ebook img

2017 Mouse-adapted MERS coronavirus causes lethal lung disease in human DPP4 knockin mice PDF

2017·2.12 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview 2017 Mouse-adapted MERS coronavirus causes lethal lung disease in human DPP4 knockin mice

S U L P S A N Mouse-adapted MERS coronavirus causes lethal lung P disease in human DPP4 knockin mice KunLia,ChristineL.Wohlford-Lenanea,RudragoudaChannappanavarb,Jung-EunParkc,JamesT.Earnestc, ThomasB.Baird,AmberM.Batese,Kim A.Brogdene,HeatherA.Flahertyf,TomGallagherc,DavidK.Meyerholzg, StanleyPerlmana,b,andPaulB.McCrayJr.a,b,1 aDepartmentofPediatrics,PappajohnBiomedicalInstitute,UniversityofIowa,IowaCity,IA52242;bDepartmentofMicrobiology,UniversityofIowa,Iowa City,IA52242;cDepartmentofMicrobiologyandImmunology,LoyolaUniversityChicago,Maywood,IL60153;dIowaInstituteofHumanGenetics, UniversityofIowa,IowaCity,IA52242;eCollegeofDentistry,UniversityofIowa,IowaCity,IA52242;fDepartmentofVeterinaryPathology,IowaState University,Ames,IA50011;andgDepartmentofPathology,UniversityofIowa,IowaCity,IA52242 EditedbyDianeE.Griffin,JohnsHopkinsBloombergSchoolofPublicHealth,Baltimore,MD,andapprovedMarch2,2017(receivedforreviewNovember21, 2016) The Middle East respiratory syndrome (MERS) emerged in Saudi further processed into multiple nonstructural proteins. In Arabia in 2012, caused by a zoonotically transmitted coronavirus contrast, conserved S,E,M, and N structuralproteinsare trans- (CoV). Over 1,900 cases have been reported to date, with ∼36% latedfromseparatesubgenomicmRNAs. fatality rate. Lack of autopsies from MERS cases has hindered un- EpidemiologicstudieshaveestablishedthatMERSiszoonoticin derstandingofMERS-CoVpathogenesis.Asmallanimalmodelthat origin,withevidenceforacloselyrelatedvirusindromedarycamels developsprogressivepulmonarymanifestationswheninfectedwith on the Arabian Peninsula and throughout Africa (3–5). Spread MERS-CoVwouldadvancethefield.Asmicearerestrictedtoinfec- from camels to people is documented (6), as is person-to-person tionatthelevelofDPP4,theMERS-CoVreceptor,wegeneratedmice spread among health care workers in hospital settings (7). The ES withhumanizedexons10–12ofthemouseDpp4locus.Uponinocu- transmission of MERS-CoV from person to person is inefficient, ENC lationwithMERS-CoV,humanDPP4knockin(KI)micesupportedvirus butthiscouldchangewithvirusevolution(8,9)andifthenumbers SCI replicationinthelungs,butdevelopednoillness.After30serialpas- ofso-called“superspreaders”increased(10).TheMERS-CoVhas AL C sagesthroughthelungsofKImice,amouse-adaptedvirusemerged also been detected in people with mild, influenza-like illnesses, DI E (MERSMA)thatgrewinlungstoover100timeshighertitersthanthe thosewithadengue-likeillness,andinthosewithoutobviousdis- M starting virus. A plaque-purified MERSMA clone caused weight loss ease signs or symptoms (11–14). Although human-to-human or andfatalinfection.Virusantigenwasobservedinairwayepithelia, zoonoticspreadofMERShasnotreachedepidemicorpandemic pneumocytes,andmacrophages.Pathologicfindingsincludeddiffuse levels,itspotentialtospreadbetweenpersonswasdemonstratedin alveolardamagewithpulmonaryedemaandhyalinemembranefor- healthcare settings in the Middle East (7) and by an outbreak in mation associated with accumulation of activated inflammatory SouthKoreacausedbyasingleinfectedindividual(15). monocyte–macrophages and neutrophils in the lungs. Relative to A lack of autopsy studies from MERS fatalities has hindered theparentalMERS-CoV,MERSMAvirusescontained13–22mutations, understandingofMERS-CoVpathogenesis(16).Nonehavebeen including several within the spike (S) glycoprotein gene. S-protein reportedfromSaudiArabiaorSouthKorea.Tobetterunderstand mutations sensitized viruses to entry-activating serine proteases the pathogenesis of MERS-CoV lung disease and aid the devel- andconferredmorerapidentrykinetics.RecombinantMERS bear- MA opmentofvaccinesandtherapies,weengineeredamousemodel ingmutantSproteinsweremorevirulentthantheparentalvirusin of MERS. Dipeptidyl peptidase 4 (DPP4, CD26), a type II hDPP4KImice.ThehDPP4KImouseandtheMERS providetoolsto MA transmembraneectopeptidase,isthereceptorfortheMERS-CoV investigatediseasecausesanddevelopnewtherapies. (17), and the key amino acids responsible for binding the virus | | | | emergingpathogen interferon viruspathogenesis spikeprotein CD26 Significance MiddleEastrespiratorysyndrome(MERS)wasrecognizedasa Middle East respiratory syndrome, caused by a zoonotically significant illness on the Saudi Arabian peninsula in mid- transmitted coronavirus (MERS-CoV), has a high mortality 2012 and the causative agent was rapidly identified as a novel coronavirus (CoV) (1). MERS has a high mortality (∼36%) asso- (∼36%).BecauseoflimitedautopsydataontissuesfromMERS fatalities,asmallanimalmodelcanprovideanimportanttoolto ciatedwithseverelungdiseasethatcanprogresstoacuterespiratory betterunderstandthedisease.Wehumanizedthemouselocusof distresssyndrome(ARDS).Sinceitsemergence,theWorldHealth thevirusreceptorDPP4,preservingnativeDPP4expression.After Organization (WHO) has been notified of 1,905 laboratory- inoculatinghDPP4knockinmicewithMERS-CoV,therewasvirus confirmed cases of MERS-CoV infection in 27 countries, result- replicationwithoutdisease.Wethengeneratedamouse-adapted ing in at least 677 related deaths (WHO website, www.who.int/ MERS-CoVbyserialpassageinhDPP4knockinmice.Theresultant emergencies/mers-cov/en/; February24, 2017). MERS-CoV, sim- virus causes fatal lung disease that includes diffuse alveolar ilar to the severe acute respiratory syndrome (SARS)-CoV that damage and immune dysregulation. Here, we characterize the caused an epidemic in 2003, has been a serious cause for global pathologicfeaturesofthemodelandelucidatekeyaspectsofthe concernduetoitshighfatalityrate.Ofnote,theMERS-CoVhas immunopathologyandfactorscontributingtovirulence. agenomicstructuresimilartothatofotherCoVsandcontainsa 30-kbpositive-strandRNAgenomethatencodesfor11ORFsthat areordered5′to3′:ORF1a,ORF1b,spike(S),ORF3,ORF4a/b, Authorcontributions:K.L.,C.L.W.-L.,R.C.,T.G.,S.P.,andP.B.M.designedresearch;K.L., C.L.W.-L.,R.C.,J.-E.P.,J.T.E.,T.B.B.,A.M.B.,K.A.B.,H.A.F.,andD.K.M.performedresearch; ORF5, envelope (E), membrane (M), nucleocapsid (N), and K.L.,C.L.W.-L.,R.C.,J.-E.P.,J.T.E.,T.B.B.,H.A.F.,T.G.,D.K.M.,S.P.,andP.B.M.analyzed ORF8b (1, 2). ORF1a and -1b are predicated to encode non- data;andK.L.,T.G.,S.P.,andP.B.M.wrotethepaper. structural proteins. The subgenomic mRNAs of MERS-CoV Theauthorsdeclarenoconflictofinterest. encode five unique accessory proteins, designated 3, 4a/b, 5, ThisarticleisaPNASDirectSubmission. and8b,whicharefoundonlyintheviruslineagethatincludes 1Towhomcorrespondenceshouldbeaddressed.Email:[email protected]. HKU4 and HKU5 (1). Like other CoVs, the long genomic Thisarticlecontainssupportinginformationonlineatwww.pnas.org/lookup/suppl/doi:10. mRNAofMERS-CoVencodesreplicasepolyproteinsthatare 1073/pnas.1619109114/-/DCSupplemental. www.pnas.org/cgi/doi/10.1073/pnas.1619109114 PNASEarlyEdition | 1of10 spikeglycoproteinhavebeenidentified(18).Wereplacedmouse Plaque-Purified MERS CausesFatalLungDiseaseinDPP4-KIMice. MA Dpp4exons10–12,encodingtheresiduesrequiredforvirusbind- Because CoV, like all RNA viruses, exist as quasispecies, we fur- ing,withhumanexons10–12.Invivoserialpassageofthehuman therpurifiedMERS plaques.Sixofnineplaque-purifiedisolates MA MERS-CoV[ErasmusMedicalCenter(EMC)/2012]inthehuman wereevaluatedinKImiceata105pfuinoculumandeachcaused DPP4 receptor knockin (KI) mice yielded a mouse-adapted virus fataldisease(SIAppendix,Fig.S2).Serialpassageofcoronaviruses (MERS ) that causes a fatal pulmonary disease phenotype as- may result in gene deletions (26) and we observed that deletions MA sociated with diffuse alveolar damage and a severe inflammatory hadoccurredinmostofourplaques.SequencingoftheORF3and response,includinganincreasednumberofCD11b+Ly6Chiinflam- 4a/4b genes revealed that plaque 6 virions included a population matory monocyte–macrophages (IMMs). Sequencing of plaque- without deletions in these regions (Dataset S1). Therefore, we purifiedMERSMAclonesrevealedseveralmutationsthatemerged selected virus from plaque 6 as a representative MERSMA. To withinvivopassage,includingaclusterinthespike(S)glycoprotein ensurecompleteclonalisolation,weperformedtwomorerounds codingsequence.ArecombinantMERS-CoVwiththeseS-protein ofplaquepurification.Fig.2C–FshowsthatKImiceinfectedwith mutationswasmorevirulentinDPP4KImicethanparentalMERS- asingletripleplaque-purifiedvirus,termed“clone6.1.2,”exhibited CoV.ThehumanDPP4KImouseinfectedwithMERSMArevealed dose-dependentfataldisease.Wecomparedtheoutcomesofmale severalimportant diseasecorrelates,attributed tothevirus andits (Fig. 2 C and D) and female (Fig. 2 E and F) mice to several cellentry,andtothehostanditsimmunologicalresponse. inocula of MERS clone 6.1.2 and observed similar outcomes. MA Aninoculumof5×103pfuwaslethalinbothsexes. Results LungvirustitersinKImiceinfectedwithclone6.1.2were∼1–2 Generation of a Mouse with Knockin of Human DPP4 Exons 10–12. log higher compared with those challenged with the EMC/Vero WhereashumanDPP4has26exons,theresiduesencodedbyexons parental virus from 1 to 5 days postinoculation (d.p.i.) (Fig. 3A). 10–12comprisethecriticalMERS-CoVreceptor(18,19).Weand Virus was readily detected in serum of clone 6.1.2-infected mice, others showed previously that changing the exon 10–12 codons butrarelyinmiceinfectedwithEMC/Vero(Fig.3B).Noviruswas from mouse to human conferred high-affinity binding of the detectedinthebrainorotherorgans.WealsoexaminedviralRNA MERSSprotein(20–23).Usingaplasmid-mediatedgenetargeting distribution by PCR and identified signal in lung at 1 and 3 d.p.i. strategy (SI Appendix, Fig. S1), a congenic C57BL/6 mouse was (Fig.3C).Alow-levelvirusgenomicRNAsignalwasalsodetected developed by replacing mouse Dpp4 exons 10–12 with the corre- in the liver at 1 d.p.i. only. Of note, the EMC/Vero virus yielded spondinghumanDPP4codons(hDPP4-KI).Thetargetedfounders more progeny than clone 6.1.2 virus in human cells (Fig. 3D), were expanded by breeding and offspring characterized by geno- suggesting that mouse adaptation did not enhance infection in typingforthepresenceofhumanDPP4sequenceasdescribedin humancells. Materials and Methods. For the studies reported, we used mice We compared the tissue histology of KI mice infected with homozygousforhDPP4.ToidentifytheMERS-CoVreceptordis- EMC/Vero or MERS clone 6.1.2. At 1 and 3 d.p.i. we noted tribution in the mouse lung, we localized DPP4 in uninfected MA similarmildinflammatorycellinfiltratesinperivascularregionsand hDPP4-KI mice. As shown in Fig. 1A, airway epithelial cells had alveolarseptaofmiceinfectedwithbothviruses.By4and5d.p.i., mild to moderate DPP4 immunoreactivity. In the alveolus, lung tissue from mice infected with EMC/Vero virus was notable DPP4immunostainingwasmostoftenseeninalveolarmacrophages for multifocal mononuclear cell infiltrates (Fig. 4A, arrowheads), with less common immunostaining of alveolar epithelia, and the whereas such infiltrates were mild and uncommon in the clone pleural surface (Fig. 1 B and C). This pattern of DPP4 expression 6.1.2-infectedanimals.Incontrast,tissuesfromclone6.1.2-infected sharessimilaritiestotheproteindistributioninhumanlung(24,25) miceshowedmultifocalhyalinemembranes(Fig.4AandB,black andidentifiescelltypesthatmaysupportvirusreplication. arrows),edema(Fig.4B,blackasterisks),andnecroticdebris(Fig. InfectionofHumanDPP4KnockinMiceandDevelopmentofaMouse- 4B,Inset,redarrowhead)consistentwithdiffusealveolardamage. AdaptedMERS-CoV.Followingintranasal(i.n.)infectionwith104to Associated with these findings in clone 6.1.2-infected animals, we 106pfuMERS-CoV(EMC/2012,Vero81cellpassaged,hereafter observedEvansbluedyeretentioninlungtissueat4and5d.p.i., termed“EMC/Vero”),virusreplicatedinthelung(titersat1d.p.i. indicativeofincreasedvascularpermeability(Fig.4B,whiteaster- ∼105–6 pfu/g tissue), but mice lost no weight and there was no isks). Morphometric analysis of lung tissue lesions showed that mortality(Fig.2AandB).WenextseriallypassagedEMC/Veroin clone 6.1.2-infected lungs had significantly reduced cellular infil- KI mice as described in Materials and Methods. Tissue homoge- tratesandincreasedhyalinemembranesat4and5d.p.i.(Fig.4C). natesweresavedaftereachinvivopassage.After21passages,we We localized virus N protein in infected lung tissue at 3 d.p.i. In testedthepassagedvirusinKImiceandnotedprogressiveweight EMC/Vero-infected mice, virus antigen staining was patchy and loss and ∼50% mortality (SI Appendix, Fig. S2). After 30 in vivo featured immunostaining of alveolar macrophages and less com- passages(P30),a104pfuvirusinoculumcausedprogressiveweight mon staining of alveolar and airway epithelia (Fig. 5, Middle). In loss and ∼80% mortality (Fig. 2 A and B). We termed this contrast, clone 6.1.2-infected mice had much more widespread P30virusmouse-adapted(MA)MERS-CoVor“MERS .” N-proteinstainingofalveolarmacrophagesandalveolarepithelia MA A B C Fig.1. DPP4immunostaininginuninfectedhDPP4KImouselung.(A)DPP4wasobservedasmildtomoderatecytoplasmicstainingofairwayepithelia. Positivestainingwasalsonotedinalveolarmacrophages(arrow).(B)Mildtomoderatemacrophageimmunostainingwerecommonlyseen(arrows,Middle), aswasweakstainingofalveolarepithelia(Inset).(C)Thepleuralsurface(arrows)hadmultifocalDPP4immunostaining.Resultsshownarerepresentativeof findingsfromfourhDPP4KImice.(Magnification:400×.) 2of10 | www.pnas.org/cgi/doi/10.1073/pnas.1619109114 Lietal. S U L P S A N A B evidence of monocyte activation, a reduced erythrocyte density, P andreducedpolychromatophils(immatureRBCs)consistentwith anemia of inflammation (SI Appendix, Fig. S5 B and C). These resultsprovidefurtherevidenceofasystemicillnessinclone6.1.2- infectedanimals. Examination of autopsy samples from patients who succumbed to SARS and MERS (n = 1) showed substantial accumulation of monocyte–macrophages and neutrophils in the lungs (38–41). To C110 Male D determine whether the enhanced morbidity and mortality of 100 5000 pfu i.n. % Initial Weight107890000 Percent survival 24680000 55000 p pfufu i. ni.n.. ialhungDcnergPsesPaa4sane-tdKd4Itiondmtf.alpialc.mien.muWtomahtMboeerrEryesRacoseSfltMlhinAreenccaalrbtouesnioteimlmu6etm.en1ut.n2,nuweimnecfbeeaeclnlrtaispolyoonzfpecuCdolraDtrthei4oel5an+ptseedlirencuwektnihtothe-- cytes were lower in clone 6.1.2-challenged mice, percentages and 600 2 4 6 8 10 12 14 00 2 4 6 8 10 12 14 totalnumbersofCD11b+Ly6ChiIMMsweresignificantlyhigherin Days p.i. Days p.i. clone 6.1.2-infected mice compared with EMC/Vero-infected or E Female F 110 uninfected control mice (Fig. 6 A and B). In contrast, neutrophil 100 5000 pfu i.n. % Initial Weight107890000 Percent survival 24680000 55000 p pfufu i. ni.n.. ngCclruoDomnu8ebp0es)6r(r.s1Fe.vi2wge-.aien6lrefeeAdcttvaheandardtiamIBbMi)lce.MeStasaannainddnidnlnegnosefstourstsoratoacipttniihsvitEalisctMiawolCnleyr/meVdaheirifrgkfoehe-rilrneysnfa(etCccttDibeveda6tt9wemdaeinecidnne 60 0 (Fig.6CandD).IMMandneutrophilactivationwassignificantly 0 2 4 D6ays p8.i. 10 12 14 0 2 4 D6ays p8.i. 10 12 14 lowerinuninfectedcontrolmicecomparedwiththetwogroupsof ES infectedmice(Fig.6CandD).WenextenumeratedNK-,T-,and NC Fig. 2. Outcomes in hDPP4 KI mice infected with EMC/Vero or MERSMA. B-cell numbers in the lungs of the different groups and observed CIE Weightloss(A)andsurvival(B)inKImiceinfectedi.n.with104pfuEMC/Vero S highernumbersinEMC/Vero-infectedmicecomparedwithclone L oHmruompstaadsnsiaeDgdPe.PR43e0sKuI(lPtms30iscu)emMinmEfRaerScitMzeeAd.twwEMiothCre/PVp3el0ircoaM-tienERfeeSxcMpteeArdliommsetincseitgs,nhniafid=ca11n00t0(w%EMeisCgu/hVrtveiavrnoad)l., 6su.1b.s2t-ainnfteiacltleydmoorreunminofneoctneudclmeaircece(lFlsigw.e6rEe)d.eItnecstuemdminarEyM, wCh/eVreeraos MEDICA n = 11 (MERSMA), mixed male and female mice. (C–F) MERSMA clone compared with MERSMA clone 6.1.2-infected lungs, the infitrates 6.1.2causesdose-dependentlethallungdiseaseinmaleandfemalehDPP4 were composed mainly of lymphocytes in the former group. Con- KImice.(CandD)WeightcurveandsurvivalresultsformalehDPP4KImice versely, more IMMs and fewer lymphocytes were detected in the that received 5,000–50 pfu MERSMA clone 6.1.2 via i.n. inoculation. (For lungs of animals infected with clone 6.1.2 compared with EMC/ 5,000pfun=8;500pfun=12;and50pfun=5).(EandF)Weightcurveand Vero virus. Overall, the increased accumulation of activated survivalresultsforfemalehDPP4KImicethatreceived5,000–50pfuMERSMA monocyte–macrophagesandneutrophilsanddecreasednumbersof clone6.1.2viai.n.inoculation.(For5,000pfun=8;500pfun=9;and50pfu n=5).(A,C,andE)Datarepresentmean±SE. TandBcellsinthelungsofMERSMAclone6.1.2-challengedmice and scattered airway epithelia (Fig. 5, Right), consistent with the A Lung B Serum clinicalandvirologicalresults. 9 5 ue8 EMC/Vero (P0) (icmInm2hde7emai–mcsu2auon9treke)e,idRntinheefasmeptpcoRdtrneoeNsdldeaAuaytcneotdiiamoMbInaFuElRnNmmSdMaoasiAnydg.cenSeclastolui(nfnd3otgi0rrei–bas3suno3etdf)ve,edpartyaanostldrieedcnaguintussletltiauawvtsrieireetdahdlscMceyeavtlEnoelsdrkRi(itnS3ype4-.rC–oaW3oin7nVde)- ogPFU/gm Tiss10 1234567 LOD Log PFU/ml101234 MERSMA 6L.O1D.2 L flammatory cytokines and chemokines, and IFN-stimulated genes 0 0 1 3 4 5 1 3 4 5 (ISGs) in lung tissue from KI mice infected with EMC/Vero and Days p.i. Days p.i. clone6.1.2,at1and3d.p.i.usingqRT-PCR.AsshowninSIAp- C D Calu-3 s pendix, Fig. S3, the induction of several host defense genes was erH 7 1 dpi similarforbothviruses.Amongthetranscriptsexpressedingreater mbPD 6 3 dpi at(cmbCveSyibeCrrotItuufowgLenAlkeere2dipnonen,apantneneCtsccenclXaeasdolonniCnaixnddne,tLeFIc263r6Lhei,.g1.s-de1.I6.pm2..LSp2,o-3o.eIni6aL).lksn,i.eic-(dnW1iCStet0eIEoXe,dApMCCcardpllCLoCosepot1nLl/eeaV0en2ipy,nd,eer6siroaCdx.o1nf,,iXi.ndlbi2FenCudicsGwgLtel.tue1ur-hCdurS0leetem4,Simd)aaFt.bhna.agNuedtnrOeneodtMldayyvttaapeleDgunberrralncAeelIeegla5l,daetoetnvitafifrhsatdf,sseeteu3itrIolyeeeImpdnInce.sohtpciseronei.ndieIs--. Log RNA copy nu10normalized to GA-0123451Lung Heart Brain Liver Kidney Splmeaell nIntestine S and III IFN-transcript responses and more robust cytokine/che- mokineresponsesthantheparentalvirus. Fig.3. TissuevirustitersandviralgenomicRNAdistribution.HumanDPP4 Analysisofperipheralbloodsmearscollectedat4d.p.i.revealed KImiceinfectedwith104pfui.n.inoculumofindicatedMERS-CoV.(AandB) thatMERS clone6.1.2-infectedmicehadagreaterpercentage Lung and serum titers at indicated times (C) ORF1a quantitative RT-PCR MA of neutrophils and fewer lymphocytes than EMC/Vero-infected performed on indicated tissues from EMC/Vero and MERSMA clone 6.1.2- infectedmiceat1and3d.p.i.Limitofdetection(LOD)forqRT-PCRassayis mice (SI Appendix, Fig. S5A). Both EMC/Vero and clone 6.1.2- ∼100copies.Mean±SE;n=3.(D)Calu-3cellswereinfectedwithindicated infected mice exhibited an increase in reactive lymphocytes (SI MERS-CoVatMOI0.1andvirustitersat1d.p.iweredeterminedbyplaque Appendix,Fig.S5A)consistentwithresponsetoinfection.Periph- assay.n=6,representativeoftworeplicateexperiments.Statisticalsignifi- eral blood from clone 6.1.2-infected mice also had morphologic cancewasassessedbyStudent’sttest.****P<0.0001. Lietal. PNASEarlyEdition | 3of10 Fig.4. Lungpathologyand scoringatdays 4–5postinfection.(A)Theuninfected grouplackedlesions.EMC/Verovirus infection wascharacterized by multifocalmononuclearinfiltrates(arrowheads),butmononuclearinfiltratesweremildanduncommonintheclone6.1.2-infectedgroup.Rather,clone6.1.2- infectedlungswerecharacterizedbymultifocalhyalinemembranes(A,arrows),edema,andnecroticdebristhatwasconsistentwithdiffusealveolardisease: 40x(Top)and200x(Bottom).(BandC)FurthercharacterizationofalveolardiseaseinEMC/Veroandclone6.1.2virusinfection.Grossly(B,Topimages),Evans bluedye(administeredi.v.beforekilling)wasnotretainedinEMC/Veroinfectionbutwasretainedinclone6.1.2(whiteasterisks),indicativeofvascular leakage.Histopathology(B,Bottomimages)ofEMC/Veroandclone6.1.2lungs.EMC/Vero-infectedlung(Left)hadperivasculartointerstitialmononuclear infiltrates.Clone6.1.2-infectedlungexhibitededema(blackasterisks,BottomMiddle,400x),scatteredcelldeath/debris(Insetandredarrow,BottomRight), and/orhyalinemembranes(blackarrows,600x).(C)Morphometryoflungtissuesshowedthatclone6.1.2lungshadsignificantlyreducedcellularinfiltrate andincreasedhyalinemembranes(P=0.01andP=0.003,respectively,Mann–Whitney).n=5–6micepercondition. suggestanovertandinjuriousinnateinflammatoryresponseanda (tissue culture passaged in Vero 81 cells), passage 21 MERS , MA suboptimaladaptiveimmuneresponse. 9plaquesfrompassage30MERS ,and6tripleplaque-purified MA MERS clones. Each sequenced MERS genome had be- MA MA Identification of MERS-CoV Mutations Acquired During Mouse tween 12 and 21 nonsynonymous differences compared with the Adaptation. To identify the changes fixed into MERS-CoV dur- publishedEMC/2012isolate(42).Thesedifferencesarenotedin ing serial passaging, we sequenced several mouse-adapted virus SIAppendix,Fig.S5andDatasetS1,inthecontextofMERS-CoV genomesusingtheIlluminaMiSeqplatformincluding:EMC/Vero ORFs. EMC/Vero differed from EMC/2012 at three loci: NSP3 Uninfected hDPP4 KI EMC/Vero Clone 6.1.2 Fig.5. MERS-CoVN-proteinimmunolocalizationinuninfectedKImiceormiceinfectedwithEMC/VeroorMERSMAclone6.1.2.Noantigenstainingwasobserved inuninfectedhDPP4KImice(Left).At3d.p.i.,miceinfectedwithEMC/Verohadapatchydistributionofvirusantigen(brownstain),includingmacrophage immunostainingalongwithuncommonepitheliaofalveoliandairways(Middle).Incontrast,clone6.1.2-infectedmicehadwidespreadinfectionwithstainingof macrophages,alveolarepithelia,andscatteredairwaycells(Right).n=3–4micepercondition.[Magnification:100x(Top)and400x(Bottom.] 4of10 | www.pnas.org/cgi/doi/10.1073/pnas.1619109114 Lietal. S U L P S A N A B P C D S E C N E CI S L A C DI E M E Fig.6. Accumulationofactivatedinnateimmunecellsinthelungsofclone6.1.2-infectedhDPP4KImice.LungsharvestedfromuninfectedhDPP4KImiceor hDPP4KImicechallengedwith1×104pfuofEMC/VeroorMERSMAclone6.1.2wereanalyzedforinfiltratingimmunecellsonday4p.i.(A)FACSplots(Left) showpercentages of leukocytes,inflammatorymonocyte–macrophages, and neutrophilsinthe lungs ofuninfected,EMC/Vero, andclone 6.1.2 groups. (B)Scatterplots(Right)representpercentagesandtotalnumbersofimmunecellsinthelungsofuninfected,EMC/Vero,andclone6.1.2groups.(CandD) Histogramsandscatterplotsshowlevelsofactivationmarkers,CD69andCD80onlung-derivedIMMs(C),andneutrophils(D).(E)Bargraphswithscatterplots showtotalnumberofNK,T,andBcellsinthelungsofuninfected,EMC/Vero,andclone6.1.2groups.Datawerederivedfromtwoindependentexperiments withthreetosixmicepergroupperexperiment.*P<0.05,**P<0.01,***P<0.001,****P<0.0001. (S1112F), spike (T1015N), and Orf5 (W108X). Missense muta- (see passage 30 isolates in SI Appendix, Fig. S2 and Dataset S1). tionswerepresentinallMERS isolates,including13in1a/1b, ComparedwithEMC/Vero,6uniquemutationsemergedinthe MA 7inS,1in3,1in4a,2in4b,1in5,1inM,and2inN.Wealso S-protein coding sequence of MERS viruses. Every isolate MA observed nonsense or frameshift mutations in ORF5 that arose hadmutationsintheSprotein,includingthepassage21isolate, during early Vero cell tissue culture amplification of the original which was not fully virulent. Because variations in CoV S EMC/2012isolate.Interestingly,mostclonesencodedvirusdeleted proteins frequently correlate with virulence (43, 44), we next inORFs3a,3bandor4,butclone6.1.2expressedfull-length3,4a, assessedwhethertheS-proteinchangesaccountedforthegain and 4b geneproducts(SIAppendix, Fig.S6 and Dataset S1). We in virulence described above. observed no evidence for differences in virulence when isolates Wenotedthatthevirusthatinitiatedtheserialpassages,EMC/ containingORF3/4a/4borlackingtheirexpressionwerecompared Vero, differed from the prototype human isolate EMC/2012 at Lietal. PNASEarlyEdition | 5of10 TherecombinantEMC/2012MERS-CoV(42)andtheMA1.0and MA2.0 recombinants were inoculated into 12- to 18-wk male hDPP4-KI mice to assess disease outcomes and virus titers. Fol- lowinga104pfuinoculum,therecombinantvirusescausedamild transientweightlosswithnomortality(Fig.8AandB).Atahigher 105 pfu inoculum, the MA1.0 and MA2.0 recombinant viruses caused greater weight loss than the recombinant EMC/2012 virus (42),with∼40%mortalityinMA2.0-infectedmice(Fig.8CandD). Lungtissuetitersat1d.p.i.wereslightlyincreasedinthemicein- fectedwiththeMA2.0Sproteinatthe105pfuinoculum(Fig.8E). Of interest,theserecombinant virusescausedminimalweight loss andnomortalityinyoung6-to8-wkhDPP4-KImice(SIAppendix, Fig. S7). The replication properties of these three recombinant virusesweresimilarinhumanCalu-3andHuh7celllines(Fig.8F), indicatingthat,whereasmutationsarisingintheSproteinpartially contribute to the increased virulence observed in MERS - MA infected mice, they did not enhance growth in human cells. Fig.7. Adaptedmutationsinspikeproteininfluencevirusentry.(A)Linear depictionofMERS-CoVS1(receptorbinding)andS2(fusion)domains.Amino Discussion acidchangesinEMC/2012andmouse-adaptedMERS-CoVSproteins(MA1.0and WhereasMERSrepresentsanongoingrisktohumanhealth,there MA2.0)areindicatedrelativetotheparentvirusEMC/Vero.(BandC)Effectsof hasbeenonlyonepostmortemstudyofapatientwithMERS(16), E64dandcamostatonMERSpseudovirusentryintoLET1cells.(D)Kineticsof MERSpseudovirusentryintoLET1cells.Errorbarsrepresentmean±SE*P< and our knowledge of human disease pathophysiologyis poor. 0.05,**P<0.01,***P<0.001comparedwithEMC/2012S. TodevelopamorerobustsmallanimalmodeltostudyMERS pathogenesis, we generated hDPP4 knockin mice with exons 10–12replacedbythehumancodons,retaininggeneregulation S residue 1015 (Fig. 7A). The EMC/Vero contained N1015, a by the native promoter. Although hDPP4-KI mice supported residue reported intissue culture adapted MERS-CoV (45). We modest replication of EMC/Vero MERS-CoV in the lung, the observed a reversion of this residue during serial passage in KI mice,whereN1015returnedtotheTresiduefoundinEMC/2012. On continued passage in KI mice, additional S mutations arose, notably the P747H and S749R residues comprising part of the A 104pfuinoculum B S-proteolytic cleavage site. To gain insights into how these S mutationsmightcontributetovirulence,weconstructedaseriesof SgenesreflectingEMC/Vero,EMC/2012,andthoseinMERS MA p30(Fig.7A).TheconstructstermedMA1.0andMA2.0featured S-proteinmutationsrepresentativeofallthataroseduringmouse adaptation, including those present in clone 6.1.2 (Fig. 7A). We evaluated the effect of these S mutations on cell entry using ve- sicularstomatitisvirus-basedMERSS pseudoviruses(46).These C D 105pfuinoculum viruses were transduced into murine lung epithelial type I cells (47)expressinghDPP4(48).Strikingly,wefoundthatEMC/Vero S-directed cellentry washighlysensitive tothecysteineprotease inhibitorE64d,whichinactivatesendosomalcathepsins,butrela- tively resistant to the serine protease inhibitor camostat, which inactivatescell-surfacetransmembraneproteases(Fig.7BandC). Thesefindings indicatedthat theMA mutations, particularlythe N1015Tchange,shiftedvirusesfromusingendosomalcathepsins, E F overtocell-surfacetransmembraneproteases.Cell-surfacetrans- membrane proteases “trigger” a rapid virus–cell entry (46, 49). Consistently,theEMC/2012andMApseudovirusesenteredcells withrapidkinetics,achieving50%ofmaximalcellentryin20min. By contrast, theentry ofEMC/Veroviruseswererelatively slow, with less than 40% of maximal cell entry in 45 min (Fig. 7D). TheseresultsindicatedthatMERS-CoVspikesevolveinvivofor utilization of cell-surface transmembrane proteases, thereby ac- celerating cell entry and increasing productive infections in the mouselung. Fig. 8. Influence ofadapted spikeprotein mutations oninvivovirulence. (AandB)KImice(age12–13wk,male)received104pfuofindicatedrecombinant S-ProteinMutationsinMERSMAContributetoVirulence.Toevaluate MERS-CoVandweremonitoreddailyforweight(A)andmortality(B)(n= the effects of the evolved S-protein mutations on virulence, we 8pergroup,representativeoftworeplicateexperiments).(CandD)KImice used reverse genetics to introduce MERS S-gene mutations (age12–18wk,male)received105pfuofindicatedrecombinantMERS-CoV MA into an infectious MERS-CoV (EMC/2012 genome) bacterial andweremonitoreddailyforweight(C)andmortality(D)(n=10pergroup, artificialchromosome(pBAC-MERSFL)asdescribedinMaterials representativeoftworeplicateexperiments).(E)Lungvirustitersat1d.p.i. determinedbyplaqueassayinanimalsthatreceivedthe105pfuinoculum(n= and Methods (50, 51). Recombinant MERS-CoV were prepared 6 per group, representative of two replicate experiments). (F) Calu-3 and bearing the S proteins from EMC/2012 (42) or mouse-adapted Huh7cellswereinfectedwith indicatedrecombinant virusesatMOI=0.1. viruses (MA1.0, or MA2.0). The sequence-verified BACs were Progenywerecollectedat1d.p.i.andtiteredbyplaqueassay.(n=6,repre- transfected into Huh7 cells to generate recombinant MERS- sentativeoftworeplicateexperiments).Errorbarsrepresentmean±SE*P< CoVs,whichwerethenamplifiedinCalu3cellstoobtainstocks. 0.05,**P<0.01,***P<0.001comparedwithrMERS-CoVEMC/2012. 6of10 | www.pnas.org/cgi/doi/10.1073/pnas.1619109114 Lietal. S U L P S A N infection was largelyasymptomatic. Thirtyinvivoserial passages The most severe manifestation of MERS in humans is a lethal P ofEMC/VeroMERS-CoVinKImiceledtoanevolvedMERS pneumonicprocesswithassociateddiffusealveolardamage(2,16). MA strainthatcausedlethalpneumonia.Comparedwiththeparental Autopsy results from a single individual that died from MERS virus, MERS infection featured diffuse alveolar damage, dys- wererecentlyreported(16).Keyhistopathologicfindingsincluded MA regulatedinnateimmuneresponses,andthepresenceofactivated MERS-CoV antigen localization in pneumocytes, macrophages, inflammatory monocyte–macrophages and neutrophils. Sequenc- andendothelialcellswithevidenceofdiffusealveolardamage.No ing of MERS genomes revealed that mouse-adapted viruses evidenceofantigenstainingwasfoundinotherorgans(16).Sim- MA developedmutationsinseveralgenesincludingtheSprotein.The ilarly,MERS clone6.1.2infectioninhDPP4KImicecauseda MA virulent MERS clone 6.1.2 had 12 mutations in coding se- predominantly parenchymal lung disease associated with diffuse MA quences and one mutation in a noncoding region of the virus alveolardamage,acommonpathologicfeatureofARDS. genome. Studies of recombinant MERS-CoVs bearing these Arapidand well-coordinatedinnateimmuneresponseisa first S-proteinmutationsshowedthatthesevirusescausedincreased lineofdefenseagainstviralinfections,butdysregulatedandexces- morbidity and mortality in adult KI mice. The hDPP4-KI sive immune responses may cause immunopathology and increase mouse and the MERS provide tools to investigate disease morbidity and mortality (65–68). Although there is no direct evi- MA pathogenesis and evaluate new therapies. dence for the involvement of proinflammatory cytokines and che- mokinesindiseasepathogenesis,correlativefindingsfrompatients ComparisonwithOtherModelsofMERS-CoVInfection.Several ani- with MERS with severe disease suggest a role for exuberant in- malspecieshavebeenscreenedfortheirsusceptibilitytoMERS- flammatoryresponsesinthediseaseprocess.MERS-CoVinfection CoVinfection.Mice(52),ferrets(53),andSyrianhamsters(54)do resultsinadelayedbutelevatedantiviralandproinflammatorycy- not support MERS-CoV replication. In contrast, the lungs of tokine and chemokine expression in dendritic cells, monocyte– rhesusmacaques(31,55),marmosets(30),rabbits(56),andcamels macrophages,andepithelialcells(31,34,69).Additionally,studies (57) are permissive to virus replication. Marmosets develop lung inpatientswithMERSwithvaryingdiseaseseverityshowedhigher disease and associated mortality in response to a large inoculum virustitersandelevatedlevelsofserumproinflammatorycytokines (30),butothersreportminimaldiseaseinmarmosets(58).Overall (IL-6andIFN-α)andchemokines(IL-8,CXCL-10,andCCL5)in CES N the phenotypes in other mammals studied are mild and do not individuals with severe MERS compared with those with mild to E CI result in severe MERS-like disease. We reported a small animal moderate disease (28, 29, 70, 71). Similarly, mice infected with S L mseoqdueelntolyfMweERanSd, tohteheArds-h(3D3P,P549)segnesnietirzaetdedmmouicsee (t4ra8n),sgaenndicsufobr- Ma dEeRlaSyMiAnctlhoenein6d.1u.c2tidoinspolafyIeFdNhirgehspluonngsevsir.uFsutrittehresrmasosorec,iaeteledvawtiethd EDICA M hDPP4usingvariouspromoters.Whentransgenicmiceexpressing proinflammatory cytokines and the accumulation of activated hDPP4 under control of the cytokeratin 18 promoter (32) or a monocyte–macrophagesandneutrophilsinthelungsuggestapos- ubiquitous promoter (33) were exposed to MERS-CoV, they de- sibleroleforimmunopathologicresponsesinthegreatertissuein- veloped fatal disease, butlethality occurred after mice developed juryandfatalpneumoniaweobserved. anoverwhelmingencephalitis. Pascaletal.recentlyreportedmakingamousewithhumanized Viral Mutations Associated with Adaptation to the Mouse Lung. DPP4exonsusinganalternativestrategy(60).Followinganinoc- Sequencing the genomes of MERS strains and triple plaque- MA ulum of 2 × 105 pfu of human MERS-CoV isolates, these mice purified clones from virulent strains identified several coding se- supportedvirusreplication(106to107pfupergramoftissue),with quencemutations,includingchangesintheSprotein.TheS-protein histopathologic features of mild–moderate peribronchiolar in- mutations were not within the receptor binding domain. Rather, flammation, interstitial inflammation, and alveolar thickening they arose in proteolytic substrate sites and in subdomains that observed at 2 and 4 d.p.i. Additional studies in this model de- controlS-protein-catalyzedvirus–cellmembranefusions.MERS MA monstrated that a dosage of 2.5 × 104 pfu MERS-CoV caused clone 6.1.2 and the recombinant MA1.0 and MA2.0 viruses all ∼20% weight loss, necessitating euthanasia. In these mice, de- exhibitedS-proteinmutationsassociatedwith“earlyentry”(46),a + pletionofCD8 Tcellsreduceddiseaseseverity,whereasmacro- characteristic of coronaviruses that preferentially use cell-surface phagedepletionexacerbatedMERS-CoV–inducedlungpathology transmembrane proteases, such as TMPRSS2 (72, 73), for their and disease signs (61), but whether CD8+ T-cell or macrophage virus–cellmembranefusionactivationandresultantcellentry.We depletionwouldhavethesameeffectsinmicewithlethaldisease speculatethatthemouseadaptedvirusesareselectedonthebasis remainstobedetermined.Incontrast,thehumanDPP4 knockin oftheirutilizationofthesetransmembraneproteases,whichmaybe mouse infected with MERS reported here showed enhanced abundantlyavailableinthemouselung,butsparseonothersettings, MA virusreplication,significantlungpathology,andmortalitywithan such as Vero cell cultures. The MERS clone 6.1.2 genome MA inoculumaslowas5×102pfu.Thesedifferenceslikelyderivefrom contained 10 additional missense mutations outside of the the S the array of mutations that arose following 30 in vivo serial pas- protein.BecausetheS-proteinchangesinisolationresultedinonly sages,includingthoseintheSprotein.Whilethismanuscriptwas amodestgaininvirulence(Fig.8),itwillbeimportanttodetermine underreview,Cockrelletal.reportedengineeringaMERSmodel whichothermutationsarealsocriticalforthepathogenicchanges by changing two amino acids in the mouse Dpp4 locus (62). This that we observed. The mouse passage-associated mutations that innovation, combined with in vitro and in vivo serial passage, aroseinMERS-CoVnonstructuralproteinsmayalsocontributeto yielded a virulent mouse-adapted MERS-CoV with mutations virulence and evasion of the host immune response. Of note, at distinctfromthoseidentifiedhere,indicatingthatthereareseveral leastoneofthem,nsp9,wasalsomutatedinmouse-adaptedSARS- evolutionarypathwaystomousevirulence. CoV and contributes to increased virulence (74), although the functionofthisproteinremainsunknown. Comparison of MERS-CoV Disease in Human Lung and Human DPP4 KnockinMice.ThecelltypessusceptibletoMERS-CoVinfectionin Advantages and Limitations of the Mouse Model. The hDPP4 KI human lung were first identified in ex vivo studies and include mouse model offers some advantages over previous small animal nonciliatedbronchial epithelial cells(17),aswell astypeIand II modelsforMERS-CoVdisease.UnliketheAd-hDPP4–sensitized pneumocytes, endothelia, and fibroblasts (45). Investigators using mousemodel,hDPP4KImicedonotrequireapriortransduction human bronchial and lung tissue grown in ex vivo organ cultures process (48).In contrast totransgenicmiceexpressing hDPP4by observedinfectionofnonciliatedbronchialepithelium,bronchiolar tissue-specific (32) or ubiquitous promoters (33, 59), hDPP4 KI epithelial cells, alveolar epithelial cells, and endothelial cells (63) micedonotdevelopbraindisease.Themodelshouldbeusefulin and detected morphological correlates of severe lung injury (64). studiesofdiseasepathogenesis,vaccineapplications,andevaluation Lietal. PNASEarlyEdition | 7of10 ofsmallmoleculeinhibitorsandothertherapies.Inaddition,hDPP4 VirusTiters.Tissueswereasepticallyremovedanddissociatedin1×PBSusinga KI mice may be useful in modeling the comorbidities associated manual homogenizer. Tissue homogenates were centrifuged and super- withincreasedmortalityinhumans,includingaging,diabetes,and natantsremoved.SamplesweretiteredonVero81cellsasreported(48). chronicdiseases(2). Extraction of Total RNA and Quantitative RT-PCR. Mouse organs were ho- Apotentialdisadvantageofourmodelisthatthelungdisease mogenizedinTRIzolandtotalRNAisolatedusingtheDirect-zolRNAMiniPrep that develops following infection with MERS may rely upon MA kit (Zymo Research). A DNase treatment step was included. Two hundred species-specific mutations arising from selective pressures in the nanogramsoftotalRNAwasusedasatemplateforfirst-strandcDNA.The newhost.Suchselectivepressuresmaynotrecapitulateallaspects resultingcDNAwassubjectedtoamplificationofselectedgenesbyreal-time ofthehumaninfection.Forexample,themutationsthatarosein quantitative PCR using Power SYBR Green PCR Master Mix (Applied Bio- theSproteinduringinvivoserialpassagehavenotbeenreported systems).Averagevaluesfromduplicatesofeachgenewereusedtocalculatethe in human disease isolates although they are in S domains that relativeabundanceoftranscriptsnormalizedtohypoxanthineguaninephos- phoribosyltransferaseandpresentedas2-ΔCT.Theprimersusedwerepreviously show variability among human isolates (75, 76). Our findings reported(32). suggestthatthesevariablehumanisolatesshouldbeevaluatedfor distinct host-cell protease dependencies (77). We note that a Mouse-AdaptedMERS-CoV.Todevelopamodelofseveredisease,weserially mouse-adapted SARS-CoV (MA15) that evolved after 15 serial passagedMERS-CoV(EMC/Vero)inhDPP4-KImice.Twomiceweregiven105pfu passagesinBALB/cmicecontainedsixnucleotidesubstitutionsin ofvirusintranasally.Twodayslater,micewerekilled,lungshomogenizedin fivegeneproducts:ORF1a(nsp5and9),ORF1b(nsp13),andthe PBS,50μLofclarifiedlunghomogenatewasadministeredtotwohDPP4-KI SandMproteins(74,78).Acombinationofthesegeneticchanges miceintranasally,andtheprocesswasrepeated.Tissuehomogenateswere wasrequiredtocausevirulence.Additionalstudiesareneededto savedateachpassage. investigatethecontributionsofindividualMERS mutationsto To obtain a single plaque of a mouse-adapted variant of MERS-CoV, a MA monolayerofVero81cellsinsix-wellplateswasinfectedwithseriallydiluted thelethalphenotype. virusfor1handoverlaidbymediumcontaining1%low-melting-pointagarose. Threedaysafterincubation,asingleplaquewaspickedusingasterilePasteur Conclusions pipetteandtransferredinto500μLDMEM.Theisolatedplaqueswerethen TheemergenceofMERSin2012representsthelatestexampleof freeze thawed to release the viral particles from agarose and applied to thezoonotictransmissionofaCoVfromanimalhoststohumans. Huh7cellstopropagateviruses. It isavirtual certainty that other examples of zoonoticallytrans- Huh7andVero81cellsweregrowninDMEMwith10%FBSand1%penicillin/ mittedCoVinfectionswilloccurinthefuture.Theavailabilityofa streptomycin(PS).Calu-3cellsweregrowninMEMwith20%FBSand1%PS. small animal model of MERS with a severe disease phenotype Cellsin24-wellplateswereinfectedwithindicatedMERS-CoVatamultiplicityof providesa tool fortheevaluationofnovel vaccinestrategies,es- infection(MOI)of0.1.After1hofvirusadsorptionat37°C,thevirusinocula wereremoved,thecellswerewashedwithPBS,andnewmediumwasadded. peciallyindetermining theimmunopathologicalconsequencesof At18–24h.p.i.,virusreplicationwasdeterminedbytitratinginfectiousvirus any intervention. Additionally, future studies of the viral muta- fromsupernatantsonVero81cells. tionsassociatedwithmouseadaptationmayprovidenewinsights intothevirologicaldeterminantsofseverediseasethatoccurwith Histology and Immunohistochemistry. Lungs were prepared for histological evolutioninahost. examination and for immunohistochemistry for virus antigen and cellular markersafterfixationin10%formalinandembeddinginparaffin.Forroutine MaterialsandMethods histology,tissuesections(∼4μmeach)werestainedwithhematoxylinandeosin. To detect virus N-protein antigen, sections were incubated with a mouse AllanimalstudieswereapprovedbytheAnimalCareandUseCommitteeof polyclonalantibody[generatedbyimmunizingmicetotheMERS-CoVNprotein theUniversityofIowa.DetailedinformationisprovidedinSIAppendix,SI withavirusrepliconparticles-Nvector(48)(1:3,000dilution)],incubatedwitha MaterialsandMethods. biotinylatedanti-mousesecondaryantibody,followedbysequentialincubation GenerationofMicewithHumanizedExons10–12oftheMouseDpp4Gene.A withstreptavidin–horseradishperoxidaseconjugate(VectastainABCkit,Vector Laboratories) and 3,3′-diaminobenzidine (DAB) (Vector Laboratories). Immu- congenic C57BL/6 mouse with mouse Dpp4 exons 10–12 replaced with the nolocalizationofDPP4inmouselungwasadaptedfrompreviouswork(24). humanDPP4codonswasgeneratedbyTaconicBiosciences.Thischangeinexon Briefly,primaryAbusedwasarabbitpolyclonal(1:400,PA1-8455;Pierce)and codingsequenceallowedthemodifiedmousegeneproducttodisplayamino thiswasfollowedbyacommercialsecondarykit(EnvisionRabbit,DAKO).DAB acidsrequiredforvirusbinding(18–20).Thetargetingstrategywasbasedon wasthechromogenandslideswerecounterstainedwithHarrishematoxylin. National Center for Biotechnology Information transcripts NM_010074_3 Tissueswereevaluatedbyboardcertifiedveterinarypathologistsandscored (mouse)andNM_001935_3(human).Thetargetingvectorwasgeneratedusing usingapostexaminationmaskingmethod(79).Atleastfivemice(maleand BACclonesfromthemouseC57BL/6JRPCIB-731andhumanRPCIB-753BACli- female)wereanalyzedpertimepointandperexperimentalcondition. braries.MousegenomicsequencefromcodonI264inexon10tocodonV340in exon12wasreplacedwithitshumancounterpart.Positiveselectionmarkers EvansBlueDyeExtravasation.Tosedatemice,1%EvansBluein1×PBSwas wereflankedbyFRT[neomycinresistance(NeoR)]andF3[puromycinresistance retroorbitally instilled. Thirty minutes postinstillation, mice were killed. PBS (PuroR)] sites and inserted into intron 9 and intron 12, respectively. The (1×) was perfused through the right ventricle, followed by 10% formalin remainingrecombinationsiteswerelocatedinnonconservedregionsofthe perfusion.Lungswereexcisedandphotographed. genome.SIAppendix,Fig.S1showsthegenetargetingstrategyusedtogen- eratethehumanDPP4knockinmice.Furtherdetailsonthegenerationofthe PeripheralBloodSmears.Bloodwascollectedretroorbitallyandtransferredtoa modelareprovidedinSIAppendix,SIMaterialsandMethods. bloodcollectiontubecontainingEDTAtopreventclotting.Bloodsmearswere producedusingthetraditionalmanualmethod,allowedtodry,andstainedwith InfectionofhDPP4KIMicewithMERS-CoV.TheEMC/2012strainofMERS-CoV Diff-Quik(SiemensHealthcareDiagnostics)orwithmodifiedWright’sstain. (passage8,designatedMERS-CoV)wasprovidedbyBartHaagmansandRon Fouchier, Erasmus Medical Center, Rotterdam, The Netherlands. Virus was CellSurfaceStainingforFlowCytometry.Micewerekilledon4d.p.i.andthe propagatedandtiteredbyplaqueassayonVero81cells.Thistissueculture lungsperfusedviatherightventriclewith10mLPBS.Lungtissueswereminced amplifiedviruswastermedEMC/Vero.HumanDPP4KImicewereanesthetized anddigestedinHBSSbuffercontaining2%FCS,25mMHepes,1mg/mLCol- with ketamine/xylazine (87.5 mg/kg ketamine/12.5 mg/kg xylazine) and in- lagenaseD(Roche),and0.1mg/mLDNase(Roche)for30minatroomtem- fectedintranasallywithMERS-CoVin50μLDMEM.Infectedmicewereex- perature.Forsurfacestaining,5×105cellswereblockedwith1μganti-CD16/ amined daily and weights recorded. The majority of infections were 32antibodyandsurfacestainedwiththeindicatedantibodiesat4°C.Cells performed in young, 6- to 8-wk-old mice. Selected experiments were per- werethenfixedusingCytofixsolution(BDBiosciences).Forsurface/intracellular formedinadultmiceasnotedinResultsandfigurelegends.Noninfectedlit- staining,cellswereincubatedwithfluorochrome-labeledantibodiesspecificfor termatesservedascontrols.AllMERS-CoVworkwasconductedinaBiosafety mouse:FITCorPECy7-anti-CD45(30-F11),PEorFITCanti-Ly6G(1A8),PE/PerCp- level3(BSL3)laboratory. Cy5.5anti-Ly6C(AL-21orHK1.4),PEorV450anti-CD11b(M1/70),APCanti-F4/80 8of10 | www.pnas.org/cgi/doi/10.1073/pnas.1619109114 Lietal. S U L P S A N (BM8),V450anti-CD11c(N418),APC-CD69(H1.2F3),APCanti-CD80(16-10A1), 2012recombinantMERS-CoVandmodifiedbyPerlmanandcolleagues(80). P APC-CD3(145-2C11),FITCanti-CD4(RM4-5),APCanti-CD8α (53-6.7),PE-CD19 WeverifiedproperconstructionoftherecombinantcompleteBACbySanger (1D3),PE-Cy7-NKp46(29A1.4),andPerCp-Cy5.5anti-IA/IE(M5/114.15.2).Anti- sequencing.Thefull-lengthBACcDNAclonewastransfectedintoHuh7cellsto bodieswereprocuredfromBDBiosciencesoreBiosciences. rescue the recombinant virus. Plaque-purified MERS-CoV was amplified to developstocks. MERS-CoV Genome Sequencing and Assembly. Viral RNA was isolated from producercellsupernatantsusingaQIAampViralRNAMiniKit(Qiagen)according StatisticalAnalysis.Student’sttests,ANOVAwithDunn’smultiplecompari- tomanufacturerspecifications.ViralcDNAwasgeneratedusingSuperScriptIII sontest,orMann–Whitneyranksumtestwereusedtoanalyzedifferences reversetranscriptaseandarandomhexamerprimingapproach.Specifically,11μL in mean values between groups unless otherwise specified. Results are oftotalRNAwasaddedto1μLofFR26RV-N,1μLof10mMdNTPmix,4μL expressedasmean±SE.Pvaluesof≤0.05wereconsideredsignificant. of5×FirstStrandBuffer,1μLof0.1MDTT,1μLofRNaseOUT,and1μLof SuperScriptIIIReverseTranscriptase.Furtherdetailsoflibraryproduction, ACKNOWLEDGMENTS.WethankLuisEnjuanesforprovidingthebacterial sequencing,andgenomeassemblyareprovidedinSIAppendix,SIMaterials artificial chromosome (pBAC-MERSFL) and Jennifer Bartlett and Sateesh andMethods. Krishnamurthyfortheircarefulreviewofthemanuscript.Thisworkissup- portedbytheNationalInstitutesofHealth(NIH)GrantP01AI060699;and GenerationofRecombinantMERS-CoVbyReverseGenetics.Weusedreverse theCellMorphologyCoreandPathologyCore,whicharepartiallysupported genetics to introduce the MERSMA S-protein mutations into an infectious bytheCenterforGeneTherapyforCysticFibrosis(NIHGrantP30DK-54759) MERS-CoV bacterial artificial chromosome (pBAC-MERSFL). The BAC system andtheCysticFibrosisFoundation.P.B.M.issupportedbytheRoyJ.Carver was developed by Enjuanes and colleagues (50, 51) to generate a EMC/ CharitableTrust. 1. ZakiAM,vanBoheemenS,BestebroerTM,OsterhausAD,FouchierRA(2012)Iso- 27.DuraiP,BatoolM,ShahM,ChoiS(2015)MiddleEastrespiratorysyndromecorona- lationofanovelcoronavirusfromamanwithpneumoniainSaudiArabia.NEnglJ virus:Transmission,virologyandtherapeutictargetingtoaidinoutbreakcontrol.Exp Med367:1814–1820. MolMed47:e181. 2. ZumlaA,HuiDS,PerlmanS(2015)MiddleEastrespiratorysyndrome.Lancet386: 28.KimES,etal.(2016)ClinicalprogressionandcytokineprofilesofMiddleEastre- 995–1007. spiratorysyndromecoronavirusinfection.JKoreanMedSci31:1717–1725. S 3. YusofMF,etal.(2015)PrevalenceofMiddleEastrespiratorysyndromecoronavirus 29.KimSY,etal.(2016)ViralRNAinbloodasindicatorofsevereoutcomeinMiddleEast CE (MERS-CoV)indromedarycamelsinAbuDhabiEmirate,UnitedArabEmirates.Virus respiratorysyndromecoronavirusinfection.EmergInfectDis22:1813–1816. EN Genes50:509–513. 30.FalzaranoD,etal.(2014)InfectionwithMERS-CoVcauseslethalpneumoniainthe SCI 4. ChanRW,etal.(2014)TropismandreplicationofMiddleEastrespiratorysyndrome commonmarmoset.PLoSPathog10:e1004250. AL ceoxr-voinvaovsitruudsyf.roLmandcerotmReesdpairryMceadm2e:l8s1in3–t8h2e2.humanrespiratorytract:Anin-vitroand 31.cdaeusWesittEra,nestieanlt.(l2o0w1e3r)MreisdpdirlaetoEraysttrraecstpirinafteocrtyiosnynidnrormheesucsormonaacvaiqruuses(.MPErRoSc-CNoaVt)l EDIC 5. WerneryU,etal.(2015)AcuteMiddleEastrespiratorysyndromecoronavirusinfection AcadSciUSA110:16598–16603. M inlivestockdromedaries,Dubai,2014.EmergInfectDis21:1019–1022. 32.LiK,etal.(2016)MiddleEastrespiratorysyndromecoronaviruscausesmultipleorgan 6. AzharEI,etal.(2014)Evidenceforcamel-to-humantransmissionofMERScoronavirus. damageandlethaldiseaseinmicetransgenicforhumandipeptidylpeptidase4. NEnglJMed370:2499–2505. JInfectDis213:712–722. 7. AssiriA,etal.;KSAMERS-CoVInvestigationTeam(2013)HospitaloutbreakofMiddle 33.AgrawalAS,etal.(2015)GenerationofatransgenicmousemodelofMiddleEast Eastrespiratorysyndromecoronavirus.NEnglJMed369:407–416. respiratorysyndromecoronavirusinfectionanddisease.JVirol89:3659–3670. 8. PerlmanS,McCrayPB,Jr(2013)Person-to-personspreadoftheMERScoronavirus:An 34.SelingerC,etal.(2014)Cytokinesystemsapproachdemonstratesdifferencesininnate evolvingpicture.NEnglJMed369:466–467. andpro-inflammatoryhostresponsesbetweengeneticallydistinctMERS-CoVisolates. 9. BrebanR,RiouJ,FontanetA(2013)InterhumantransmissibilityofMiddleEastre- BMCGenomics15:1161–1176. spiratorysyndromecoronavirus:Estimationofpandemicrisk.Lancet382:694–699. 35.ScheupleinVA,etal.(2015)Highsecretionofinterferonsbyhumanplasmacytoid 10.KucharskiAJ,AlthausCL(2015)TheroleofsuperspreadinginMiddleEastrespiratory dendriticcellsuponrecognitionofMiddleEastrespiratorysyndromecoronavirus. syndromecoronavirus(MERS-CoV)transmission.EuroSurveill20:14–18. JVirol89:3859–3869. 11.MemishZA,AssiriAM,Al-TawfiqJA(2014)MiddleEastrespiratorysyndromecoro- 36.ZhouJ,etal.(2014)ActivereplicationofMiddleEastrespiratorysyndromecorona- virusandaberrantinductionofinflammatorycytokinesandchemokinesinhuman navirus(MERS-CoV)viralsheddingintherespiratorytract:Anobservationalanalysis withinfectioncontrolimplications.IntJInfectDis29:307–308. macrophages:Implicationsforpathogenesis.JInfectDis209:1331–1342. 37.ChuH,etal.(2014)ProductivereplicationofMiddleEastrespiratorysyndromeco- 12.MemishZA,ZumlaAI,Al-HakeemRF,Al-RabeeahAA,StephensGM(2013)Familycluster ofMiddleEastrespiratorysyndromecoronavirusinfections.NEnglJMed368:2487–2494. ronavirusinmonocyte-deriveddendriticcellsmodulatesinnateimmuneresponse. Virology454-455:197–205. 13.MemishZA,etal.(2014)MiddleEastrespiratorysyndromecoronavirusdiseasein children.PediatrInfectDisJ33:904–906. 38.FranksTJ,etal.(2003)Lungpathologyofsevereacuterespiratorysyndrome(SARS):A studyof8autopsycasesfromSingapore.HumPathol34:743–748. 14.MadaniTA(2014)CasedefinitionandmanagementofpatientswithMERScorona- virusinSaudiArabia.LancetInfectDis14:911–913. 39.iHnwTaonrgonDtMo.,Metodal.P(a2t0h0o5l)1P8u:1lm–1o0n.arypathologyofsevereacuterespiratorysyndrome 15.HuiDS,PerlmanS,ZumlaA(2015)SpreadofMERStoSouthKoreaandChina.Lancet 40.ZhaoG,etal.(2015)Multi-organdamageinhumandipeptidylpeptidase4transgenic RespirMed3:509–510. miceinfectedwithMiddleEastrespiratorysyndrome-coronavirus.PLoSOne10:e0145561. 16.Ng DL, et al. (2016) Clinicopathologic, immunohistochemical, and ultrastructural 41.vandenBrandJM,SmitsSL,HaagmansBL(2015)PathogenesisofMiddleEastre- findingsofafatalcaseofMiddleEastrespiratorysyndromecoronavirusinfectionin spiratorysyndromecoronavirus.JPathol235:175–184. theUnitedArabEmirates,April2014.AmJPathol186:652–658. 42.vanBoheemenS,etal.(2012)Genomiccharacterizationofanewlydiscoveredcorona- 17.RajVS,etal.(2013)Dipeptidylpeptidase4isafunctionalreceptorfortheemerging virusassociatedwithacuterespiratorydistresssyndromeinhumans.MBio3:e00473-12. humancoronavirus-EMC.Nature495:251–254. 43.Hulswit RJ, de Haan CA, Bosch BJ (2016) Coronavirus spike protein and tropism 18.LuG,etal.(2013)Molecularbasisofbindingbetweennovelhumancoronavirus changes.AdvVirusRes96:29–57. MERS-CoVanditsreceptorCD26.Nature500:227–231. 44.LiF(2016)Structure,function,andevolutionofcoronavirusspikeproteins.AnnuRev 19.WangN,etal.(2013)StructureofMERS-CoVspikereceptor-bindingdomaincom- Virol3:237–261. plexedwithhumanreceptorDPP4.CellRes23:986–993. 45.ScobeyT,etal.(2013)Reversegeneticswithafull-lengthinfectiouscDNAoftheMiddle 20.BarlanA,etal.(2014)ReceptorvariationandsusceptibilitytoMiddleEastrespiratory Eastrespiratorysyndromecoronavirus.ProcNatlAcadSciUSA110:16157–16162. syndromecoronavirusinfection.JVirol88:4953–4961. 46.ParkJE,etal.(2016)ProteolyticprocessingofMiddleEastrespiratorysyndromeco- 21.CockrellAS,etal.(2014)Mousedipeptidylpeptidase4isnotafunctionalreceptorfor ronavirusspikesexpandsvirustropism.ProcNatlAcadSciUSA113:12262–12267. MiddleEastrespiratorysyndromecoronavirusinfection.JVirol88:5195–5199. 47.RosenbergerCM,etal.(2014)Characterizationofinnateresponsestoinfluenzavirus 22.SongW,etal.(2014)IdentificationofresiduesonhumanreceptorDPP4criticalfor infectioninanovellungtypeIepithelialcellmodel.JGenVirol95:350–362. MERS-CoVbindingandentry.Virology471–473:49–53. 48.ZhaoJ,etal.(2014)RapidgenerationofamousemodelforMiddleEastrespiratory 23.vanDoremalenN,etal.(2014)HostspeciesrestrictionofMiddleEastrespiratorysyn- syndrome.ProcNatlAcadSciUSA111:4970–4975. dromecoronavirusthroughitsreceptor,dipeptidylpeptidase4.JVirol88:9220–9232. 49.ShiratoK,KanouK,KawaseM,MatsuyamaS(2016)Clinicalisolatesofhumanco- 24.MeyerholzDK,LambertzAM,McCrayPB,Jr(2016)Dipeptidylpeptidase4distribution ronavirus229Ebypasstheendosomeforcellentry.JVirol91:e01387-16. inthehumanrespiratorytract:ImplicationsfortheMiddleEastrespiratorysyndrome. 50.AlmazánF,etal.(2013)Engineeringareplication-competent,propagation-defective AmJPathol186:78–86. MiddleEastrespiratorysyndromecoronavirusasavaccinecandidate.MBio4:e00650-13. 25.WidagdoW,etal.(2016)DifferentialexpressionoftheMiddleEastrespiratorysyn- 51.AlmazánF,Márquez-JuradoS,NogalesA,EnjuanesL(2015)EngineeringinfectiouscDNAs dromecoronavirusreceptorintheupperrespiratorytractsofhumansanddromedary ofcoronavirusasbacterialartificialchromosomes.MethodsMolBiol1282:135–152. camels.JVirol90:4838–4842. 52.ColemanCM,MatthewsKL,GoicocheaL,FriemanMB(2014)Wild-typeandinnate 26.PoonLL,etal.(2005)Recurrentmutationsassociatedwithisolationandpassageof immune-deficientmicearenotsusceptibletotheMiddleEastrespiratorysyndrome SARScoronavirusincellsfromnon-humanprimates.JMedVirol76:435–440. coronavirus.JGenVirol95:408–412. Lietal. PNASEarlyEdition | 9of10 53.RajVS,etal.(2014)Adenosinedeaminaseactsasanaturalantagonistfordipeptidyl 66.CameronMJ,etal.;CanadianSARSResearchNetwork(2007)Interferon-mediatedim- peptidase4-mediatedentryoftheMiddleEastrespiratorysyndromecoronavirus. munopathologicaleventsareassociatedwithatypicalinnateandadaptiveimmune JVirol88:1834–1838. responsesinpatientswithsevereacuterespiratorysyndrome.JVirol81:8692–8706. 54.deWitE,etal.(2013)TheMiddleEastrespiratorysyndromecoronavirus(MERS-CoV) 67.KobasaD,etal.(2007)Aberrantinnateimmuneresponseinlethalinfectionofma- doesnotreplicateinSyrianhamsters.PLoSOne8:e69127. caqueswiththe1918influenzavirus.Nature445:319–323. 55.MunsterVJ,deWitE,FeldmannH(2013)Pneumoniafromhumancoronavirusina 68.deJongMD,etal.(2006)FataloutcomeofhumaninfluenzaA(H5N1)isassociated macaquemodel.NEnglJMed368:1560–1562. withhighviralloadandhypercytokinemia.NatMed12:1203–1207. 69.MenacheryVD,etal.(2014)Pathogenicinfluenzavirusesandcoronavirusesutilize 56.HaagmansBL,etal.(2015)AsymptomaticMiddleEastrespiratorysyndromecorona- virusinfectioninrabbits.JVirol89:6131–6135. sMimBiiloar5:aen0d11c7o4n–tera1s4t.ingapproachestocontrolinterferon-stimulatedgeneresponses. 57.AdneyDR,etal.(2014)ReplicationandsheddingofMERS-CoVinupperrespiratory 70.JiangY,etal.(2005)Characterizationofcytokine/chemokineprofilesofsevereacute tractofinoculateddromedarycamels.EmergInfectDis20:1999–2005. respiratorysyndrome.AmJRespirCritCareMed171:850–857. 58.JohnsonRF,etal.(2015)IntratrachealexposureofcommonmarmosetstoMERS-CoV 71.TangNL,etal.(2005)Earlyenhancedexpressionofinterferon-inducibleprotein-10 Jordan-n3/2012orMERS-CoVEMC/2012isolatesdoesnotresultinlethaldisease. (CXCL-10)andotherchemokinespredictsadverseoutcomeinsevereacuterespiratory Virology485:422–430. syndrome.ClinChem51:2333–2340. 59.TaoX,etal.(2015)Characterizationanddemonstrationofthevalueofalethal 72.ShullaA,etal.(2011)Atransmembraneserineproteaseislinkedtothesevereacute mousemodelofMiddleEastrespiratorysyndromecoronavirusinfectionanddisease. respiratorysyndromecoronavirusreceptorandactivatesvirusentry.JVirol85:873–882. JVirol90:57–67. 73.ShiratoK,KawaseM,MatsuyamaS(2013)MiddleEastrespiratorysyndromecoronavirus 60.PascalKE,etal.(2015)Pre-andpostexposureefficacyoffullyhumanantibodies infection mediated by the transmembrane serine protease TMPRSS2. J Virol 87: againstSpikeproteininanovelhumanizedmousemodelofMERS-CoVinfection. 12552–12561. ProcNatlAcadSciUSA112:8738–8743. 74.RobertsA,etal.(2007)Amouse-adaptedSARS-coronaviruscausesdiseaseandmor- 61.ColemanCM,etal.(2016)CD8+Tcellsandmacrophagesregulatepathogenesisina talityinBALB/cmice.PLoSPathog3:e5. mousemodelofMERS-CoVdisease.JVirol91:e01825-16. 75.CottenM,etal.(2014)Spread,circulation,andevolutionoftheMiddleEastre- 62.CockrellAS,etal.(2016)AmousemodelforMERScoronavirus-inducedacutere- spiratorysyndromecoronavirus.MBio5:e01062-13. 76.KimY,etal.(2016)SpreadofmutantMiddleEastrespiratorysyndromecoronaviruswith spiratorydistresssyndrome.NatMicrobiol2:16226. reducedaffinitytohumanCD26duringtheSouthKoreanoutbreak.MBio7:e00019. 63.ChanRW,etal.(2013)Tropismofandinnateimmuneresponsestothenovelhuman 77.Millet JK, et al. (2016) A camel-derived MERS-CoV with a variant spike protein betacoronaviruslineageCvirusinhumanexvivorespiratoryorgancultures.JVirol cleavagesiteanddistinctfusionactivationproperties.EmergMicrobesInfect5:e126. 87:6604–6614. 78.FriemanM,etal.(2012)Moleculardeterminantsofsevereacuterespiratorysyndrome 64.HockeAC,etal.(2013)EmerginghumanmiddleEastrespiratorysyndromecorona- coronaviruspathogenesisandvirulenceinyoungandagedmousemodelsofhuman viruscauseswidespreadinfectionandalveolardamageinhumanlungs.AmJRespir disease.JVirol86:884–897. CritCareMed188:882–886. 79.Gibson-CorleyKN,OlivierAK,MeyerholzDK(2013)Principlesforvalidhistopatho- 65.ChannappanavarR,etal.(2016)DysregulatedtypeIinterferonandinflammatory logicscoringinresearch.VetPathol50:1007–1015. monocyte-macrophageresponsescauselethalpneumoniainSARS-CoV-infectedmice. 80.Fehr AR, et al. (2015) The nsp3 macrodomain promotes virulence in mice with CellHostMicrobe19:181–193. coronavirus-inducedencephalitis.JVirol89:1523–1536. 10of10 | www.pnas.org/cgi/doi/10.1073/pnas.1619109114 Lietal.

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.