ebook img

21-cm signatures of residual HI inside cosmic HII regions during reionization PDF

1.7 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview 21-cm signatures of residual HI inside cosmic HII regions during reionization

Mon.Not.R.Astron.Soc.000,000–000(2015) Printed28May2015 (MNLATEXstylefilev2.2) 21-cm signatures of residual HI inside cosmic HII regions during reionization C. A. Watkinson1(cid:63), A. Mesinger2, J. R. Pritchard1 & E. Sobacchi2 1DepartmentofPhysics,BlackettLaboratory,ImperialCollege,LondonSW72AZ,UK 5 2ScuolaNormaleSuperiore,PiazzadeiCavalieri7,I-56126Pisa,Italy 1 0 2 28May2015 y a M ABSTRACT Weinvestigatetheimpactofsinksofionizingradiationonthereionization-era21-cmsignal, 7 focusingon1-pointstatistics.Weconsidersinksinboththeintergalacticmediumandinside 2 galaxies.AtafixedfillingfactorofHIIregions,sinkswillhavetwomaineffectsonthe21-cm morphology: (i) as inhomogeneous absorbers of ionizing photons they result in smaller and ] O more widespread cosmic HII patches; and (ii) as reservoirs of neutral gas they contribute a non-zero21-cmsignalinotherwiseionizedregions.Botheffectsdampthecontrastbetween C neutralandionizedpatchesduringreionization,makingdetectionoftheepochofreionization . h with21-cminterferometrymorechallenging.Herewesystematicallyinvestigatetheseeffects p usingthelatestsemi-numericalsimulations.Wefindthatsinksdramaticallysuppressthepeak - in the redshift evolution of the variance, corresponding to the midpoint of reionization. As o previouslypredicted,skewnesschangessignatmidpoint,butthefluctuationsintheresidual r t HI suppress a late-time rise. Furthermore, large levels of residual HI dramatically alter the s a evolution of the variance, skewness and power spectrum from that seen at lower levels. In [ general, the evolution of the large-scale modes provides a better, cleaner, higher signal-to- noiseprobeofreionization. 2 v Keywords: Keywords:darkages,reionization,firststars–intergalacticmedium–methods: 0 statistical–cosmology:theory. 7 9 1 0 . 1 INTRODUCTION ationfromgalaxiesescapesintotheintergalacticmedium(IGM). 1 0 These two physical mechanisms have naturally been the focus in Reionization, the process in which the first galaxies ionized their 5 themodellingofreionization,withbothsemi-numerical(e.g.Zahn surroundings and ultimately the entire Universe, is poorly con- 1 etal.2007;Mesinger&Furlanetto2007;Choudhuryetal.2009; strainedatpresent.The21-cmsignal,asproducedbyahyperfine : Mesingeretal.2011;Santosetal.2010;Thomas&Zaroubi2011) v transitioninneutralhydrogen(HI),providesanexcellenttracerof andnumericalsimulations(e.g.Trac&Cen2007;Zahnetal.2007; i the neutral IGM. It is therefore the hope that future observations X Baeketal.2009;Trac&Gnedin2011;Ilievetal.2014)beingused ofthe21-cmbrightnesstemperatureusingimmenseradioarrays, r e.g.theLOwFrequencyARray1 (LOFAR),theMurchisonWide- to refine our understanding of both. These simulations describe a howionizedregionsform,growandultimatelymergetoionizethe field Array2 (MWA), the Precision Array for Probing the Epoch entire IGM. However, it is not enough to understand the sources of Reionization3 (PAPER), the Hydrogen Epoch of Reionization alone,wemustalsoconsiderthesinksofionizingradiation,i.e.the Array4(HERA)andtheSquareKilometreArray5(SKA),willdra- atomsthatonceionizedwillrecombine,wastingionizingphotons maticallyimproveourunderstandingofreionization. thatwouldotherwisecontributetoreionization.Sinkswillhavetwo Tomakeoptimaluseoftheseobservationsitisvitalthatwe maineffectsonthe21-cmsignal: build insight into the wide range of physical processes involved inreionization.Twoofthemostimportantfactorstoconsiderare (i) asabsorbersofionizingphotonstheyimpactonboththetim- the star formation history and the degree to which ionizing radi- ingofreionizationandthemorphologyofcosmicHIIpatches; (ii) asreservoirsofneutralgastheycontributeanon-zero21-cm signalinotherwiseionizedregions. (cid:63) Email:[email protected] Sinks can reside in both the IGM and the interstellar 1 http://www.lofar.org/ medium (ISM), i.e. inside and outside of galaxies. In the ion- 2 http://www.mwatelescope.org/ 3 http://eor.berkeley.edu/ ized IGM at reionization redshifts, sinks mostly consist of 4 http://reionization.org/ diffuse structures and partially self-shielded gas clumps called 5 http://www.skatelescope.org/ Lyman-limit systems (LLSs, e.g. Furlanetto & Oh 2005, (cid:13)c 2015RAS 2 C.A.Watkinson,A.Mesinger,J.R.Pritchard&E.Sobacchi McQuinn,Oh,&Faucher-Gigue`re2011;Mun˜ozetal.2014). 2 THESIMULATIONS LLSs are inhomogeneous in both space and time (Crociani et To investigate the impact of residual HI on 21-cm statistics, we al. 2011; Choudhury et al. 2009); as such, they can dramatically makeuseofthepublicsimulationtool,21CMFAST6.Thedensity impactthedurationandmorphologyofreionization(effectiabove; andvelocityfieldsin21CMFASTaregeneratedwithstandardper- Sobacchi & Mesinger 2014). Although they are mostly ionized turbation theory (Zel’dovich 1970). To generate ionization fields (e.g. McQuinn, Oh, & Faucher-Gigue`re 2011; Rahmati et al. theexcursion-setapproachofFurlanettoetal.(2004)isappliedto 2013), LLSs can also contribute to effect (ii). Indeed Sobacchi theevolveddensityfields:todeterminewhetheraregionisionized, & Mesinger (2014) recently estimated that LLSs on average thisalgorithmcomparesatdecreasingradiithenumberofionizing contributeafewpercentneutralfractioninsidecosmicHIIpatches photonstothenumberofbaryons(plusrecombinations). duringreionization. Inthiswork,westudyhowsinksofionizingphotonsimpact the21-cmsignal,focusingon1-pointstatistics.Todothis,werun four21CMFASTrealisationsoftheionizationfieldduringreioniza- Sinks are also present inside galaxies where HI can self tion,varyingtheimpactofHIonboththelarge-scalereionization shieldindenseclumps.Atlowerredshifts(e.g.Wolfe,Gawiser,& morphologyandthelevelofresidualHIinsidecosmicHIIregions Prochaska2005),sinksinsidegalaxies[mostlyso-calledDamped (effectsiandiidiscussedintheintroduction).Wediscussthede- Lyman-alphasystems(DLAs);Prochaskaetal.2005;Noterdaeme tails below, showing a summary of the four simulations used in etal.2012]providealargerreservoirofHIcomparedtosinksinthe Table1andFigure1.AllsimulationsareL = 300Mpconaside IGM.RecentobservationssuggestthatthecontributionofDLAsto with a resolution of 4003. The density and velocity fields are the thecosmologicalmassdensityisroughlyconstantuntilitincreases sameinalloftheruns. from z = 2.3 to z = 3.5 by almost a factor of 2 (Noterdaeme et al. 2012). There is currently no consensus in explaining these 2.1 Homogeneousrecombinations(21CMFASTV1) trends, making extrapolations to reionization redshifts uncertain. Theabundanceandionizationstructureofsuchgalacticsinksare Wecallourreferencesimulation‘NoLLS’.Sinkshaveaminimal more susceptible to the local environment, including stellar feed- impactinthissimulation.Itisgeneratedwiththecurrentpublicre- backandbaryoniccooling.Thereforeitisdifficulttoquantifythe lease,21CMFASTV1.Theresultingionizationfieldsaresimilarto contributionofgalacticsinkstoeffect(ii)above.Usinga‘tuning- onesobtainedwithradiativetransfersimulations(e.g.Zahnetal. knob’ approach (similar to the one we use below), Wyithe et al. 2011).In21CMFASTV1,aregionisionizedifits(time-integrated) (2009) predict that by reducing the contrast between cosmic ion- number of ionizing photons exceeds the number baryons plus a izedandneutralpatches(effectii),galacticHIcouldindeeddamp globalaveragenumberofrecombinations,n¯rec: the21-cmpowerspectrumby10-20%.GalacticHIalsocontributes ζf (x,z,R,M )≥1+n¯ , (1) toeffect(i)byreducingtheefficiencywithwhichionizingradiation coll min rec escapesintotheIGM,usuallyquantifiedwiththeso-calledioniz- wheref (x,z,R,M )isthefractionofmatter,insidearegion coll min ingphotonescapefraction,fesc.Thisclearlyhasaneffectonthe of scale R, which resides in halos with mass greater than Mmin timing of reionization. However, reionization studies include the (taken here to correspond to a virial temperature of 104 K). The escapefractionandtheassociateduncertaintiesinthesourceterm. ionizing efficiency can be expanded as ζ = f f N , where esc ∗ γ/b f isthefractionofionizingphotonsthatescapegalaxies,f is esc ∗ thefractionofgalacticbaryonsinsidestars,andN isthenum- γ/b berofionizingphotonsproducedperstellarbaryon.Thisionization InthisworkweexaminetheeffectthatbothLLSs(IGMsinks) criterionineq.(1)ischeckedinanexcursion-setfashion(Furlan- and differing levels of galactic HI (galactic sinks) have on the ettoetal.2004),startingfromamaximumradiusR 7downto statistics of the 21-cm brightness temperature, with emphasis on max thecellsize.Atthelastsmoothingscale,theunresolved,sub-cell 1-pointstatistics.WeanalysethesimulationpresentedinSobacchi & Mesinger (2014), here after SM2014, to isolate the impact of HIIfractionissettoζ(1+n¯rec)−1fcoll(x,z,Rcell,Mmin). The ‘NoLLS’ run has a different reionization evolution and IGMsinksonthe1-pointstatisticsviaeffects(i)and(ii).Wealso morphologyfromtheotherthreeruns.8Inordertofacilitatedirect testhowthestatisticsofthissimulationarealteredinthepresence morphologicalcomparisons,wevaryn¯ in‘NoLLS’tomatchthe ofgalacticsinksduetoeffect(ii). rec redshiftevolutionofthefillingfactorofHIIregions,QHIIfromthe otherruns. The rest of this paper is structured as follows. In Section 2 6 http://homepage.sns.it/mesinger/Sim.html wedescribethesimulationsthatweusetomodelreionizationin- 7 Rmax is a free parameter based on ionized photon mean free path at cluding sinks in both the IGM and in galaxies; in Section 3 we theredshiftsofinterest,seeStorrie-Lombardietal.(1994);Miralda-Escude present our analysis methods and examine the 21-cm maps and (2003);Choudhuryetal.(2008).Inour‘NoLLS’runitissetto30Mpc. theirprobability-densityfunctions;wethenconsidertheevolution Howeverthereisnomaximumsmoothingradiusenforcedbythesimula- ofthe1-pointstatisticsandourabilitytoconstrainthemwithra- tionsofSM2014sincetheionizedphotonmeanfreepathisdeterminedby dio telescopes present and future in Sections 3.4 and 3.5, Sec- thepropertiesof‘LLS’,whicharecomputedself-consistently. tion 4 considers how much the power spectrum might be altered 8 The mean free path, Rmax, framework does not capture the sub-grid recombinationphysicsoftheSM2014model,discussedinthenextsection. inthepresenceofgalacticsinksandfinallyinSection5wesum- Nevertheless,theseauthorsfindthatachoiceofRmax ∼ 10Mpcresults mariseourfindings.Weusethefollowingcosmologicalparameters inareionizationmorphologyandevolutionroughlyconsistentwiththeir (Ωm,ΩΛ,Ωb,h,σ8,n)=(0.28,0.72,0.046,0.70,0.82,0.96),con- sub-grid model. This ‘effective ionizing photon horizon’ is in fact much sistent with recent measurements by the Planck satellite (Planck smallerthanthephysicalmeanfreepath(definedbasedontheinstantaneous Collaborationetal.2014). recombinationrateandemissivity),andisempiricallyderived. (cid:13)c 2015RAS,MNRAS000,000–000 21-cmsignaturesofresidualHI 3 integrating over the entire density distribution, the recombination Table1.Modelsummary. rateperbaryoninanionizedcellis: dn (cid:90) +∞ (cid:104)xHI(cid:105)M in HII drtec(x,z)= PV(∆,z)∆n¯HαB[1−xHI(∆)]2d∆, Model Properties regions at z = 0 (3) 9.20,Q ∼0.5 HII where P (∆,z) is the full (non-linear, sub-grid) distribution of V 21CMFASTV1; sinks are in- overdensities: ∆ ≡ n /n¯ (Miralda-Escude et al. 2000), and cludedasaconstantintheionizing H H NoLLS efficiency.CosmicHIIpatchesare 0.0 xHI(∆)isequilibriumneutralfractioncomputedusingtheempir- icalself-shieldingprescriptionofRahmatietal.(2013).Thenthe fullyionized. total,time-integratednumberofrecombinationsperbaryon,aver- Self–consistent treatment of local agedoverthelocalcosmicHIIpatchcanbewrittenas: recombinations & UVB feedback of SM2014. Small absorbers act (cid:28)(cid:90) z dn dt (cid:29) n¯ (x,z)= rec dz , (4) as sinks of ionizing radiation to rec dt dz LLS slow the progress of reionization, 0.03 zIN HII reducethesizeofionizedregions where z is the ionization redshift of a simulation cell. Photo- IN &suppressthe21-cmtemperature heating feedback from reionization (i.e. the depletion of the gas contrastbetweenHII(over-dense) reservoir available for star-formation), is included in this simula- andHI(under-dense)regions. tionwithasimilarapproach,inwhichtheminimumhalomassca- ‘LLS’withtheadditionofafixed pable of retaining gas is computed using the local (cell’s) photo- percentageofremnantHIingalax- ionization history (Sobacchi & Mesinger 2013). Photo-heating LLS + ies; its contribution to the 21-cm 0.1fcoll:0.04 feedbackhasasub-dominantimpactonreionizationmorphology, GalHI signal cosmic inside HII regions 0.5fcoll:0.07 comparedwithinhomogeneousrecombinations;however,sincethe furthersuppressesthecontrastbe- sourcesandsinksarespatiallycorrelated,theeffectsareadditivein tweenionizedandneutralpatches. thattheybothprolongreionizationhistory. ‘LLS’withbothsterileminihalos ‘LLS’(correspondingtothe‘FULL’simulationofSM2014) (cooledviaH2)aswellasatomic isourfiducialmodelforreionizationhistoryandmorphology.The cooling halos 100% neutral. De- Mini + impact of inhomogeneous, sub-grid HI on the large-scale reion- scribes the most intense impact 100% 0.19 ization morphology can be estimated by comparing the ‘NoLLS’ thatremnantHIcouldhaveonthe GalHI 21-cm signal by suppressing the and‘LLS’runs(seeFigure2).Our‘LLS’runalsoincludesresid- contrast between cosmic ionized ual HI inside the cosmic HII patches, contributing on average a andneutralpatches. mass-averagedneutralfractionofafewpercentinsideHIIregions (SM2014;seetable1). 2.3 InhomogeneousrecombinationsintheIGM+galacticHI Ourremainingrunsusethesamelarge-scalereionizationmorphol- ogyandredshiftevolutionas‘LLS’(seeFigure2).Howeverhere we explicitly increase the level of residual HI inside the ionized regions. Since the amount of HI inside galaxies is very difficult to predict, we adopt a ‘tuning-knob’ approach similar to Wyithe etal.2009.Specifically,wecomputetheaverage9 collapsedfrac- tioninsideeachcell,usingtheconditional(dependentonthecell’s Figure1.Evolutionofmass-averagedionizedfractionforour4mainmod- density)massfraction(e.g.Bondetal.1991;Lacey&Cole1993) els(byconstruction,thevolume-averagedevolutionisthesameinallmod- normalized to the mean predicted by Sheth-Tormen (e.g. Jenkins els).TotrackevolutionofthemorphologyofHII regions,weplotthese et al. (2001); see also the discussion in Barkana & Loeb 2004; fourmodelsasafunctionoftheHIIvolume-fillingfactorhereafter. Mesinger et al. 2011). We then assign a fixed fraction, α, of the cell’sbaryonicmasstobeneutral,sothateachcell’sgalacticHI 2.2 InhomogeneousrecombinationsintheIGM numberdensityisα∆celln¯Hfcoll(Mmin,z,∆cell,Rcell).Keeping withthesimplicityofthe‘tuning-knob’approach,weuseauniform As the next step, our ‘LLS’ run includes inhomogeneous recom- valueofM correspondingtoavirialtemperatureof104K.We min binations in the IGM using the model of SM2014 (their ‘FULL’ emphasise that this implementation considers only the additional model).Suchrecombinations,drivenby∼kpcscalegasclumpscan signal that galactic sinks contribute; their impact on reionization slowthegrowthoflargecosmicHIIpatches,primarilyresultingin timingisassumedtobeaccountedforintheionizingefficiencyof reductionoflarge-scalereionizationstructure.SM2014implement sources. these local recombinations by modifying the ionization criterion We study different values of α; for the sake of brevity, we fromeq.(1)to: only present the simulations with 10% and 50% of the galactic ζf [x,z,R,M¯ (x,z)]≥1+n¯ (x,z). (2) massasneutralhydrogen.Toprovideasenseoftherangeofval- coll min rec uesthatαmighttakewecanextrapolatelowerredshiftconstraints InthemodelofSM2014,boththenumberofrecombinationsand minimumhalomasshostinggalaxiesdependonthelocalproper- tiesofeach∼1Mpc-scalereionizationcell.Takingself-shielding 9 WeignorethePoissonnoiseassociatedwithhalodiscreteness,sincethis intoaccountviatheparametrizationofRahmatietal.(2013),and affectsscalestoosmalltobeobservablewiththeSKA. (cid:13)c 2015RAS,MNRAS000,000–000 4 C.A.Watkinson,A.Mesinger,J.R.Pritchard&E.Sobacchi from DLAs. The contribution of galactic neutral hydrogen to the Table2.Instrumentalspecificationsassumedfornoisecalculations.LO- critical mass is found to be ΩHI ∼ 10−3 for z (cid:46) 4 (Prochaska FARandSKAparametersaretakenfromMellemaetal.(2013),HERA et al. 2005; Noterdaeme et al. 2012). This can be related to α as fromPoberetal.(2014)/privatecommunicationswithA.LiuandMWA α = ΩHI/(Ωbfcoll),whichpredictsα ∼ 0.05towardstheendof parametersfromTingayetal.(2013). reionization,i.ez∼6,risingtoα∼1atz>11asf decreases coll withincreasingredshift.HoweverattheredshiftsforwhichΩ has HI beenconstrained,α (cid:46) 0.03;assuch,hereafterwewillmakethe Parameter MWA LOFAR HERA SKA distinctionbetween‘reasonablelevelsofgalacticsinks’,(α(cid:46)0.1), Numberofstations and‘largelevels’(α(cid:38)0.5). (Nstat) 128 48 331 450 ItisimportanttonotethatthetailoftheMiralda-Escudeetal. Effectivearea (2000)densitydistributionshould,inprinciple,includegasinside (Aeff/m2) 21.5 804 8.4e3/Nstat 106/Nstat galaxies.However,thedistributionwascalibratedtothelowerover- densityIGM,andhasbeenshowntobeapoorfittothematterdis- Maximumbaseline tribution inside lower-redshift galaxies, even neglecting feedback (Dmax/m) 2864 3000 360 104 (e.g.Bolton&Becker(2009);McQuinn,Oh,&Faucher-Gigue`re Integrationtime (2011)).Moreover,theaccuracyoftheMiralda-Escudeetal.(2000) (tint/hours) 1000 1000 1000 1000 PDFisuntestedbothatthehigh-redshifts(z∼10)ofinteresthere, as well as in predicting the conditional (dependent on the local, Bandwidth (B/MHz) 6 6 6 6 large-scaleoverdensity)massfraction.Henceinourapproachwe use the conditional, excursion-set approach, which is much bet- ter tested in predicting the collapse fraction. However, since the excursion-set galactic HI is added on top of the SM2014 neutral 3 BRIGHTNESS-TEMPERATUREMAPS&MOMENTS fractionfield,ourapproachisboundtodoublecountsomegalac- 3.1 Computing1Dstatisticsandnoise ticHI,andthevaluesofαshouldonlybetreatedasapproximate (lowerlimits).Wefindthatduetotheinside-outnatureoftheepoch Once the ionization boxes have been calculated as described, the ofreionization(i.e.biasedHIIregions),theexcursion-setapproach brightnesstemperature(δTb)canbecomputedaccordingto: generally predicts much higher collapsed fractions inside HII re- T −T gions than MHR00 (see e.g. table 1); thus we do not expect the δTb = 1s +zγ(1−e−τν0) double-countingtohavealargeimpactonourconclusions. (cid:20) (cid:21) T −T H(z)/(1+z) ≈27. s γ x (1+δ) T HI dv /dr s r (5) (cid:18)1+z 0.15 (cid:19)1/2(cid:18)Ω h2(cid:19) × b mK, 10 Ω h2 0.023 m whereδT isdependentontheoverdensityδ = ρ/ρ−1,veloc- b itygradientdv /dr andcosmology.ThegasspintemperatureT r s measures the occupation levels of the two hyperfine energy lev- elsinvolvedintheHI21-cmtransitionanddeterminesthe21-cm optical depth τ . It is assumed in this work that T (cid:29) T , i.e. ν0 s γ T ismuchhigherthanthatofthecosmicmicrowavebackground s T .Whilstthisisexpectedtobeareasonableapproximationduring γ reionizationduetoX-rayheating,theinfluenceofspintemperature fluctuationsmaynotbenegligibleintheearlystagesofreioniza- tion,i.e.Q <0.2(Pritchard&Furlanetto2007;Mesingeretal. 2.4 InhomogeneousrecombinationsintheIGM+extreme HII 2013;Gharaetal.2014). galacticHI In our analysis of the simulations described above we use Finally,weconsideranextrememodelwiththemaximalamount the same approach as Watkinson & Pritchard (2014), hereafter ofresidualneutralhydrogen,‘Mini+100%GalHI’.Followingthe WP2014.WemeasurethevarianceS2andtheskewS3ofasimu- sameprocedureasoutlinedintheprevioussection,weassign100% latedboxaccordingto oefffetchteivbelayryaosnsiucmmesastshaint m10in3ih≤alosTvwirithhaalosviarisalHteI.mTpherisatumreodoefl 1 N(cid:88)pix(cid:2) (cid:3)2 S = δT −δT , 103 ≤T <104K,i.e.thosethathavecooledbymolecularcool- 2 N i b vir pix i=0 ing, have been sterilized by a Lyman-Werner background so that (6) theycannotformstars(e.g.Haiman,Abel,&Rees2000;Ricotti, 1 N(cid:88)pix(cid:2) (cid:3)3 S = δT −δT , Gnedin,&Shull2001;Mesinger,Bryan,&Haiman2006).More- 3 N i b pix i=0 over, this model assumes that the time-scale of minihalo photo- evaporationismuchlongerthanthedurationofreionization(e.g. where δTi is the brightness temperature of the ith pixel, the Shapiro et al. 2004; Iliev et al. 2005; Ciardi et al. 2006). Our average brightness temperature in a box is given by δTb = ‘Mini+100% Gal HI ’ run therefore serves to illustrate the most Np−ix1(cid:80)Ni=p0ixδTi and Npix is the total number of cells in a box. extremeimpactthatresidualgalacticHIcouldhaveon21-cmob- We will consider two normalisations for the skew, the standard servations. skewnessS /(S )3/2andthedimensionalskewnessS /S which 3 2 3 2 (cid:13)c 2015RAS,MNRAS000,000–000 21-cmsignaturesofresidualHI 5 Figure2.Brightness-temperaturemapsfor300Mpcboxesnormalisedtoz=9;mapsareresolvedtopixelsof(3Mpc)3andpresentedwiththepixeldepth flattenedintothepage.Mapscorrespondto,fromLLS(left),LLS+10%GalHI(middle-left),LLS+50%GalHI(middle-right)andminihalos+100%GalHI (right).Thetoprowisforz=7.0whentheHIIvolumefillingfactoris0.92;thebottomrowcorrespondstoz=9.2atwhichtimetheHIIvolumefillingfactor is0.50.Blackregionsarethosewithzerobrightnesstemperature. wasfoundtobeamorenaturalnormalisationfortheskewofthe obeys the properties discussed above. We then use a test statistic neutral-fractionboxesofWP2014. forthemthmoments,N−1(cid:80)Npix(x −x )m,todetermineunbi- pix i=0 i i Wemakeorderofmagnitudecalculationsfortheerrorinduced asedestimatorsforthemomentsofEquation6.Wethencalculate byinstrumentalnoise(usingtheinstrumentparametersintable2), thenoise-inducedvarianceoneachunbiasedestimator.Thesede- butdonotconsiderforegroundresiduals.Weassumethenoiseis rived1-σerrorsarethenpropagatedontothenormalisedskewness independentoneachpixelbutidenticallydistributedinamanner estimatorsγ =Sˆ /Sˆ andγ(cid:48) =Sˆ /(Sˆ )3/2togive 3 3 2 3 3 2 welldescribedbyGaussianrandomnoisewithzeromeanandstan- 2 darddeviationσ2 where V = (2S σ2 +σ4 ), noise Sˆ2 N 2 noise noise σn2oise =2.9mK(cid:18)1A05tmot2(cid:19)(cid:18)∆10θ(cid:48)(cid:19)2 Vγ3 ≈ (S12)2VSˆ3 + ((SS23))42VSˆ2 −2(SS23)3CS2S3, (8) (cid:115) ×(cid:18)11+0.0z(cid:19)4.6 (cid:18)1M∆Hνz100thinoturs(cid:19). (7) Vγ3(cid:48) ≈ (S12)3VSˆ3 + 49((SS23))52VSˆ2 −3SS234CSˆ2Sˆ3, where This expression is derived with the noise on the brightness tem- √ 3 rpaeyrafitulrliengdefsaccrtiobredisbdyefi∆neTdNas=η T=sys/Aηf /∆Dν2tintiwnhwehreichtheAar- VSˆ3 = Npix(3σn2oiseK4+12S2σn4oise+5σn6oise), (9) f tot max tot is the total effective area of the array, D = λ/∆θ; the sys- and max tpeemrattuermepaetrathtuerefreTqsuysenicsieasssoufmiendtetroesbt.eBseaftourreatemdeabsyurthinegstkhyetmemo-- CSˆ2Sˆ3 = N6pixS3σn2oise. (10) ments we smooth and resample the boxes to correspond roughly with the resolution expected from the various instruments; to do 3.2 Brightness-temperaturemaps so,weuseaGaussiansmoothingkernelwithwidthR =6Mpc pix forLOFAR/MWAandR = 3MpcforHERA/SKA(although Itisusefultotakealookatthemapsthemselvesbeforeanalysing pix we note that in this work, LOFAR/ MWA results are only pre- theirstatistics.InthemapsofFigure2,‘NoLLS’,‘LLS’,‘LLS+ sented for larger smoothing scales). We also reduce the assumed 10%GalHI’, ‘LLS + 50%GalHI’ and ‘minihalos + 100%GalHI’ frequencyresolutionofeachtelescopetocorrespondtoR ,i.e. arerepresentedfromlefttoright;thetopstripcorrespondstoz= √ pix (cid:112) ∆ν =H ν Ω R /[c (1+z)]. 7.0andQ ∼ 0.92andthebottomstripcorrespondstoz=9.20 0 0 m pix HII Toestimatehowthenoisewe’vesofardiscussedwillpropa- andQ ∼ 0.50.Allmapshavebeensmoothedandresampledto HII gateontotheskewnessandvarianceweassumethateachpixelhas producepixelsof3Mpconaside,thepixeldepthhasbeenflattened ameasuredsignalx =δT +n ,wherethenoiseonthepixeln intothepage. i i i i (cid:13)c 2015RAS,MNRAS000,000–000 6 C.A.Watkinson,A.Mesinger,J.R.Pritchard&E.Sobacchi Asmentionedabove,theimpactofinhomogeneousIGMsinks canbeseenbycomparingthelarge-scalereionizationmorphology oftheleftpaneltotheotherpanels.AsdiscussedinSM2014,re- combinationsinunresolvedstructuresresultinadramaticsuppres- sionoflarge-scaleHIIregions.ComparingatafixedQHII,thedis- tributionofHIIpatchsizesisbothnarrowerandshiftedtosmaller scales.Theimpactisdramaticenoughthatpartiallyionizedcells, hosting unresolved HII bubbles, become important. The ionized fractionofthesecellsisonly<10%,butsincetheycorrespondto ∼ the densest(of thosenot yet reionized)∼Mpc-scale patches, this issufficienttodampthesignalfromtheneutralcosmicpatches(as evidenced by the ‘yellow’ vs ‘orange’ IGM surrounding the HII bubbles in the ‘NoLLS’ and ‘LLS’ panels). This damps the con- trastbetweenthefullyionizedandfullyneutralregions.Wecaution however that unresolved, sub-grid HII regions are taken into ac- countonlyinasimplisticfashioninourmodel,asdescribedabove; furtherworkisrequiredtoaccuratelymodelsuchsub-gridphysics. The impact of an increasing level of residual HI inside the cosmic HII patches can be seen by comparing the insides of the ‘black’regionsinthepanelsoftheFigure2fromlefttoright.The modelofSM2014(our‘LLS’)onlyresultsinafewpercentlevel of HI inside HII regions, and so on this colour scheme the HII regions are still black. However the extreme galactic HI models, ‘LLS + 50%GalHI’ and ‘minihalos + 100%GalHI’, show a no- table level of HI inside the cosmic HII regions, with small-scale structuretracingthedistributionofgalaxies.Thisfurtherreduces thecontrastbetweenneutralandionizedregions,complicatingan interferometricdetectionofreionization.Inprinciplehowever,re- solving this small-scale HI structure with high-resolution 21-cm interferometrycouldconstrainmodelsofgalacticHI. 3.3 Probabilitydenstityfunctions Figure3.BrightnesstemperaturePDFsatQHII ≈0.3,0.5,0.7(z =10.8, 9.2,8),toptobottom.Allmapsaresmoothedtoaco-movingpixelsizeof ThesetrendsarequantifiedinFigure3,wherewepresenttheprob- 3Mpc. abilitydensityfunctions(PDFs)fromthesemaps,withlinescor- respondingto:‘NoLLS’(pinkdashedw/stars),‘LLS’(redsolid), dashedw/circles)and‘NoLLS’(pinkdottedw/stars);wewilluse ‘LLS+50%galacticHI’(blackdottedw/triangles)and‘minihalos thiskeyfortheremainsofthepaper. +100%galacticHI’(greendashedw/circles).Plotscorrespondto We begin by reviewing what simulations that ignore recom- Q ≈0.3,0.5,0.7(z=10.8,9.2,8),toptobottom. HII binations in unresolved systems predict for the evolution of the The presence of residual HI inside cosmic HII regions sup- brightness-temperature moments. Studies of statistics from such presseszero-valuedpixelsinthePDFs.Thebi-modalnatureofthe modelsidentifiedseveralimportantpropertiesthatwouldprovide PDFismaintainedfor‘LLS’butthesharppeakatδT = 0mK b invaluableconstraintsonthetimingofreionizationifborneoutin issmearedintoawiderpeakcentredonδT ∼ 1mKbecauseofa b reality(e.g.Furlanettoetal.2004;Harkeretal.2009;Watkinson& fewpercentlevelofresidualHIintheionizedIGM(SM2014).It Pritchard2014).Itisusefulforthediscussionthatfollowstorefer isonlywithlargelevelsofgalacticsinksthatthebi-modalnature tothepinkdottedlinesw/starsinFigure4.Theamplitudeofthe isentirelysuppressed, varianceismaximisedatthehalf-waymarkofreionizationasthe Also evident in these PDFs is the impact of sub-cell, unre- weightofthenon-zerodistributionofthebrightness-temperature’s solvedHIIregions;thesepreferentiallyoccurinthehighestdensity PDFanditsspikeatzeroarebalanced(Figure4top).Thelate-time pixelshostingnewlyforminggalaxies,whichiswhythereisasup- dominanceofthezero-temperaturespikeinducesarapidincrease pressionofthehighδT tailin‘LLS’whencomparedto‘noLLS’. b inskewnessatlatetimes(Figure4middle).Itcouldbearguedthat Thiseffectconspireswiththelossofasharpzeropeaktofurther thiseffectisdrivenbythevariancebecomingverysmallasreion- reducethevarianceinthemaps. ization draws to a close, however the dimensional skewness still exhibits a late-time signature but in the form of a turnover (Fig- ure4bottom).Atthehalfwaypointbothskewnessstatisticspass 3.4 Observingthebrightness-temperaturemoments: fromnegativetopositive.Atearlytimestheyexhibitaminimum Instrumentalnoise asthePDFtransitionsfrombeingdominatedbythedensityfield Figure 4 shows evolution of the variance (top), skewness (mid- tobeingdominatedbytheneutralfraction(Lidzetal.2008);the dle) and dimensional skewness (bottom) as a function of the HII locationofthisminimumdependsontheoverlapofX-rayheating volume-fillingfactor.Linescorrespondto‘LLS’(redsolid),‘LLS andreionizationepochs(Mesingeretal.2013). + 10% galactic HI’ (blue dot-dashed), ‘LLS + 50% galactic HI’ Unresolved HI sinks can dramatically change this picture. (blackdottedw/triangles),‘minihalos+100%galacticHI’(green Already with ‘LLS’ the magnitude of the variance is suppressed (cid:13)c 2015RAS,MNRAS000,000–000 21-cmsignaturesofresidualHI 7 by up to a factor of two during the mid phases of reionization. HeretheadditionalsignalinHIIregions,reducesthecontrastbe- tweenionizedandneutralregions.Moreimportantly,smallerHII regions mean that there is more sub-pixel, unresolved ionization structure in ‘LLS’ compared with ‘NoLLS’. This suppression of bi-modality(onresolvablescales)intheionizationstructureisfur- therexacerbatedbythemoredisjointHIIregionsin‘LLS’which get ‘smeared-out’ when the maps are smoothed; i.e. the HII re- gionsin‘LLS’arelesslikelytoberesolvedby21-cminterferom- eters.Theseeffectsdramaticallysuppressthesmall-scalecontrast between ionized and neutral regions; the strength of the turnover associatedwiththehalfwaypointofreionizationissuppressedto the point that even SKA could have difficulty in constraining it. Fortunately,aswewillseeinthenextsection,furthersmoothingof the maps emphasises the turn-over feature, improving our ability toconstrainthismid-phasesignature.Theturn-overinthevariance occursatQ ∼0.4in‘LLS’ratherthannearlyexactlyhalfway HII throughreionizationaspredictedby‘NoLLS’.Thisisbecausethe ionizationmapisnolongerwelldescribedasatwo-phasefieldin whichthenumberofpixelsineachphaseperfectlybalanceatthe midpointofreionization. TheinclusionofgalacticHIreducesthevarianceevenfurther (seealsoWyitheetal.2009).Reasonablelevelsofgalacticsinksdo notdramaticallyaltertheevolutionofthevariance(ascouldalready beseenfromthemapsinFigure2).However,ifthegalacticHIis tiedtoafixedfractionoff asinoursimpleillustrativemodels, coll thegrowthofcollapsedstructurewillboostthe21-cmvarianceat latetimes.Intheextrememinihalo+100%GalHImodel,structure growthtotallydominatesthesignalthroughout.SKAcouldeasily detectsuchafeature. WeseeinthemiddlepanelofFigure4thatthetransitionfrom negativetopositiveskewnessincludingsinksoccursatQ ∼0.6 HII (insteadofQ ∼0.5aspredictedby‘NoLLS’).Thistransitionis HII reducedtolowerQ inthepresenceofextremelevelsofgalactic HII sinks.Forreasonablelevelsofgalacticsinks,thisispredominantly duetoeffect(i),wheresmallHIIregionsareunresolved.Weeven Figure 4. Variance (top), skewness (middle) and dimensional skewness see this trend to a lesser degree when smoothing of ‘NoLLS’ on (bottom)ofbrightnesstemperaturemeasuredfrom‘observed’mapswith large scales smears-out the HII regions (see Figure 6). For rea- aco-movingpixelsizeof3Mpcasafunctionofvolume-fillingfactorof sonablelevelsofgalacticsinks,thissignatureandtheturn-overin ionizedregions.BeigeshadingsdepictSKA’s1-σ instrumentalerrorsfor thevariancebracketthemid-pointandwillconstrainthetimingof the‘LLS’simulation.Withinthehatchedregion,spin-temperaturefluctua- reionizationmoretightlythaneitherstatisticonitsown. tionsmaynotbenegligible. Thelate-timerapidincreasepredictedfortheskewnessisto- tallysuppressedbythepresenceofIGMsinks;insteadweseeaturn overintheskewnessof‘LLS’astheHIIfillingfactorreachesabout cationofthisfeatureisdeterminedbytheoverlapofX-rayheat- 90%.Thisisbecausethenormalisingfactor,i.e.thevariance,isno ing and reionization (Mesinger et al. 2013), and here we assume longertendingtowardszeroandweinsteadseeatransitionfroma TS (cid:29)Tγ throughout.Nevertheless,extremelevelsofresidualHI skewnessdrivenbytheionizationfieldtoonedrivenbythedistri- willalmosttotallysuppressthissignature.Atitsdefaultresolution butionofIGMsinks.Thisturnoveriswipedoutbythepresenceof SKA could struggle to detect this feature, depending on the tim- evensmallamountsofgalacticsinks.Theseareimportantpointsto ingsofreionization;however,itsnon-detectionwouldstillprovide beawareofaswebeginoureffortstoconstrainreionizationwith upperlimitsonthisphase. 21-cm observations. Detecting a turnover in the skewness would Figure5showsthevarianceasafunctionofthepercentageof implythepresenceofIGMsinks(aswouldreducedvariance)and galacticmassinsinksattheendofreionization,forthissimulation thatreionizationisinitsfinalphases.Thenondetectionofsucha z = 5.8. To reduce noise the maps are smoothed to a radius of late-timesignatureintheskewnesswouldnotnecessarilymeanthat R = 10 Mpc and the beige shadings correspond to, from smooth wearenotobservingtheendofreionization.Itsabsencecombined lighttodark,theMWA,LOFARandSKA1-σinstrumentalerrors. withevolutioninthevariancewithredshiftwouldinsteadimplythe NotethatthesignalwhenmeasuredwithSKA-likeresolution,i.e. presenceofgalacticsinks. 3 Mpc pixels, is greater by around a factor of ten. The blue dot- SKAwillbesensitivetothedetailsofskewnesswehavede- dashedlinemarksthelevelofresidualhydrogenasconstrainedby scribed above, but only in the dimensional skewness, which ex- DLAsatlowerredshift,i.e.α=0.03atz∼4. hibitsmoredistinctfeaturesandbetterrobustnesstonoise. Therearetwowaystoviewthispost-reionizationsignal,one Theearly-timeminimumintheskewnessstatisticsisseento isthatitisintrinsicnoisetobeovercomeinourquesttoconstrain berobustacrossthemodels.Thisisunderstandable,sincethelo- reionization, the other is that it provides a constraint on residual (cid:13)c 2015RAS,MNRAS000,000–000 8 C.A.Watkinson,A.Mesinger,J.R.Pritchard&E.Sobacchi Figure5.VarianceasafunctionofpercentageofremnantgalacticHIat z=5.80(QHII = 1)measuredin‘observed’mapssmoothedtoaradius ofRsmooth =10Mpctoreducenoise,thesignalisaroundafactorof10 greaterwiththedefaultpixelsizeof3Mpc.Theverticallinecorrespondsto, α = 0.03,illustratingthelevelofresidualhydrogenobservedingalaxies at lower redshifts. MWA, LOFAR and SKA 1-σ instrumental errors are depictedwithbeigeshadingsfromlightesttodarkestrespectively. HI post-reionization.Clearlytheamplitudeofthevarianceatthe endofreionizationisverysensitivetothelevelofgalacticsinks. ThisintrinsicnoisewillbedetectablebySKA,whichwilltherefore bewellplacedtoconstraingalacticsinkswiththisstatistic.Wedo notexplicitlyplotHERAerrorsbuttheyareindistinguishablefrom SKA, i.e. negligible, on this plot and so should perform equally wellatthistask.Beforethesetelescopescomeonline,bothLOFAR andMWAshouldbeabletosetsomeconstraintsonthisquantity, althoughatthelowerandmoreprobablevaluesofα,MWA’ssig- nal to noise will be too poor to do more than set upper limits on remnantgalacticHI.Theflip-sideofthisisthattheintrinsicnoise from galactic sinks should not be a limiting factor for these first generationinstruments. Figure 6. Variance (top), skewness (middle) and dimensional skewness 3.5 Observingthebrightness-temperaturemoments: (bottom)ofbrightnesstemperatureasafunctionoftheHIIvolume-filling Smoothingtoreducenoise factormeasuredin‘observed’mapssmoothedtoRsmooth=10Mpc.Beige As in Watkinson & Pritchard (2014), we investigate the effects shadingsdepict1-σinstrumentalerrorsforthe‘LLS’simulation;tonescor- of smoothing the maps to beat down instrumental noise. Figure respondtoMWA,LOFARandSKAfromlightesttodarkest.Withinthe hatchedregion,spin-temperaturefluctuationsmaynotbenegligible. 6 (top) shows the evolution of the variance when smoothed to Rsmooth =10MpcasafunctionofHIIvolume-fillingfactor.LO- FAR will be well placed to constrain the presence of IGM sinks 4 BRIGHTNESS-TEMPERATUREPOWERSPECTRUM through the reduction in the variance, could constrain/ exclude largelevelsofgalacticsinksandwillbeabletooffertimingcon- The brightness temperature’s 1-point statistics form the focus of straints from the mid-point turnover in the variance (unless the thispaper,butthe21-cmpowerspectrumwillbeanincrediblyim- model is extreme and this signature does not exist). We see that portantstatisticwhenitcomestoconstrainingreionization.Assuch smoothingrecoversthelate-timeturnoverinbothskewnessstatis- itisworthunderstandingtheimpactofgalacticneutralhydrogenon ticsforreasonablelevelsofgalacticsinks.Thisisfortunateasthe this statistic. We concentrate on the spherically-averaged dimen- late-timemaximuminthedimensionalskewnesswillbedetectable sionless power spectrum which we describe using ∆2δTb(k,z) = evenbyLOFARforawiderangeofgalacticHIlevels.Themid- k3/(2π2V)(cid:104)|δ21(k,z)|2(cid:105)kinwhichδ21 =δTb(k,z)/δTb(z)−1, pointofreionizationwillbeboundedbySKAandHERAmeasure- δT (z) is the redshift dependent average brightness temperature b mentsoftheskewness,whichwillinformuswhenQ <0.7,and calculatedfromthesimulation,V isthevolumeofthesimulated HII constraintsfromthevarianceofQ ≈ 0.4.Theearly-timemin- box and the angle brackets denote an average over k-space. To HII imumshouldstillbedetectableinbothskewnessstatisticsdespite modelinstrumentalerrorsonthesphericallyaveragedpowerspec- suppressionbythepresenceofIGMsinks.SKAistheonlyinstru- trum,wetaketheapproachoutlinedintheappendixofMcQuinn mentthatislikelytoactuallydetectthisfeature;howeverLOFAR etal.(2006)adoptingalogarithmicbinwidthof(cid:15)=0.5.Incalcu- andHERAshouldbeabletouseitsabsencetosetupper-limitson latingthenumberdensityofbaselinesweassumeafillednucleus √ thisphase.Ifresidualhydrogenlevelsareextremethenthissigna- limitedbytheminimumseparationofstations, A ,followedby eff ture,likeeveryother,willbesuppressed. anr−2dropoffinstationdensity.Thisassumesasmoothdensityof (cid:13)c 2015RAS,MNRAS000,000–000 21-cmsignaturesofresidualHI 9 Figure 8. Dimensional power spectrum of the brightness temperature as a function of the HII volume-filling factor for k = 1Mpc−1 (top) and k = 0.1Mpc−1 (bottom). Within the hatched region, spin-temperature fluctuationsmaynotbenegligible. spectrum at small k can cleanly pick-up large-scale structure. As such its timing signatures are more robust. For example, the mid-point turnover in the k = 0.1Mpc−1 dimensional power spectrumisrobustlyatQ ∼0.5forthemorereasonablemodels, HII althoughitshiftstosmallerQ withlargelevelsofgalacticsinks HII and is completely wiped out in the extreme galactic HI model. We see that whilst reasonable quantities of galactic sinks have Figure7.Dimensionlesspowerspectrumofthebrightnesstemperatureas little qualitative impact, large quantities do impact on the nature afunctionofkMpc−1forz = 10.8(top),z = 9.2(middle),andz = 8 of the power spectrum’s evolution with its evolution no longer (bottom). welldescribedbyasimpleinvertedparabolaonlargescales.This results from additional small-scale power (evident in the plots of Figure7andthetopplotofFigure8)andfromthefactthatatlate stations,whichforLOFARisaparticularlycrudeapproximation. timesthereisstillsubstantialresidualHIthatdrivesthepower. Whilst the exact configuration of SKA is yet to be decided, both LOFARandMWAhaveoptimizedstationpositioning,assuchour powerspectrumerrorsareindicativeonly. Thedimensionlesspowerspectraforoursimulationsarepre- 5 CONCLUDINGREMARKS sented in Figure 7 for Q ≈ 0.3, 0.5, 0.7 (z =10.8, 9.2, 8), HII In this paper we have examined the impact of sinks on the 21- fromtoptobottomrespectively.AsalreadydiscussedinSM2014, cmstatisticsofreionization.Weconsidertwoclassesofsink,IGM IGMsinkscansuppresslarge-scale21-cmpower,resultinginmuch sinksandgalacticsinks,whichhavetwoeffectsonthe21-cmsig- steeperpowerspectrathroughoutreionization.FromFigure7we nal: see that adding additional galactic HI does not have a large im- pactonthepowerspectrum,forreasonablevaluesofα.Moreex- (i) As absorbers of ionizing photons they impact on both the treme levels of galactic HI result in a further steepening of the timingofreionizationandthemorphologyofcosmicHIIpatches. power spectrum, since: (i) the contrast between ionized and neu- (ii) Asreservoirsofneutralgastheycontributeanon-zero21- tralpatchesisreduced,and(ii)thedistributionofgalacticHIcon- cmsignalinotherwiseionizedcosmicpatches. tributesadditionalpoweronsmall-scales. The evolution of the dimensional power spectrum WeusethesimulationsofSobacchi&Mesinger(2014)toinves- δTb2(k,z)∆2δTb(k,z) as a function of the HII volume fill- tigatetheimpactofIGMsinksonthe21-cm1-pointstatisticsdue ing factor is plotted in Figure 8 for k = 1Mpc−1 (top) and toeffects(i)and(ii).Inadditionwestudyhowthecontributionof k=0.1Mpc−1(bottom).Unlikehigher-ordermoments,thepower galacticsinksto(ii)affectsthe21-cmstatistics.Wealsoconsider (cid:13)c 2015RAS,MNRAS000,000–000 10 C.A.Watkinson,A.Mesinger,J.R.Pritchard&E.Sobacchi anextreme,illustrativemodelinwhichgasinsidesterileminihaloes IlievI.T.,MellemaG.,AhnK.,ShapiroP.R.,MaoY.,PenU.L., andatomically-cooledgalaxiesisfullyneutral. 2014,MNRAS,439,725 It is likely that the impact of sub-grid IGM sinks on reion- IlievI.T.,ShapiroP.R.,RagaA.C.,2005,MNRAS,361,405 ization morphology (Sobacchi & Mesinger 2014; effect i), will JenkinsA.,FrenkC.S.,WhiteS.D.M.,ColbergJ.M.,ColeS., suppress the expected ‘rise and fall’ reionization signal of the EvrardA.E.,CouchmanH.M.P.,YoshidaN.,2001,MNRAS, raw(unfiltered)21-cmvariance.Instead,thelarge-scalepower(or 321,372 smoothed variance) shows a more pronounced evolution during LaceyC.,ColeS.,1993,MNRAS,262,627 reionization, since it is less affected by unresolved HII structure. Lidz A., Zahn O., McQuinn M., Zaldarriaga M., Hernquist L., Thus first-generation instruments such as LOFAR should target 2008,ApJ,680,962 large-scalemodesforcleanerreionizationprobes. McQuinnM.,ZahnO.,ZaldarriagaM.,HernquistL.,Furlanetto Similarly,therapidincreaseoftheskewnesspreviouslyasso- S.R.,2006,ApJ653,815 ciatedwiththeendofreionizationisalsosuppressedbyinhomo- McQuinnM.,OhS.P.,Faucher-Gigue`reC.-A.,2011,ApJ,743, geneoussinks.Thisisbecausethevarianceisnon-zeroevenpost- 82 reionization(duetoresidualHI;effectii)andsoweinsteadseea MellemaG.etal.,2013,Exp.Astron.,36,235 turnoverastheskewnesstransitionsfrombeingdominatedbythe MesingerA.,BryanG.L.,HaimanZ.,2006,ApJ,648,835 ionizationfieldtotheresidualHIfield. MesingerA.,FurlanettoS.,2007,ApJ,669,663 Wefindthatmorereasonablelevelsofgalacticsinks,willnot MesingerA.,DijkstraM.,2008,MNRAS,390,1071 change the qualitative evolution of the moments during reioniza- tion.Itisworthnotingthatthepresenceofevenlowlevels(<10%) MesingerA.,FurlanettoS.R.,CenR.,2011,MNRAS,411,955 ofgalacticsinkswouldresultintheabsenceofanylate-timeskew- MesingerA.,FerraraA.,SpiegelD.S.,2013,MNRAS,431,621 nesssignatureinSKAmaps.However,thelate-timeturnoverinthe Miralda-EscudeJ.,2003,ApJ,597,66 skewnessshouldberecoverablebysmoothingthemapstoalower Miralda-EscudeJ.,HaehneltM.,ReesM.J.,2000,ApJ,530,1 resolution. Mun˜oz J. A., Oh S. P., Davies F. B., Furlanetto S. R., 2014, We find that large levels (>∼ 50%) of galactic HI have the preprint,arXiv:1410.2249 potentialtodramaticallyalterthequalitativeevolutionofmoments. NoterdaemeP.etal.,2012,A&A,547,L1 ThisprovidesanexcitingopportunityforSKA(andevenLOFAR) O’MearaJ.M.,ProchaskaJ.X.,WorseckG.,ChenH.W.,Madau toconstrainlevelsofgalacticHIinthehigh-redshiftUniverse. P.,2013,ApJ,765,137 PoberJ.C.etal.,2014,ApJ,782,66 PritchardJ.R.,FurlanettoS.R.,2007,MNRAS,376,1680 ProchaskaJ.X.,HerbertFortS.,WolfeA.M.,2005,ApJ,635,123 ACKNOWLEDGEMENTS RahmatiA.,PawlikA.H.,RaicevicM.,SchayeJ.,2013,MNRAS, CWissupportedbyanSTFCstudentship.JRPacknowledgessup- 430,2427 portunderFP7-PEOPLE-2012-CIGgrant#321933-21ALPHAand RicottiM.,GnedinN.Y.,ShullJ.M.,2001,ApJ,560,580 STFCconsolidatedgrantST/K001051/1. SantosM.G.,FerramachoL.,SilvaM.B.,AmblardA.,Cooray A.,SantosG.,2010,MNRAS,406,2421 SchayeJ.,2001,ApJ,559,507 ShapiroP.R.,IlievI.T.,RagaA.C.,2004,MNRAS,348,753 REFERENCES ShethR.K.,TormenG.,1999,MNRAS,308,119 BarkanaR.,LoebA.,2004,ApJ,609,474 SobacchiE.,MesingerA.,2013,MNRAS,432,L51 Baek S., Di Matteo P., Semelin B., Combes F., Revaz Y., 2009, SobacchiE.,MesingerA.,2014,MNRAS,440,1662 A&A,495,389 SongailaA.,CowieL.L.,2010,ApJ,721,1448 BennettC.L.etal.,2013,ApJS,208,20 Storrie-LombardiL.J.,McMahonR.G.,IrwinM.J.,HazardC., BondJ.R.,ColeS.,EfstathiouG.,KaiserN.,1991,ApJ,379,440 1994,ApJ,427,L13 BoltonJ.S.,BeckerG.D.,2009,MNRAS,398,L26 ThomasR.M.,ZaroubiS.,2011,MNRAS,410,1377 ChoudhuryT.R.,FerraraA.,GalleraniS.,2008,MNRASLett., ThoulA.A.,WeinbergD.H.,1996,ApJ,465,608 385,L58 TingayS.J.etal.,2013,Publ.Astron.Soc.Aust.,30,1 ChoudhuryT.R.,HaehneltM.G.,ReganJ.,2009,MNRAS,394, TracH.,CenR.,2007,ApJ,671,1 960 TracH.Y.,GnedinN.Y.,2011,ASL,4,228 Ciardi B., Scannapieco E., Stoehr F., Ferrara A., Iliev I. T., WatkinsonC.A.,PritchardJ.R.,2014,MNRAS,443,3090 ShapiroP.R.,2006,MNRAS,366,689 Wolfe A. M., Gawiser E., Prochaska J. X., 2005, ARA&A, 43, Crociani D., Mesinger A., Moscardini L., Furlanetto S., 2011, 861 MNRAS,411,289 WorseckG.,ProchaskaJ.X.,2011,ApJ,728,23 FernandezE.R.,ShullJ.M.,2011,ApJ,731,20 WyitheJ.S.B.,WarszawskiL.,GeilP.M.,OhS.P.,2009,MN- FurlanettoS.R.,OhS.P.,2005,MNRAS,363,1031 RAS,395,311 FurlanettoS.R.,ZaldarriagaM.,HernquistL.,2004,ApJ,613,16 Ghara R., Choudhury T., Datta K., 2014, preprint, YajimaH.,ChoiJ.-H.,NagamineK.,2011,MNRAS,412,411 arXiv:1406.4157 PlanckCollaborationetal.,2014,A&A,566,arXiv:1303.5076 GnedinN.Y.,KravtsovA.V.,ChenH.,2008,ApJ,672,765 Zahn,O.,Lidz,A.,McQuinn,M.,etal.2007,ApJ,654,12 HaimanZ.,ReesM.J.,LoebA.,1997,ApJ,476,458 ZahnO.,MesingerA.,McQuinnM.,TracH.,CenR.,Hernquist HaimanZ.,AbelT.,ReesM.J.,2000,ApJ,534,11 L.E.,2011,MNRAS,414,727 HarkerG.J.A.etal.,2009,MNRAS,393,1449 Zel’dovichY.B.,1970,A&A,5,84 (cid:13)c 2015RAS,MNRAS000,000–000

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.