region indicated bythesolidverticallines,thelaserisinmode-locked(pulsed)operation,andwedonotexpect ourmodeltobeapplicable. 4. Tuningbehaviorandnonlinear-Kerr-lensmodelocking Forcoursetuningandsingle-longitudinal-mode(SLM)operation,thelaserwasequippedwith anuncoatedetalonof0.5mmlength,yieldinga freespectralrangeof210GHz.We notethat thissingle,weakly-selectiveetalonissufficientforthispurposeduetotheselfsuppressionof axialmodehoppinginintracavity-frequency-doubledlasers[24,25]. The tuning range of the frequency-doubledlaser is characterized and compared to the in- fraredlaserinFig.5.Apartfromhavingthesameshapeandfeatures,itisstrikingtonotethat theoutputpowerofthefrequency-doubledlaseramountstoalmostthesamevalueasthenon- doubledlaserovertheentireemissionspectrum.AsdiscussedinSection3,thenonlinearoutput couplingisclosetotheoptimumlevelovertheentireemissionwavelengthrange.Thegainline center,wheretheoutputpowerismaximal,isfoundataround671.1nm,resultingin2.2Wof fundamentaland2.1Wofsecond-harmonicoutput.Atthelithium-Dlinewavelengththeoutput poweramountsto 1.8W. Beingclose to the gainlinecenter,thisresultcomparesfavorably ≈ tothevalueobtainedin[4],wheretheauthorsusedanetalonfortuningwhichpotentiallypro- duces significantlyhigher tilt loss[23, 26]. Comparingthe emitted power of the doubledand non-doubledlasersacrosstheemissionspectra,wetypicallyobtainmorethan80%ofthepower at 671nm,demonstratinga veryefficientfrequencydoublingprocess.Forthe absolutemaxi- mum values, we obtain P2w /Pw =88%. It is even possible to obtain emission further away from resonance, where the non-ICSHG lasers cease to oscillate. Our first-generation source presented in[5] displays an output spectrum that is significantly more plateau-like (gold tri- anglesin Fig.5), which we attribute to the presenceof a second,moreselective etalon in the cavity.Attheexpenseofahigherinsertionlossbaseline,ripplesintheemissionspectrumhave significantlylessinfluenceonthetuningbehaviorofthissetup.Theidenticalgapsinallofthe emission spectra presentedhere (A,B,Cin Fig.5) can be explainedby absorptionfromwater vapor,aswecomparethelaserspectratoawatervaporabsorptionspectrumobtainedfromthe HITRANdatabase[27].ThewaterabsorptionpeakscoincidewiththefeaturesA,BandC. Fig.5.(Coloronline,linesareguidesfortheeyeonly)Single-frequencyoutputspectraof the infraredlaser presented inSection2(blue circles),theintracavity-frequency-doubled laser (purple squares) and the infrared source presented in[5] (gold triangles). For easy comparison, all wavelengths are given in vacuum values. The vertical lines denote the positions of the lithium-D line resonances. The green line shows a water vapor absorp- tionspectrumfortypicalparameters(23 C,60%rel.humidity).Thewavelengthregions ◦ marked A,B,C where stable, powerful operation of the lasers can not be established co- incidewithabsorptionpeaksofwatermolecules.Thelevelofoutputpoweroftheinfrared laserandthefrequency-doubledlaserarecloselyspaced,provingthatthenonlinearcrystal introducesweakadditionalpassivelossinthelasercavity,whereasthedegreeofnonlinear outputcouplingisatitsoptimumvalue. Intracavity-frequency-doubledlaserstendtomode-lockedoperationwhenthedoublingcrys- talis mismatchedfromtheoptimumphase matchingcondition[28, 29].Thiseffect,resulting from an intensity-dependent phase shift of the fundamental beam passing the non-matched crystal,iscommonlytermednonlinear-Kerr-lens-orc (2):c (2) modelocking.Althoughithas beenobservedinthe1064-nm-Nd:YVO -ppKTPsystembefore[30],wereport,tothebestof 4 ourknowledge,thefirstobservationat1342nm.Weobservetheeffectwhendetuningfromthe optimumphase-matchingtemperaturetobelowT =29 CandaboveT =45 C.Ascanning low ◦ high ◦ Fabry-Perotspectrumanalyzershowsnodiscerniblesingle-orfew-modebackgroundoncethe thresholdtomode-lockedoperationiscrossed.Weuseafastdetectorandaspectrumanalyzer to measurethebeatfrequencybetweenneighboringmodes.Thissimplemethodto determine thelasercavityfreespectralrangeyieldsavalueof345(1)MHz. It is remarkablethatthe modelockingarises when tuningthe phase-matchingtemperature to colder-than-optimalvalues. In analogy to standard Kerr-lens mode locking, the c (2) :c (2) processrequiresanadditionalintracavityelementwhichmodifiestheround-tripgainorlossas afunctionofthepower-dependentcavitymodesize.Thiscanberealizedbythegainmedium, cf. Fig.1. As we presentedin Section2, the pump-to-cavitymode overlaphas been carefully optimizedinthecwregime.However,anABCD-matrix-basedcavitymodecalculationreveals thatthebeamwaistintheNd:YVO onlychangesmonotonouslywhencrossingoverfromneg- 4 ativetopositivefocalpowersintheppKTP.Thus,theinducedchangeingainorlossshouldbe lessfavorablewheneverthelensingdepartsfromtheoptimizedvalue.Wenotethatinoursim- pleanalysis,wedonottakeintoaccountdifferentKerr-likeandthermallensesthatmayoccur intheintra-cavityelementsotherthanthelaserandnonlinearcrystals.Usingthetemperature- dependentSellmeier equationsof [20, 21], we getdephasingparametersof b (T )=8.8(1) low andb (T )= 18.5(1),resultinginasingle-passefficiencyh (T)reducedtolessthan5%of high − themaximumvalue. Thelasercanbetunedcontinuouslyusingapiezoelectrictransducer(PZT),uponwhichmir- rorM isgluedupon.Thisallowsmode-hopefreescansofthe671-nmoutputfrequencyover 2 morethan6GHz.Fortheresonatedfundamentallightthisamountstoabouttentimesthelaser cavityfreespectralrange,atypicalbehaviorofICSHGlaserswithself-suppressedmodehop- ping[24, 25]. We performDoppler-freesaturatedabsorptionspectroscopyon a lithium vapor cell described previously in[5], see Fig.6. In Fig.6(a) we show a sample scan over the full Doppler-broadenedlithium-6D1line.Theground-statehyperfinestructureisclearlyresolved. Wephase-modulatetheprobebeamat20MHzusinganelectro-opticmodulator,andthenuse a commerciallock-inamplifier to generate a dispersive error signalas presentedin Fig.6(b). We can access all D-line transitions of both naturally abundantlithium isotopes, and the full groundstatehyperfinestructureisresolved. Fig. 6. (Color online) Doppler-free saturated absorption spectroscopy of the lithium D- lines.(a)Samplescanovertheentire6LiD1Doppler-broadenedabsorptionpeak.Theinset showsthesub-Dopplerfeatures.SimilarspectraareobtainedforalllithiumDlines.(b)Er- rorsignalsofalllithiumD-linetransitions,generatedbyphasemodulationspectroscopy. Thesesignalsprovideanexcellentreferenceforfrequency-lockingofthelaser. The laser linewidth was estimated by slowly scanning the emission frequency over the D1-lineoflithium-6.Fromtheobservedpeak-to-peaknoiseinthelinearpartoftheerrorsignal weobtainanupperlimitof1MHzforthelaserlinewidth.Forfrequency-lockingthelaser,we

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.