ebook img

2016 Bovine respiratory syncytial virus and bovine coronavirus antibodies in bulk tank milk _ risk factors and spatial a PDF

2016·1.88 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview 2016 Bovine respiratory syncytial virus and bovine coronavirus antibodies in bulk tank milk _ risk factors and spatial a

PreventiveVeterinaryMedicine133(2016)73–83 ContentslistsavailableatScienceDirect Preventive Veterinary Medicine journal homepage: www.elsevier.com/locate/prevetmed Bovine respiratory syncytial virus and bovine coronavirus antibodies in bulk tank milk – risk factors and spatial analysis IngridToftakera,∗,JavierSanchezb,MariaStokstada,AneNødtvedta aDepartmentofProductionAnimalClinicalSciences,FacultyofVeterinaryMedicineandBiosciences,NorwegianUniversityofLifeSciences,P.O.Box8146 Dep,Oslo,Norway bCen trefo rVeterinaryEpidemiologicalResearch,UniversityofPrinceEdwardIsland,550UniversityAve,Charlottetown,C1A4P3,Canada a r t i c l e i n f o a b s t r a c t Articlehistory: Bovinerespiratorysyncytialvirus(BRSV)andbovinecoronavirus(BCoV)areconsideredwidespread Receiv ed10January2016 among cattleinNo rwayand world wide.T hisc ross-sec tionalstudy wasco nduc tedbasedo nantibody- AReccceepivteedd i3n S reepvtiseemdb f eorrm20 2196 June 2016 ELISA o f bulk ta nk milk (BTM ) from 134 7 her ds in two neigh borin g cou nties in w estern No rway. The studyaimsweretodeterminetheseroprevalenceatherdlevel,toevaluateriskfactorsforBRSVand BCoVseropositivity,andtoassesshowthesefactorswereassociatedwiththespatialdistributionofpos- Keywords: itiveh erds.Theover allp re valenc eofB RSVa ndBCo Vpos itiveherds inth ere gionw as46.2%and 72 .2%, BRSV respectively.Isoplethmapsoftheprevalenceriskdistributionshowedlargedifferencesinprevalence BCoV riskacrossthestudyarea,withthehighestprevalenceinthenorthernregion.Commonriskfactorsof Riskfactors Sero logy importance for both viruses were herd size, geographic location, and proximity to neighbors. Seroposi- Spatialscanstatistic tivityforoneviruswasassociatedwithincreasedoddsofseropositivityfortheothervirus.Purchaseof Dairyc attle livest ock was anad ditio nalriskfac torfo rBCoVser opos itiv ity,includedi nth em odela sin-de gree,whi ch wasdefinedasthenumberofincomingmovementsfromindividualherds,throughanimalpurchase,over aperiodoffiveyears.Localdependenceandthecontributionofriskfactorstothiseffectwereassessed usingtheresidualsfromtwologisticregressionmodelsforeachvirus.Onemodelcontainedonlythex- andy-coordinatesaspredictors,theotherhadallsignificantpredictorsincluded.Spatialclustersofhigh valuesofresidualsweredetectedusingthenormalmodelofthespatialscanstatisticandvisualizedon maps.Adjustingfortheriskfactorsinthefinalmodelshaddifferentimpactonthespatialclustersfor thetwoviruses:ForBRSVthenumberofclusterswasreducedfromsixtofour,forBCoVthenumber ofclustersremainedthesame,howeverthelog-likelihoodratioschangednotably.Thisindicatesthat geographicaldifferencesinproximitytoneighbors,herdsizeandanimalmovementsexplainsomeofthe spatialclustersofBRSV-andBCoVseropositivity,butfarfromall.Theremaininglocaldependenceinthe residualsshowthattheantibodystatusofoneherdisinfluencedbytheantibodystatusofitsneighbors, indicatingtheimportanceofindirecttransmissionandthatincreasedbiosecurityroutinesmightbean importantpreventivestrategy. ©2016TheAuthors.PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBY-NC-ND license(http://creativecommons.org/licenses/by-nc-nd/4.0/). 1. Introduction bovinerespiratorysyncytialvirus(BRSV)andbovinecoronavirus (BCoV)areendemicandprevalentinthenationalherd(Gulliksen TheoverallhealthamongNorwegiandairycattleisgoodwith etal.,2009).Theprevalenceoftheseinfectionsisconsideredhighin fewendemicinfectiousdiseasespresent.Severalinfections,such mostpartsoftheworld,andtheycausediseaseproblemsleadingto asbovinetuberculosis,bovinebrucellosisandbovineviraldiarrhea reducedanimalwelfare,increaseduseofantibioticsandfinancial (BVD),havebeeneliminatedthroughsuccessfulcontrolprograms lossforthefarmer(ValarcherandTaylor,2007;BoileauandKapil, (Sviland et al., 2015a, 2015b; Åkerstedt et al., 2015). However, 2010; Sacco et al., 2014). BRSV causes respiratory disease, most ofteninyounganimals,andbronchopneumoniaduetosecondary bacterialinfectioniscommon(Larsen,2000).BRSVwasthemost commonlyisolatedagentinrespiratoryoutbreaksincattleherds ∗ Correspondingauthor. inarecentNorwegianstudy(Klemetal.,2014a).BCoVisthecause E-mail addresse s: [email protected], [email protected] of c alfdiar rhea,respir atory disease a nd winterd ysen ter y(c onta- (I.Toftaker),[email protected](M.Stokstad),[email protected] gious diarrhea in adult cattle) (Boileau and Kapil, 2010). Studies (A. Nødtvedt). http://dx.doi.org/10.1016/j.prevetmed.2016.09.003 0167-5877/©2016TheAuthors.PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBY-NC-NDlicense(http://creativecommons.org/licenses/by-nc-nd/4. 0/). 74 I.Toftakeretal./PreventiveVeterinaryMedicine133(2016)73–83 determineifadjustingforthesefactorschangestheappearanceof thespatialclusters. BRSVandBCoVcanbespreadbetweenherdsbydirectanimal contactandindirecttransmission.Directcontactincludesphysical contactbetweenanimalsfromdifferentherds,forinstancethrough sharedpasture,orbyliveanimaltrade.Indirecttransmissionhap- pensthroughpassivetransferofanimalsecretionsandexcretions betweenherdsbyfomiteslikeclothingorequipment. The topography in western Norway, where the area under investigationislocated,ischaracterizedbymountainsandfjords separating the herds and limiting direct contact. However, ani- mal movements between holdings might provide an important routeoftransmission.In-degreeisameasurementofanimalcontact which is defined as the number of incoming animal movements from individual herds, through animal purchase, over a defined timeperiod(NöremarkandWidgren,2014).Livestockmovements are often registered in central databases which allows for calcu- lationofin-degree,butfactorsaffectingindirecttransmissioncan bemoredifficulttoassessbecauseinformationonmovementof people and biosecurity routines are not readily available in cen- tralregistries.Neverthelessmovementofpeopleisassociatedwith herdsize,becauselargerherdshavemorevisitors(Nöremarketal., 2013). The aim of this study was to determine the spatial varia- tioninherd-levelprevalenceofBRSVandBCoV,asmeasuredby BTM-antibodies,acrossthestudyregioninwesternNorway.Fur- thermore,theeffectoftheriskfactorsherdsize,location,animal Fig.1. Studyarea:MøreogRomsdalandSognogFjordanecountylocatedatthe movemen t, an d pro xim ity to n eighbo rs we re ev aluated a nd the nort hw estco astof Norwa y. effect of these risk factors on the spatial distribution of positive herdswasassessed. haveshownsignificanteffectsofBCoVinfectiononproductionin termsofdecreasedmilkyieldandpoorgrowthrate(Tråvénetal., 2001; Be audeauet al.,20 10b) whic hbo thresult ine conomic lo ss. 2. Materialsandmethods Bulktankmilk(BTM)serologyisacheapandeffectivemethod usedto scree nher dsfor infectious d is eases. How ever,due tolong 2.1. Studypopulation lastingseropositivityafterinfection,aherdwillstaytest-positive forman yyearsafterc ircula tionofvi ru sint hehe rd(A leniusetal., This cross-sectional study was performed in “Sogn og Fjor- 199 1; Trå vén e t al. , 2001; Kle m et al ., 201 4b). L ikewise, te st- dane” a nd “Møre og R omsda l” co unties on the west coa st of negati veherd sm ight haveb eenv iru sfre eforyea rsandser ology Norwa y (Fi g. 1). T he region was thought to be a suitab le stu dy onbulkt ankm ilkist herefo rean indic ator ofh erds tatus withan area bec ause of an e xpected mix of BTM -po sit ive and ne gative inh eren ttime -lag. herd s. One B TM sam ple from eac h o f 1347 herds was collected Herd level risk factors previously found to be of importance by the dai ry co mpany (Tine, Norw eg ian D airies SA), between forBCoV statu sin Swedish dairyherd sareh er dsi ze, notprovid- De cemb er 20 12 and Ju ne 201 3. In 2013, 1854 h erds delivered ing boots forvis ito rsandge ograp hicloc atio n(Tr åvén eta l.,1999; milk in th e two coun ties, which m eans s ample s were collected Ohl sonet al., 2010).F orB RSVseropos itivity,h erdleve lri skf actors from 73 % o f all eligible d airy he rds. Mil k sample s wer e treated foundt ob eof impor tanc eboth inScandinavi aand beyo nda reherd and analy ze d a s descri bed in Sectio n 2.2 , and ea ch he rd was size,a ge pr ofi leofthehe rd,ty pe ofproducti ona ndexis ten ceof cate gorized a s e ither posit ive or nega tive base d on the B RSV bord erin gcattle he rds( Norst röme ta l.,2000;Sol ís-Ca lderóneta l., and BCoV ant ibody test resu lts, respectiv ely. If a herd con- 2007;Ohl sonet al.,20 10;Saaeta l., 201 2). tribu ted m ore than one sample d uring the stu dy p eriod, only Pre viousst ud ies inSca ndin av iah aveindicatedlargevariations the resu lt from the first sample was in clud ed. Pre valence esti- inprevalenc eofBRS V andBCoVbe tween regions( Elvan der,1996; mat es we re cal culat ed fo r the r egion as a who le and for each Tr åvén et al., 19 99; B eau deau et al., 20 10a; Kle m et al., 2 013), county separ ately.Truep rev alen cewasc alc ul atedus ingth eRo gan- butspa tia lan alysesi nvolvingB RSV an dBCoV infecti on sare infre- Gladen -estimator base d on the se nsit ivity and s pecifi city of the que ntlyrep orted.Fo rcontrol- and erad ication purposes ,lo cating tests as specified by th e m an ufacturer ( Grein er and Ga rd ner, highand lowrisk area sisimpo rtan tinorderto knowwh ichcon- 2000 ). trols trat egies sho uldb ea ppliedtod iff erent reg ions. Riskfa ctors During the study period, 98% of all dairy herds were mem- like herdsize, animal mo vement be tweenher ds,andp roxi mityto bers of th e N orwegi an Dair y He rd Rec ordin g Syste m (N DHRS) neig hbor sare likelyto varygeogr aphically. Howe ver,i tiscurrent ly whic h p rovi des reliable record s on herd chara cteristics , produc- notknown ho wgeo gr aphic aldifferencesin riskfacto rs a reassoci- tionpa rameters anddise aseoccu rren ce(Es petvedtetal.,20 13).The ated witht hesp atialvariatio ninprevale nc eof positiv ehe rdsfor med icalcompan ydi stributi ngtheonly registered BC oV vaccin ein these two viru ses.Bec ausethe spa tialpattern of antibody -posit ive Norway wasconta ctedtogetin for matio nregardin gthe number of herds may belarge lydriven by thespa tialpatt er nsofherdcharac- unitssol d.Th euseofthe o nly registeredBR SVvaccine wa srecorde d teristi cs,su ch asherd sizean dd istan ceton eighbors, sp atial clusters byco ntact ingt he ve terin ary practitione rsby phone. Vete rinarians ofpositiv ehe rd smig hto nly bereflec tin gthegeog raphica ldistri- ina llmunicipa litie softhestu dyareawithm o rethan 10herdswere bu tion of k nown charac teris tics . Hence, i t is of major inte rest to co nta cted,covering 12 95 of134 7he rds. I.Toftakeretal./PreventiveVeterinaryMedicine133(2016)73–83 75 Herds de live ring m ilk in Møre og Romsdal and Sogn og Fjordane at the (cid:2)me of sampling n = 1 854 Did not provide BTM s ample n = 5 07 Herds pro viding BTM s amples P REVALENC E ESTIMATES n = 1347 n = 1347 Herds m issing geographic coordinates n = 11 Herds with geographiccoordinates P OINT MAPS, P REVALENC E DENSIT Y tOhfehseer wdse rwei tthh eg eeoxgclr uaspihoincs c:o ordina tes, n = 1 336 nM =A P1S3 3A6ND INITIAL CLUST ER ANALYSIS: Not member of NDHRS: n= 134 Not member the en(cid:2)re ye ar of 2 012: n = 1 Incons istent regi st ra(cid:2)ons ANIMALMOVEMENTS AND MULTIVARIABLE of animal movements: n = 7 Herds with complete regi st ra(cid:2)ons in the ANALYSIS: NDHRS an d geogr aphic co ordinat es xy-models: n= 1194 n = 1 194 Mul(cid:2)v arIable mode ls: n = 1 194 Re sidual ana lyse s: n = 1 194 In-degr ee: n = 1 194 Fig.2. Flowdiagramofeligible,sampledandanalyzedherds. 2.2. Laboratoryanalysis/outcomevariable cow-years,multipliedbyonehundred.Reportsofrespiratorydis- easewasavailableattheindividuallevel,andthisinformationwas BTMsampleswerecollectedbythemilktruckdriversandtrans- dichotomizedtowhetherornottheherdhadoneormoreanimals porteda tatemp eratu reof4◦C to the dair yplan twere they were withreported re spiratory di sea sed uring the yea ro f2012 .Herds frozen at b etween −18 an d −2 0◦ C, a nd w ere ke pt at this tem- that were not NDHRS me mbers, o r had i nco mple te registr ations perature until thawing at the time of laboratory analysis (Tine duringthistime,hadtobeexcludedfromtheriskfactoranalysis, mastittlaboratoriet in Molde). All BTM samples were analyzed but were still included in prevalence estimates, point maps and usingindirectELISA (S VANOVIR ® B RSV- abandBC oV-ab ,Svanova isop lethm aps .Forano ver viewofelig ible,sampl edand analy zed Biotech, Uppsala, Sweden). The optical density (OD) reading of herdsseeFig.2. 450nm was corrected by the subtraction of OD for the negative Data on animal movements between holdings were provided controlantigen,andpercentpositivity(PP-value)(Takiuchietal., by the Norwegian Food Safety Authority, and in-degree was cal- 2009)wascalculatedas(correctedOD/positivecontrolcorrected culatedasameasureofanimalpurchaseasdescribedinSection OD)× 100. Thecut-of ffo rapositiv eresultwas setata PP-value 2.4. Acc ess t o recordi ng s on the location of each herd , g iven by of10forbothtests(Anon.,2016a,b)andthedichotomizedresults geographiccoordinates(latitude,andlongitude,projection:EPSG: (B RSV +− /and /orBC oV+−) wereuse das the outcomeina llanal- 4326-WGS 84), was pro vided by Tine , Norwegi an Dairies S A. No yses.ThesensitivityandspecificityoftheELISAsprovidedbythe informationonthelocationofnon-dairycattleholdingswasavail- manufacturerwere94%and100%forBRSV,and84.6%and100%for able.Asameasureofproximitytoneighbors,themeanEuclidian BCoVrespectively(Aleniusetal.,1991;Elvanderetal.,1995). distancetothefiveclosestdairyherdswascalculated.Thiscalcu- lationalsoincludedherdsoutsidethestudyareatoavoidbiased 2.3. Explanatoryvariables valuesforherdsclosetothecountyborders.Thedateatwhichthe sample wa scolle cted by the tankmi lkdriver ,wa sdivi de dintot wo Test results were combined with production data and health categories:winter;December1st–March31thvs.summer;April recordin gs from the NDHRS. A ll sta tistical anal yses wer e done 1st–June30 th. usingStata/SE(StataCorp.2011.StataStatisticalSoftware:Release 12.CollegeStation,TX:StataCorpLP)unlessotherwisespecified. Permissiontousethedatabasewasgivenbytheowner,Tine,Nor- 2.4. Animalmovements wegianDairiesSA.Allrecordingswerefromtheyearof2012.To describe the general characteristics of the herds in the area the In this study, the term ‘animal movement’ refers to change mean,standarddeviationandrangewerecalculatedforthefollow- in ownership of an animal. Registration of cattle purchases is ingherdparametersretrievedfromtablesofannualsummarydata mandatory in Norway. In-degree was used as a measure of live- intheNDHRS:herdsize,milkproduction,somaticcellcount(SCC), stock movement, and is the number of direct ingoing contacts, overallherddiseaseincidence,andreplacementrate.Herdsizewas from individual herds, through animal purchase (Nöremark and definedastheherds’meannumberofcow-yearsin2012(onecow- Widgren, 2014). In-degree was calculated as a sum of purchases year=365daysforacowinaherd,calculatedforeachcowfrom fromindividualherdsforaperiodofalmostfiveyears;January1st dateoffirstcalving).SCCwasmeasuredasmeansomaticcellcount 2008–December5th2012.I.e.anin-degreeoffiveforagivenherd inBMTandmilkproductionwasmeasuredaskgmilkproduced in this study indicates that the herd has purchased live animals percow-year.Herddiseaseincidencewasthecombinedincidence fromfivedifferentholdingsduringthefiveyearperioddescribed. rate for all recorded diseases per 100 cow-years in 2012, where Purchases reported after December 5th were excluded from the recordeddiseasesincludeallcasestreatedbyaveterinarianasthis in-degree calculations because this was the date of collection of isreportedinon-herdhealthrecordings.Replacementratewasthe the first BTM sample. A total of 347 holdings had not registered numberofcowsinfirstlactationdividedbytheherds’numberof purchases during this time period. This was assumed to be true 76 I.Toftakeretal./PreventiveVeterinaryMedicine133(2016)73–83 andnoherdswereexcludedduetomissingvalues,butherdswith the receiver operating characteristic (ROC) was used to evaluate inconsistentduplicateregistrationswereomitted(Fig.2). overallmodelperformance,andtheHosmer-Lemeshowtestwas usedasatestforthemodelı´sgoodnessoffit,withdatagroupedin 2.5. Riskfactoranalysis tengroupsonthebasisofpercentilesofestimatedprobability. Pearson and standardized deviance residuals were calculated 2.5.1. Univariableanalyses forbothmodels.Todetectpossibleinfluentialobservations,Q–Q Atotalof1194outofthe1347sampledherds,or89%,hadcom- plotsofPearsonresidualsweremade,andthedeltabetastatistics pleterecords,andwereincludedintheriskfactoranalysis.Toassess were calculated. Observations with high residual values or delta the probability of selection bias the proportion of positive herds betavalueabove0.2wereomitted,andtheanalyseswerererunto was calculated for the 153 herds (11%) that did not have com- evaluatetheirimpactontheestimates. pleteNDHRSrecordsaswellasallsampledherds.Herdslacking geographiccoordinateswereexcludedfromthemapsandspatial 2.6. Spatialpatterns analyses(Fig.2). Univariableanalysesforasetof11predictorswereperformedin 2.6.1. Pointmapsandmapsoftheprevalenceriskdistribution ordertoselectwhichvariablestoincludeinthemultivariablemod- All maps were created using QGIS 2.4.0 (QGIS Development els. These predictors were chosen from the available data based Team, 2014). Point maps were created to show the point loca- on a causal diagram and biological plausibility of an association tion of all study herds with respect to their antibody status for withthedichotomizedtestresultofBRSVandBCoVantibodiesin the two viruses. Kernel density estimation was used for both BTM.Thesamevariableswereevaluatedforbothviruses.Contin- BRSVandBCoVpositiveherdsinadditiontoallherds,usingthe uousvariablesassessedforaneffectontheoutcomewere:herd isotropicGaussiankernelfunctionimplementedinthe“spatstat” size,herddiseaseincidence,averagemilkproductionpercow-year, libraryinR(BaddeleyandTurner,2005).Kerneldensityestimation replacementrate,meanSCCinBTM,geographiccoordinatesand is a weighted moving average method that can be used to esti- averagedistancetothefivenearestherds.Thecontinuousvariables matetheintensity,ormeanfunction,forpointprocesses(Berke, wereincludedassuchintheanalysesunlessotherwisementioned. 2005). The resulting values can be presented as a raster map Dichotomousvariableswere:timeofsampling(winter;December withonedensityvalueforeachgridcell.Acommonfixedband- 1st–March 31th vs. summer; April 1st–June 30th) and whether widthdeterminedfromthecoordinaterangesfromthestudyherds ornotthe herd had reported respir atorydise aseth eye arbefore ((1/8) ×min(xrange ,yrang e))w asused.Di viding thera nge distan ceby sampling.Theassociationbetweenin-degreeandtheoutcomewas eightwasdonetoavoidoversmoothingtheintensityfunction,as assessedtreatingin-degreebothasacontinuous-andasacategor- reportedelsewhere(Vandersticheletal.,2015).Generatingarisk icalvariable.Foranalyticalandinterpretationalreasonsin-degree mapwithspatialpointdata(locationsofcasesandnon-cases)is waseventuallyincludedasacategoricalvariablewiththreecat- basedontheratiooftwointensitiesasdescribedbyBerke(2005). egories:category1for0–1directingoingcontacts,category2for Thus, the isopleth map showing prevalence risk on a smoothed 2–9directingoingcontactsandcategory3formorethan9direct colorscalewasmadebydividingtheKerneldensityrasterlayer ingoingcontacts. forthecasesbytheKerneldensityrasterlayerforthebackground Forallvariablestheassociationwiththeoutcomewasevalu- population. ated by simple logistic regression (Wald-test), and the predictor wasincludedinthesubsequentmodel-buildingprocessifthep- 2.6.2. Localclusters value<0.2. Thespatialscanstatistictestwasappliedtoexplorespatialclus- Linearity of continuous predictors was assessed by grouping tersofpositiveherdsbyusingthesoftwareSaTScanversion8.1.1 observationsingroupsofequalsize,andmakingplotsofthegroup (Kulldorff,2009).Thespatialscanstatisticcananalyzespatialpoint meansagainstthelogoddsoftheoutcome.Incaseofnon-linearity, data(KulldorffandNagarwalla,1995;Kulldorff,1997),andcluster differenttransformationswereevaluated.Toavoidmulticollinear- detectionisdonebygraduallyscanningawindowacrossspace,not- ityinthemodel,correlationcoefficientsbetweenallpairsoftwo ingthenumberofobservedandexpectedobservationsinsidethe predictorswerecalculatedbeforethemultivariableanalysiswas windowateachlocation(Kulldorff,2015).Clustersofpositiveherds performed(Dohooetal.,2003). weredetectedusingtheBernoullimodelwithanalysissettingsas purely spatial, scanning for areas with high rates and maximum 2.5.2. Multivariableanalyses spatialclustersize20%ofpopulationatrisk.Nooverlapofclusters Based upon the significant associations from the univariable wasallowed.Resultsfromtheanalysesincludeslocationofclus- analyses,twologisticregressionmodelswithdifferentoutcomes ters,thevalueofobserved/expectedcases,therelativeprevalence werebuilt:onewiththeBRSVantibodystatusoftheherdasthe (notshown)andap-valueforeachclusterobtainedbytheMonte outcomeandthesecondwithBCoVantibodystatusastheoutcome. Carlomethod(999iterations). Largescaletrends,alsocalledfirst-orderspatialeffects,relateto Toevaluatespatialclustersofpositiveherdsfirstaftercorrecting variationinthemeanvalueofaspatialprocess(Dohooetal.,2003), forfirstordereffectsandthenafteradjustingforotherherdlevel andtocontrolforpossiblefirst-ordereffectsthex-coordinate(lon- riskfactors,twosetsoflogisticregressionmodelswerebuiltusing gitude) and y-coordinate (latitude) were added in the model as BRSV-andBCoV-testresults(0/1)astheoutcome.Onesetincluded continuous variables. Biologically plausible pairwise interactions only the x- (longitude) and y- (latitude) coordinates (called the betweensignificantvariablesfromthefinalmodelswereassessed xy-models). The other set also included the predictors of inter- byaddingtheircross-productinthemodelandthendetermining estthatremainedinthemodelasdescribedinsection2.5.2.After ifthecoefficientforthetermwasstatisticallysignificant.Forinter- modeldiagnosticsandevaluationofmodelfit,thedevianceresid- actions, a more stringent criterion was used for model inclusion uals from all four models were obtained and analyzed using the (p<0.02)inordertochoosethemostparsimoniousmodel.Possible spatialscantestunderthenormalprobabilitymodelwithanalysis confoundingfactorswereidentifiedthroughacausaldiagramand settings as purely spatial, scanning for areas with high values of monitoredbycalculatingthechangesinothercovariateswhenone residuals,andmaximumspatialclustersize20%ofpopulationat factorwasaddedandwithdrawnfromthemodel.Thefinalmodels risk. No overlap of clusters was allowed. The output reports key werefittedusingamanualbackwardstepwiseprocedure,witha statistics, including the location, the number of herds, the log- selectionthresholdofp<0.05.Theareaunderthecurve(AUC)of likelihood ratio and a p-value for each cluster obtained by the I.Toftakeretal./PreventiveVeterinaryMedicine133(2016)73–83 77 Table1 Mean,standarddeviation(STD)andrangeforherdparametersobtainedfromNDHRSfromtheyear2012in1194dairyherds,includedinastudyofBRSVandBCoVas measuredbybulktankmilkantibodiesinthestudyareaofSognogFjordaneandMøreogRomsdalcountyonthenorthwestcoastofNorway. Variable Mean Overallmean STD Range BRSV+ BRSV− BCoV+ BCoV− Herdsize 25.8 16.8 23.3 14.9 20.9 14.7 3.3–123.6 Averagemilkproductionpercow-year,inkg 7295 7161 7306 7012 7222 1123 2984–13682 MeansomaticcellcountinBTM 122.8 116.0 121.3 113.0 119.1 40.4 24–273 Meandistancetothe5nearestherds,inkm 1.8 2.3 1.9 2.6 2.1 1.7 0.19–18.0 Replacementrate 41.9 42.2 42.9 40.0 42.0 16.9 0–128(IQR:31–51) Herddisease incid ence* 94.0 91.4 95.2 86.0 93 66.9 0–500 In-de gree** 2 2 2 1 2 9.7 0–181 * Herddiseaseincidenceper100cow-years(year2012). ** In-de gree:me diannum ber ofdi rectingoin gcont actsthroughanimalpurchaseoveraperiodofalmostfiveyears. MonteCarlomethod(999iterations).Becausethesamemodelling 3.2. Animalmovements approachwasusedforthespatialassessmentoftheresidualsfrom boththexy-andthefinalmodelitwaspossibletocomparethe Incominganimalmovementswereregisteredfrommostparts spatialclustersofresidualsbeforeandaftercorrectingfortherisk of the country, but the majority of purchases were across short factors. distanceswithinthestudyregion.Forthe1194herdsthathadcom- pleterecords,themedianin-degreeovertheperiodofalmostfive years(January1st2008–December5th2012)was2–witharange 3. Results of0–181. 3.1. Studypopulation 3.3. Multivariablemodel Mean values, standard deviations and ranges of descriptive Timeofyearforsamplingwasexcludedfromthemodeldueto paramete rsforth estudyp opulationar epre sented in Table1.The collinear ity with th e geograp hic coordinat es (r= −0 .79 for x an d overallappa ren tpr evalen ceofseropo siti veherdsin th estud ya rea r=−0.81 fo r y). The x- and y-c oordinates w er e also corr el ated was46.2%forBRSV,and72.2%forBCoV.40.7%ofallherdswere (r=0.71),whichwasexpectedduetothenorth-eastslopeofthe positiveforbothvirusesand22.3%werenegativeforbothviruses coastline. Because no herds are located off-shore, an increase in onBTM.Thismeansthataherdwhichisantibodypositiveforone ywilltendtoentailanincreaseinx.Thestabilityofthemodels virushada5.3timesincreasedoddsofpositivityfortheothervirus. wastestedbyremovingthecoordinatesoneatatime,fittingthe Theprevalenceofpositiveherdswashigherinthenortherncounty modelwithonlythex-coordinate,onlythey-coordinateandboth. (MøreogRomsdal),54.4%forBRSVand79.8%forBCoV,compared Nosubstantialchangeswereobservedintheestimatesfortheother tothesoutherncounty(SognogFjordane),wheretheprevalence covariatesinthemodel,anditwasdecidedtokeepbothcoordi- ofBTMpositiveherdswas36.7%forBRSVand63.4%forBCoV. natesdespitethecorrelationinordertocorrectforlargegeographic BasedonthesensitivityandspecificityoftheELISAtestsgiven trends(firstordereffects)sothatanyremaininggeographicvaria- bythemanufacturer,thecalculatedtrueprevalencewas49.1%for tionintheresidualscouldbeattributedtolocaldependence.The BRSVand85.3%forBCoV.Forthe153herds(11%)thatprovided distancetothefiveclosestdairyherdsshowedlackoflinearitywith milksamplesbutwerenotpartofthemultivariableanalyses(see thelogoddsoftheoutcome,andwasthereforelogtransformed Fig. 2), the prevalence was 50.3% and 77.1% for BRSV and BCoV, (naturallogarithm). respectively. Vaccination against BRSV was known to have been used in a 3.3.1. BRSV-model totalofsixherdsbeforethetimeofsampling.Fiveofthesewhere VariablesincludedinthefinalBRSVlogisticregressionmodel inthenortherncounty(MøreogRomsdal)andoneinthesouth- were:herdsize,x-andy-coordinatesandlogofmeandistanceto erncounty(SognogFjordane).Itwasdecidednottoexcludeany thefiveclosestdairyherds(inkm).ResultsfromtheBRSVlogistic herdsduetovaccinationbecausevaccinationwassorarelyused regression model are shown in Table 2. The area under the ROC andbecausetheherdsthathaduseditreportedaprolongedhis- curvewas0.73,andthep-valueoftheHosmer-Lemeshowgoodness toryofrespiratorydiseaseandwerelikelytobeantibodypositive offittestwithtengroupswas0.91indicatingacceptableoverallfit onBTMsamplingregardlessoftheuseofvaccine.Regardingthe of the model. Calculation of the delta beta statistics revealed no BCoV vaccine, no units of the vaccine were sold to pharmacies obviousoutliersandnoobservationshaddeltabeta>0.2. in the study area during 2012. This is not a guarantee that it is not used, but strongly implies limited use, and thus the risk 3.3.2. BCoV-model th at u se of vacc ine woul d influen ce the resul ts w as co nsid ered Va riablesincludedinthefinalBCoVlogisticregressionmodel negl igibl e. were:herds ize,herd dis ease incid ence, x-and y-coordinat es,log Table2 Estimatedoddsratioswith95%CIandcoefficientswithstandarderrors,alongwithp-valuesbasedonalogisticregressionmodelonfactorsassociatedwithherdlevel BRSV-statusasmeasuredbyantibodiesinbulktankmilkin1194dairyherdsintwocountiesonthewest-coastofNorway. Variable OR 95%CI Coefficient Std.Error P-value Herdsize 1.05 (1.04–1.06) 0.046 0.006 <0.01 x-coo rdin ate(longitude) 0.60 (0.49–0.72) −0.53 0.01 <0.01 y-coordinate(latitude) 3.55 (2.58–4.90) 1.27 0.16 <0.01 Logofmeand istanceto 5nearestherds,inkm 0.53 (0.44–0.64) −0.6 3 0.09 <0.01 Con sta nt – −76.0 8 9.66 <0.01 78 I.Toftakeretal./PreventiveVeterinaryMedicine133(2016)73–83 Table3 Estimatedoddsratioswith95%CIandcoefficientswithstandarderrors,alongwithp-valuesbasedonalogisticregressionmodelonfactorsassociatedwithherdlevel BCoV-statusasmeasuredbyantibodiesinbulktankmilkin1194dairyherdsintwocountiesonthewest-coastofNorway. Variable OR 95%CI Coefficient Std.Error p-value Herdsize 1.05 (1.03–1.07) 0.052 0.009 <0.01 Herd dise aseincidence* 1.003 (1.001–1.00 5) 0.003 0.001 <0.01 x-coo rdinate (longitude) 0.78 (0.63–0.95) −0.25 0.11 0.017 y-coordinate(latitude) 3.54 (2.53–4.95) 1.26 0.17 <0.01 Logofmeand istanceto 5nearestherds,inkm 0.46 (0.37–0.56) −0.7 8 −0.7 8 <0.01 Ind egr ee**,c ategory1 1,re ference Indegree,category2 1.73 (1.28–2.34) 0.53 0.15 <0.01 Indegree,category3 5.97 (2.94–12.10) 1.80 0.36 <0.01 Co nstant – −77. 02 10.1 2 <0.01 * Herddiseaseincidenceper100cow-years(year2012). ** Then umbero faherd’s dire ctin goingcont actsth roughanimalpurchasefromuniqueherdsoveraperiodforalmostfiveyears.Category1includesherdswithin-degree 0–1,category2forin-degree2–9andcategory3forin-degreemorethan9. Fig.3. Pointmapshowingthelocationof1336dairyherdsinthestudyareaatthenorthwestcoastofNorway.Herdswereclassifiedbasedonantibody-ELISAofonebulk tankmilksamplecollectedduringtheperiodDecember2012toJune2013,andpositiveherdsaremarkedasreddotswhereasnegativeherdsaremarkedasbluetriangles. MapAshowsBRSVantibodystatusandMapBshowsBCoVantibodystatus. ofthedistancetothefiveclosestdairyherdsandin-degree.After ing spatial variation of positive herds for the two viruses. These theintroductionofin-degreethevariables“replacementrate”and mapsshowthedensityofpositiveherdsoverandabovetheden- “reportedrespiratorydisease”werenolongerpositivelyassociated sityofthebackgroundpopulation,andareshowninFigs.4and5. withBTMpositivity.Resultsfromthelogisticregressionmodelare Thespatialdistributionofriskissimilarforthetwoviruseswiththe shown in Table 3. The BCoV model had an area under the ROC highestprevalenceriskinthenorthwesternregion,andthelowest curveof0.81,andaHosmer-Lemeshowgoodnessoffittestwith prevalenceriskinthesouth. tengroupsgaveap-valueof0.63,indicatinggoodoverallfitofthe model.Calculationofthedeltabetastatisticdetectedfivepossible 3.4.2. Localclusters influen tialobserva tio ns(d eltab eta> 0.2).Ho wever,om itti ngthese Ap plicat ionofthespatialscantestundertheBernoullimodel didnotsub stantiallyinfl uence them odel estimates. Themode lhad identifiedfives pa tial clusters ofB RSV- positiv e,a ndfourof BCoV- low est predictiveab ilityforla rge BCoVn egativehe rds, witha rel- positiveh erds (p<0.0 5).TheB RS V-positiveclus ters inclu de dfrom atively shortdista nceto the fiven earest dairyhe rds,loc ated in the 15to18 2herd s an dthe rati oofobserved/ expected casesra nged norther ncou nty.Thes eh erd swe reBCoV -nega tivede spiteth eh igh fro m 1.91 to 2.1 7. Fo r cl uster s o f BCoV-positive her ds th e num- probabili tyofap ositive outco mep redictedbythe model. ber o f her ds in a c lust er range d f rom 30 to 160 and th e ra tio of observed/expectedcasesrangedfrom1.23–1.39. 3.4. Spatialpatterns Thelocationofspatialclustersofhighvaluesofdevianceresidu- alsfromthexy-modelsandthefinalmodelsareshowninFig.6.Key 3.4.1. Pointmapsandmapsofprevalenceriskdistribution statisticsfromtheanalysesareshowninTable4.Aspatialclusterof ThepointlocationofallstudyherdsareshowninFig.3.Ker- highvaluesofresidualsisanareawithanexcessofcasesbasedon nel density estimation was used to make smoothed maps of the whatisexpectedunderthecurrentmodel.Forthexy-modelsclus- prevalenceriskdistributionforevaluationoflargetrendsregard- teranalysisusingthespatialscantestidentifiedseveralareaswith I.Toftakeretal./PreventiveVeterinaryMedicine133(2016)73–83 79 Table4 Keystatisticsfromtheclusteranalysesofresidualsfromthelogisticregressionmodelwithx-andy-coordinatesastheonlypredictors,andthefinallogisticregressionmodel withallriskfactorsincluded,forBRSVandBCoVantibodiesinbulktankmilkin1194dairyherdsintwocountiesonthenorthwestcoastofNorway.“Meaninside”and“Mean outside”referstothemeanvalueofdevianceresidualsinsideandoutsidethecluster,respectively. Numberofcases Meaninside Meanoutside Standarddev. Log-likelihoodratio p-value BRSVxy-model: 1.clu ster 180 0.66 −0.15 1.11 39.92 0.001 2. cluster 41 1.21 −0.072 1.12 25.08 0.001 3. cluster 31 1.08 −0.057 1.13 15.13 0.001 4. cluster 16 1.38 −0.047 1.14 12.30 0.005 5. cluster 10 1.55 −0.041 1.14 9.64 0.040 6. cluster 30 0.86 −0.051 1.14 9.38 0.044 BRSVfinalmodel: 1.clu ster 180 0.58 −0.13 1.06 33.32 0.001 2. cluster 41 0.90 −0.060 1.08 15.51 0.001 3. cluster 31 0.96 −0.053 1.17 13.22 0.003 4. cluster 16 1.25 −0.044 1.08 11.27 0.009 BCoVxy-model: 1.cluster 160 0.64 0.047 1.03 22.15 0.001 2.cluster 52 0.86 0.092 1.04 13.52 0.001 3.cluster 233 0.43 0.052 1.04 12.47 0.001 4.cluster 72 0.69 0.090 1.04 11.31 0.003 BCoVfinalmodel*: 1.cluster 72 0.69 0.067 0.96 13.86 0.001 2.cluster 37 0.88 0.080 0.96 12.46 0.001 3.cluster 122 0.50 0.060 0.96 11.44 0.003 4.cluster 233 0.34 0.048 0.96 8.32 0.027 * NotethatforBCoVtheorderoftheclustersarenotthesamefromthetwomodelsbecauseofchangeinlog-likelihoodratio.The1.clusterfromthefinalmodelis equivalent(regardinglocation)tothe4.clusterfromthexy-model. Fig.4. IsoplethmapoftheprevalenceriskdistributionofBRSV-positivitybasedon Fig.5. IsoplethmapoftheprevalenceriskdistributionofBCoV-positivitybasedon classificationofherdsbyantibodyELISAonbulktankmilk.Sampleswerecollected classificationofherdsbyantibodyELISAonbulktankmilk.Sampleswerecollected duringtheperiodDecember2012–June2013,and551outof1336dairyherdswere duringtheperiodDecember2012–June2013,and863outof1336dairyherdswere BRSVantibodypositive. BCoVantibodypositive. highvaluesofdevianceresiduals.Theseclustersconsistofpositive dal and the other three in Sogn og Fjordane. The most northern herdswithalowprobabilityofpositivitypredictedbythemodel, clusterhadapproximatelythesamegeographiclocationforboth i.e. the herds were expected to be negative when correcting for viruses,apeninsulainthenorthwestofMøreogRomsdal(Romsdal- large(firstorder)geographictrends.Clusterswithap-value>0.05 shalvøya).Forthefinalmodelsthedevianceresidualswerespatially wereexcluded.Theclusteranalysesofmodelresidualsdetectedsix clusteredinfourlocationsforbothviruses(p<0.05,Fig.6).Forthe spatialclustersofBRSV-positive,andfourofBCoV-positiveherds. BRSV-modelthenumberofclusterswasreduced,butthechanges TheBRSV-positiveclustersincludedfrom10to180herds,twoclus- in log-likelihood ratio of the remaining clusters were small. For terswerelocatedinMøreogRomsdal,oneontheborderbetween BCoVthenumberofclustersremainedthesame,buttherewere thetwocounties,andthreewerelocatedinSognogFjordane.For substantialchangesinthelog-likelihoodratio,seeTable4. clustersofBCoV-positiveherdsthenumberofherdsinacluster Thespatialscanstatisticwillsearchforclusterswithhighvalues rangedfrom52to233,oneclusterwaslocatedinMøreogRoms- ofresiduals,andwhatisconsideredhighvaluesisrelativetothe 80 I.Toftakeretal./PreventiveVeterinaryMedicine133(2016)73–83 Fig.6. GeographicmapofthestudyareaindicatingthelocationofclustersofhighvaluesofdevianceresidualsfromtheBRSV(AandB)andBCoV(CandD)logisticregression models.Clustersfromxy-modelsareshowninAandC,andspatialclustersofhighvaluesofdevianceresidualsaftercorrectingforalltheriskfactorsinthefinallogistic regressionmodelsaredepictedinBandD.Analyseswereperformedforn=1194herdsinthestudyareasituatedinthenorthwestpartofNorway.Clustersweredetected usingthenormalprobabilitymodelofthespatialscanstatistic,andallclustershaveap-value<0.05.Clustersaresortedaccordingtolikelihoodratio,withthemostlikely clusterasnumberone(numberdisplayedinthecenter). rest.ThereferencevalueswasdifferentfortheBRSVandtheBCoV differencesbetweenstudyregions.Thestudyregionwasselected modelsbecausetheBRSVmodelshadhighervaluesofresidualson asitwasbelieveditwouldcontainamixofBTMpositiveandneg- averagebothforthexy-modelandforthefinalmodel.Thismeans ativeherds.Thelargevariationinprevalenceacrossregionsisin thattheevaluationofspatialclustersmustbeinterpretedasclus- agreementwithastudyperformedbyKlemetal.(2013). tersofunexplainedvariationintheoutcomeforthatmodel,and ForbothmodelstheoddsofbeingBTMpositiveincreasedfrom comparisonofthespatialclustersofBRSVpositiveherdsandBCoV south to north (latitude) and for BRSV from east to west (longi- positiveherdsmustbedonewithcaution. tude).Theselargetrendscanbeinterpretedasfirstordereffects, butbecausethetimeofsamplecollectionwascorrelatedwiththe 4. Discussion geographiccoordinates,andhadtobeomittedfromthemodel,the observedgeographictrendscannotwithcompletecertaintybesep- The overall apparent prevalence of seropositive herds in the aratedfromapossibletemporaleffect.About40%oftheherdswere studyareawas46.2%forBRSVand72.2%forBCoV,whichislow positiveagainstbothBRSVandBCoV,andtheoddsofbeingpos- comparedtoreportsworldwide(Patonetal.,1998;Uttenthaletal., itiveforoneviruswereapproximatelyfivetimeslargerifaherd 2000;Ohlsonetal.,2010).Thisisalsolowerthanestimatesfrom waspositivefortheothervirus.Thelargeproportionherdswith previous studies in Norway using serologic methods (Gulliksen antibodies against both viruses was not surprising given known etal.,2009;Klemetal.,2013).Thepresentstudyclassifiedherds commonriskfactors. according to detection of antibodies measured in a milk sample Herdsizewaspositivelyassociatedwithseropositivityforboth taken from the BTM. This methodology generally increases the BRSVandBCoV.Increasingtheherdsizebyonecow-yearincreased prevalenceofadiseasewhencomparedtoindividualsamplingofa theestimatedoddsofbeingantibodypositiveby5%forbothviruses. groupofyounganimals–themethodusedbythepreviousNorwe- Thiscorrespondstoa72%and84%increaseintheoddsofBTMpos- gianstudies.Hence,itmakesthediscrepancybetweenthepresent itivitywhenincreasingtheherdsizeacrosstheinterquartilerange studyandthepreviousonesevenlarger,andismostlikelydueto forBRSVandBCoV,respectively.Theassociationbetweenherdsize I.Toftakeretal./PreventiveVeterinaryMedicine133(2016)73–83 81 andBRSVandBCoVpositivityiswelldocumented(Tråvénetal., of risk factors included in the logistic regression model, such as 1999; Norström et al., 2000; Solís-Calderón et al., 2007; Ohlson proximitytoneighbors,herdsizeandlargegeographictrends(x- etal.,2010).ThedairyproductioninNorwayistypicallyorganized andy-coordinates).However,spatialclustersofhighresidualval- in small units with a mean of 24.2 cow-years per herd in 2013 ues from the final models indicates that there are still spatially (Anon.,2015).Eventhoughthisissmallerthaninmostdeveloped dependent unmeasured risk factors. No information on biosecu- countries this association holds true. The reason for the associa- ritywasavailableandgoodhygieneandhusbandrypracticescould tion remains unclear; however, it may be linked to larger herds beanunmeasuredpreventivefactor.AstudybyOhlsonetal.(2010) having more indirect contact for instance via visits from veteri- showedapreventiveeffectofusingbootcoversonBCoVpositivity. narians, AI technicians, advisory personnel or others (Norström, Othernon-measuredpotentialriskfactorsthatcouldbespatially 2001).Furthermore,herdsizemightbeassociatedwithdifferences dependentincludetheuseofcommongrazing,andhistoricaldata inmanagement,andlargerherdsmightprovidebetterconditions onpreviousdiseaseoutbreaks.Bothwinterdysenteryandrespi- forintra-herdviruscirculation. ratory disease typically occur as epidemics with years between Itisinterestingthatin-degreewasonlyasignificantpredictor (BoileauandKapil,2010).Anepidemicspreadoftheseviralinfec- intheBCoVmodel,andnotforBRSV.Forthestudypopulation,the tions might cause all, or the majority of, herds in an area to be majorityofpurchasedlivestockcamefromwithintheregion,and antibodypositive,andthusaffectthespatialdistributionofpositive thefairlylowherdlevelprevalenceofBRSVinthisregioncould herdsforyears. explain why the number of ingoing contacts (in-degree) was not ForBCoVthenumberofclustersremainedthesameaftercor- associated with BRSV positivity. The most commonly purchased rectingfortheriskfactorsinthefinalmodel,howeverwithlarge animalsarecalvesandyoung-stock,andbecausetheprevalence changesinthelikelihoodratio.Thesechangesinthelog-likelihood oncalflevelislowerthanonherdlevel,theriskofbuyingayoung ratiomeanthatadjustingforgeographicdifferencesinherdsize, animalwitheithercurrentviralinfectionorantibodiesmightnotbe proximitytoneighborsandin-degreeresultsinamorerandomdis- highenoughtoshowanassociationwiththeoutcome.Thepreva- tributionoftheresiduals.However,theeffectwasnotuniformfor lenceofBCoVishigher,andthustheriskofbuyingantibodypositive allclusters,indicatingthattheeffectoftheriskfactorsmightnot or infected animals is also higher, and more likely to affect the bethesameinallareas.ComparedtotheBRSV-model,themod- BTMresult.Abiologicalexplanationbehinddifferencesinthelike- eratevaluesofobserved/expectedfortheBCoVclustersfromthe lihoodofdirecttransmissionbetweenthetwovirusesshouldalso Bernoullimodelalsosupportthatlocaldependencemightbemore beconsidered.Animportantdifferenceinthepathogenesisofthe importantforBRSVthanforBCoV.ThespatialclustersofBRSVanti- twovirusesisthatBCoVreplicatesbothincellsintherespiratory body positive herds had high values of observed/expected from tractandintestinalepithelialcells,leadingtosheddingofvirusin the Bernoulli model, and there were relatively small changes in nasalsecretionsaswellasinfeces(BoileauandKapil,2010).On log-likelihoodratiooftheclustersbetweenthexy-andthefinal theotherhand,BRSVonlyreplicatesincellsoftherespiratorytract model, which might indicate strong local dependence. This also (ValarcherandTaylor,2007).However,severalimportantaspects agreeswiththelowerpredictiveabilityofthismodelcomparedto of the pathogenesis are common for the two viruses: Shedding theBCoVmodel(AUCvalues0.73and0.81,respectively).ForBRSV ofvirusishighestintheacutestageoftheinfectionanddisease theresultsimplytheexistenceofspatiallydependentunmeasured canvaryfromsubclinicaltosevere(Larsen,2000;Choetal.,2001; riskfactorsandthateachherdreliesstronglyonthestatusofits BoileauandKapil,2010). neighbors,thusindicatingtheimportanceofindirecttransmission Increasingmeandistancetothe5nearestdairyherdswasasso- routes. The implementation of a high level of biosecurity could, ciated with a significant decrease in odds of BTM positivity for therefore,beimportanttopreventvirusintroduction.Thehigher bothviruses.Associationbetweenexistenceofborderingherdsand overallpredictiveabilityoftheBCoVmodelcomparedtotheBRSV BRSVwasalsofoundbySaaetal.(2012).Anotherstudyfoundthat modelmeansthatdespiteahigheroverallprevalenceofBCoVit theoddsofBCoVpositivitydecreasedasthedistancetothenear- iseasiertopredicttheserologicstatusofaherd,ortolocate“high estcattleherdincreased,butnoassociationwasfoundforBRSV riskherds”,forBCoVthanforBRSV,basedonthenumberofanimals (Ohlsonetal.,2010).Norström(2001)foundanincreasedriskof purchasedandrelativelyconstantfactorslikeherdsize,proximity outbreakofBRSVifatleastonepositiveherdwaswithinaradius toneighborsandlocation.Thedifficultyinfindingstrongassocia- of 500m of a herd. BRSV and BCoV are enveloped viruses, with tionsbetweentheinvestigatedriskfactorsandBRSVpositivity,and relativelyshortsurvivaltimeoutsidethehost,dependingonenvi- thestronglocaldependence,couldmeanthatthespreadofBRSVin ronmental factors such as temperature, humidity and light (Hall thisregionhasbeenofamoreepidemiccharacter,involvingmore etal.,1980;Larsen,2000;Wolffetal.,2005;Casanovaetal.,2010). stochasticitythanwhathasbeenthecaseforBCoV. As the number of infective virions on equipment decreases over ClassificationofherdsinthisstudywasbasedonasingleBTM time,thelikelihoodofindirecttransmissionbyfomitesdecreases sample. The use of BTM serology cannot be relied on to give an withincreasingtravellingtimeandthereforedistance.Distanceto updatedpictureoftheinfectionstatusofaherdbecauseanimals neighbors will also influence on the number of possible indirect shedantibodiesforyearsafterinfection(Aleniusetal.,1991;Tråvén contactsforaherd,andthusthelikelihoodofexposure.Thiseffect etal.,2001;Klemetal.,2014b).Theproportionofherdswithongo- mightbemoreevidentduringperiodsofhighinfectiouspressure ingorrecentinfectionisthereforelikelytobemuchlowerthanthe (epidemics).Itisalsopossiblethatthedistancebetweenherdsis prevalenceofBTM-positiveherds.Severalotherdiagnosticoptions associatedwiththeriskofdirecttransmission,ifanimalsinherd for classification of herds with respect to BRSV and BCoV status dense areas have more contact during pasture time in the sum- exists.Serologyofindividualanimals,eitherusingmilkorblood mer.However,wedidnothaveanyinformationonthelocationof samples, can give a more recent picture of the herds’ infection pastures. historythanBTMsamples,dependingontheageandnumberof Theresultsofthisstudyshowthatthegeographicdistribution animalssampled.(Ohlsonetal.,2009;Klemetal.,2013).Theideal of BRSV and BCoV in the study area are far from uniform, and methodforclassifyingherdswithrespecttodetectingviruscircu- thattherearebothlocalhighriskclusters(Fig.6),andlargegeo- lationwouldbetodetectthevirus;however,thisisdemandingon graphictrends(Figs.4and5).Theclusteranalysesontheresiduals alargerscale(Klemetal.,2013). showedthatsomeofthelocaldependencechangedwhencorrect- TheantibodyELISAtestsusedtoclassifyherdsaseitherpositive ingforotherriskfactors.Inotherwords,localdependenceseems or negative for either virus are imperfect. This means that there to be partially explained by spatial variation in the distribution willbesomemisclassificationofoutcome,whichcouldleadtoan 82 I.Toftakeretal./PreventiveVeterinaryMedicine133(2016)73–83 underestimationofprevalence.(Estimatesoftrueprevalenceare ofNorway(NFR-projectNo224771/E40),TheNorwegianResearch showninSection3.1).However,aspreviouslymentioned,preva- Funding for Agriculture and Food Industry and TINE Norwegian lence estimates based on bulk tank milk serology will be much DairiesSA. higherthantheproportionofherdsthathavecirculatingvirus,so comparedtothistheinaccuracyintroducedbyanimperfecttestis negligible.Whenevaluatingtheeffectoftheriskfactors,misclas- References sificationoftheoutcomewasconsiderednon-differentialbecause theperformanceofthetestswasnotbelievedtobeassociatedwith Åkerstedt,J.,Norström,M.,Mørk,T.,2015.Thesurveillanceprogrammeforbovine any oftheriskfa cto rs. Henc e,th isis notlike ly toh aveinflue nced virusd ia rrhoea(BV D)i nNorw ay 2014 .In: Surveillance Programmes for the res ults . TVeertreer sintrairayl aInnsdt iA tuqtuea,tOi cs lAo n.imals i n Norw ay . Annual Rep ort 2014. Nor wegian Theinternalvalidityofthisstudywasdeemedhighasalldairy Alenius,S.,Nisk anen,R., Juntti,N.,Larsson,B.,1991.Bovinecoronavirusasthe herds i n the st udy are a w ere equa lly li kely to b e sa mp led and caus ati veagento fw interd yse ntery:se rol ogical eviden ce.ActaVet. Sc and.32, includ ed inth estud y.Th ehigh proport ionof sam pl edherds (73% 163–170. Anonymous,2015.KeynumbersfromtheNorwegianDairyHerdRecording ofalleligibleherds)alsominimizestheriskofsevereselectionbias System.A nnua lrep ort2014. TineA dv isoryServic e,Ås. th at could h ave aff ected the validi ty o f th e study. However, the Anonymous ,2016a. Svano vaMan ual. BovineCo ronavir usAntibodytest. prev alence estim ates in the 153 herd s that were e xcluded fr om Boehring erInge lheimSva nova,Up psala, Sweden,Ava ilablefrom:http://www. svanova.com /content/ dam/inte rnet/ah/s vanova/d kEN/docu ment s/ twheer meusllitgivhatrlyiabhlieg haneraltyhsaisn dfuoer ttoh ienceonmtipreletpeo NpuDlHatRioSn reogfisstaramtipolnesd, AnoKnyitm%2o0uisn,s2e0r1ts6/bIn.sSevratn%o2v0aBCMVa-nAuba%l.2B0o1v9i-n2e4R00es-0p0ir a0t8o. rpydSf y(ancccyetsiasleVd i1ru2s.0A4n.1t6ib.)o.dy herds ,which couldin dicat edi ffere ncesin ,forexamp le, manage- Test.Boe hringer Ingelhei mSvano va,Upp sala,Sweden ,Availabl efrom :http:// www .svanova.co m/content /dam/inte rnet/ah/ svanova/ dkEN/doc umen ts/ tmheensta. mBuptle bdehcearudsse, athned ethxecludidfefedr ehnecredsin rpeprervesaelennteced wonaslym 1o1d%e sotf, BaddKeitl%ey2,0Ain.,sTeurtrsn/eInr,sRer.,t2%02005B.RSSpVa-tAstba%t2:0an19R-2p5a0c0ka-0g0e f0o9r.padnfa l(y azcicnegsssepda t1i2al.0p4o.1in6t.). the introduc ed bias is l ikel y to be sm all . The unkno wn location patter ns. J.Stat.S oft w.12, 1–42. Beaudeau,F., B jörkm an,C., Ale nius,S.,Frössling,J.,2010a.Spatialpatternsof and BRSV-/BCoV status of beef herds in the area could potentially bovine co ronavirus and bovine res piratorys yn cytialv irusin theSwed ishbeef biastheresultsiftheproximitytoneighborsvariableisincorrectly cattlep opulati on.Ac taV et.Scan d.52,33,ht tp://dx.d oi.org /10 .11 86/1751- spec ified .Howe v er,t heauthors be lieveitisu nlikelyt ha ttheirgeo- 0147- 52-33. graphic d istribution dif fers sub stantial ly fr om the distr ibutio n of Beaucdoeroanua, vF.i,r Oushalsnodn,b Ao.v, iEnmearensupeilrsaotno,r yU.s, y2n0c1y0tbia. lAvsisroucsiiantfioecntsi obnestwanedena nbiomvianle dairyherds.Thex-andy-coordinateswereincludedinthemod- performance inS wedish dairyherd s.J.Dairy Sci.93 ,1523–15 33,h ttp://dx.doi. els to reduc e sp atia l he terogeneity. H owev er, spatia l c orre lation org/10.3168/ jds .2009-25 11. stru ct ures in the data may be more c omplex th an a sim ple latitu- Berk1e7, 3O–.,1 28020,5h.t tEpx:p//ldorxa.dtoori.yo rsgp/a1t0ia.1l 0re1l6a/tji.vper ervisekt mmeadp.p2i0n0g5. .P0r7e.v0.0 V3e.t. Med. 71, dinal/longitudinalgradient.Incaseofoverdispersionduetospatial Boileau,M.J., Kapil,S.,2010.Bovinecoronavirusassociatedsyndromes.Vet.Clin. autocorrelation,th iscoulda lte rthe eff ectivesamples ize,l ea dingto Nort hAm .Food A nim.P ract.26 ,123–146. increasedchanc eof TypeI erro r.H owever,g iventh elow p-valu es Casanova, L.M. ,Jeon ,S.,Ru tala,W .A. ,Weber,D.J.,Sobsey,M.D.,2010.Effectsofair tempe ratur eand re lativeh umidi tyonco rona virussu rvival onsu rfaces. Ap pl. aunndli ktehley itnhcalutstihoen soigf nthifiec axn- caendo ryd-ciroeocrtdioinnaotefst hine tehfefe mctoedsetilms, aitt eiss Cho,EKn.vOir.,oHna. sMoikcs ruozb,iMo l.. ,7N6i,e 2ls7 e1n2,–P2.R7.1,7C,h hatnt gp,:/K/d.Ox..,dLoait.horr go/p1,0S..1,1S2a i8f,/a Le.Jm.,2.0020219. 1-09. wouldch ang e.Th eresultsof thi sstudyar eb elie vedto berepre- C ross- protection stu diesbetw een respira tory andcalf dia rrhe aan dwinter dysenterycorona virusst rainsinc alvesandRT -PC Ran dnested PCR fortheir smeanntaatgievme efonrt tshyest eNmorswfoergidaani rdyapirryo dhuecrtdio ans aar ewchoomlep,a braebcaleusaec rtohses Dohdoeot,eI.cRt.i,oMn.a Artricnh,.W Vi.r,oSlt.r 1 y4h6n,, 2H4.,0 210– 0234.1V9e. terin aryEpid em iologic Rese arch .AVC thecountry.T heexter nal valid ityistheref ore deemedgoo d,and Inc. ,Cha rlotteto wn ,Prince Edw ardIs land,Cana da. Elvander ,M.,Edwards,S .,Näslu nd,K.,L inde,N .,1995.Evaluationandapplication the results might also be valid for other temperate areas of smaller- ofan indi rectELISA fo rthedete cti onofa nti bodies toboviner espi ratory scaledairyproduction. sy ncy tialviru sinm ilk, bulk milk,and se rum.J.Vet .D iagn.In vest.7, Th estud ydemonstratesthattheherdlevelprevalenceofBRSV 177–182. and BC oV as m easured by a ntibo dies in b ulk ta nk milk var ied con- Elvawnditehr,b Mov.,i n19e9r6es. pSeirvaetroer yressypnicrayttoiarlyv diriusesa.sVee tin.R deaci.r1y 3c8o,w1s0 1ca–u1s0e5d, hbtyt pin:/f/edcxti.odnoi. siderably in the region investigated. Of all the herds, about 40% org/1 0.1136 /vr.138.5.10 1. werepositiveforbothviruses.Severalherdlevelriskfactorswere Espetvedt,M.N.,Reksen,O.,Rintakoski,S.,Østerås,O.,2013.Dataqualityinthe of im portance fo r bot h BCoV and BRS V, su ch a s he rd size, geo- Ndaotrawbea gseiaann dd adiriyse haesre dr ere ccoordrdininggo snysf atermm .: Ja.gDraeier mySe cnit. 9b6e,t w22e7e1n – t2h2e8 n2a,th iottn pa:l//dx. graphiclocationanddistancetoneighboringherds,andforBCoV doi.org/1 0.31 68/jds.2 012-6143. also in-degree. Adjusting for these risk factors explains some of Greiner,M.,Gardner,I.A.,2000.Applicationofdiagnostictestsinveterinary thes patialclus tersofpos itiv eherd s,bu tspatia lclusters ofune x- epid emi ologicstu dies .Prev .Vet.Med.4 5, 43–59,http ://dx .do i.org/10.1016/ S0167-5877(00 )00116 -1. plainedvariationintheoutcomewasalsodetected.Theremaining localde pendence in dica testhatt hea ntibo dystatus ofo neherdis Gulliinkfseecnt,i oSn.Ms.i,n JoNro, Erw., Leigei,a Kn.Id.,a Lirøykecnal,v Te.,s .ÅJk.eDrasitreydSt,c Ji.., 9Ø2s,t5e1rå3s9, –O5.,1 24060.9. Respiratory influe ncedbythe antibody stat uso fitsneig hbors an dtha tind i- Hall,C.B.,Dou gla sJr.,R.G.,G eiman ,J.M.,1 9 80.Po ssib letr ansmissionbyfomitesof r espir atorysyn cy tialv irus.J.In fect. Dis.14 1,98–10 2. ereffcotr ttrainnstmerimsssioonf iism lipkleelmy teon tbien gimpproevrteanntti.v Tehmis emaseuarness tihnata na jaorienat Klemre, sTp.Bir.a, Gtourlyli skysnency, tSi.aMl .v, iLriues, :K i.n I.f,e Lcøtkioen n,d Ty.n , Øamstie crsåws, iOth., iSntoanksdtabde,t wMe.,e 2n0h1e3r. dBso.vViente. could be aneff ect ivewaytolow erthepreva lenceoft hes ei nfec- Rec.173,47 6,http:// dx.doi .org/10.11 36/vr.101 936. Klem,T. B.,Ri msta d,E.,Stokstad,M.,2014a.Occurrenceandphylogeneticanalysis tions. Measures should involve caution when purchasing livestock, of bovi nerespir ato rysyncyti alv irusin outbreaksof resp iratorydisea sein implementingahighlevelofbiosecurityandincreasedawareness No rway.B MCVet.Re s.10,15,h ttp:/ /dx .doi.org/10 .1 186/1746-6 148-10- 15. amongfarmers a ndo therp eo pletravellin gbe tweenher dsinorder Klem,T.B.,To llers rud, T.,Øs ter ås,O .,Stokstad,M.,2014b.Associationbetweenthe to prev ent betw een -herd transm ission of v irus. leexv peol sou fr aenitnibtohdeihese ridn . bVueltk. Rtaenc k. 1m7 i5l,k4 a7n,dh tbt opv:/i/n dex r.desopi.io rragt/o1r0y. 1sy1n3c6y/ vtira.1l v0i2r4u0s 3. Kulldorff,M., Na gar walla, N.,1 995. Spat iald iseaseclusters:detectionand infere nce .Stat.Med.1 4,7 99–8 10. Acknowledgements Kull1d4o8rf1f,– M14.,9 1 69.97. A spa tial scan statistic. Commun. Stat. Theory Methods 26, Kulldorff,M.,2009.SaTScanTMv8.0:SoftwarefortheSpatialandSpace-timeScan TheauthorsgratefullyacknowledgeTheNorwegianFoodSafety Statis tics. Silver Spring,Marylan dwww.sa tsc an.o rg. authori tiesforp rovidingd ataonanima lmo vements,T INEN orwe- Kulldorff,M., 2015.S aTScan UserGuid eforVersion9.4,Availablefrom:http:// www .sats can.o rg/(acces sed1 4.06.) . glainangu Daagierireesv SieAw f.oTrh aicscpersosj etoct twhea sNfDuHndReSd abnyd TDhre. RAedsaemar cMhaCrtoiunn fcoirl LarsSecna, nLd.E..4, 210,10–02. B4o.vi ne respira tory syncytial virus (BRSV): a review. Acta Vet.

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.