ebook img

2016 A mouse model for MERS coronavirus-induced acute respiratory distress syndrome PDF

2016·3.71 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview 2016 A mouse model for MERS coronavirus-induced acute respiratory distress syndrome

ARTICLES PUBLISHED:28NOVEMBER2016|ARTICLENUMBER:16226|DOI:10.1038/NMICROBIOL.2016.226 A mouse model for MERS coronavirus-induced acute respiratory distress syndrome Adam S. Cockrell1*, Boyd L. Yount1, Trevor Scobey1, Kara Jensen1, Madeline Douglas1, Anne Beall1, Xian-Chun Tang2,3, Wayne A. Marasco2,3, Mark T. Heise4,5*† and Ralph S. Baric1,4*† Middle East respiratory syndrome coronavirus (MERS-CoV) is a novel virus that emerged in 2012, causing acute respiratory distress syndrome (ARDS), severe pneumonia-like symptoms and multi-organ failure, with a case fatality rate of ∼36%.Limited clinical studies indicate that humans infected with MERS-CoVexhibit pathology consistent with thelate stages ofARDS, which is reminiscentof thedisease observed inpatients infectedwith severe acute respiratorysyndrome coronavirus. Models of MERS-CoV-induced severe respiratory disease have been difficult to achieve, and small-animal models traditionally used to investigate viral pathogenesis (mouse, hamster, guinea-pig and ferret) are naturally resistant to MERS-CoV. Therefore, we used CRISPR–Cas9 gene editing to modify the mouse genome to encode two amino acids (positions 288 and 330) that match the human sequence in the dipeptidyl peptidase 4 receptor, making mice susceptible to MERS-CoV infection and replication. Serial MERS-CoV passage in these engineered mice was then used to generate a mouse-adapted virus that replicated efficiently within the lungs and evoked symptoms indicative of severe ARDS, including decreased survival, extreme weight loss, decreased pulmonary function, pulmonary haemorrhage and pathological signs indicative of end-stage lung disease. Importantly, therapeutic countermeasures comprising MERS-CoV neutralizing antibody treatment or a MERS-CoV spike protein vaccine protected the engineered mice against MERS-CoV- inducedARDS. T heseverityofrespiratoryillnesscausedbyMiddleEastrespir- MERS-CoVfailstoreplicateintraditionalsmall-animalmodels atory syndrome coronavirus (MERS-CoV), its pandemic (mouse,hamster,guinea-pig andferret)due totheinabilityofthe potentialthroughhuman-to-humanrespiratorytransmission receptor-bindingdomainintheMERS-CoVspikeproteintointer- and a dearth of effective treatments necessitate the development act with the respective DPP4 receptor7–10. In addition to acting as of new MERS-CoV therapies and vaccines. Effective vaccine and theMERS-CoVreceptor,DPP4regulatesT-cellactivation,cytokine therapeutic development require preclinical animal models that functionandtrans-endothelialmigrationtositesofinflammation11. resemble the pathogenesis of human MERS-CoV infection. Therefore,overexpressionofDPP4mayresultinimmunedysregu- Additionally, these models should: (1) include a measure of mor- lation.Effectivemodelswouldthereforeideallypromotefunctional tality associated with severe respiratory disease; (2) not be con- MERS-CoV/DPP4 interactions, with minimal perturbations of founded by neurological complications due to high viral loads in innate DPP4 expression, signalling activity or tissue distribution. the brain; (3) exhibit sustained, high-level virus replication within Classicalstrategiestoovercomereceptorincompatibilitiestogener- thelungsofinfectedanimals;(4)exhibitlungpathologyassociated ate susceptible mice have relied on generalized or tissue-specific withhumanacuterespiratorydistresssyndrome(ARDS);(5)main- transgenic overexpression approaches to drive expression of tain innate expression of the MERS-CoV host receptor, dipeptidyl the human receptor (hDPP4) in the mouse12–15. Although peptidase 4 (DPP4), to prevent perturbation of immunological MERS-CoVcanelicitrespiratorydiseaseinhDPP4overexpression homeostasis; (6) be genetically tractable to study host genes that models, these models exhibit afatalcentral nervous system (CNS) regulate responses to MERS-CoV vaccines and therapeutics; and andsystemicmulti-organdisease12–14,probablyduetonon-specific (7)exhibitreproducibility. overexpressionofthereceptorthroughouttheanimal,whichcom- Conventional non-human primate (NHP) models have been plicatesthe studyof MERS-CoV-induced respiratory pathogenesis established for MERS-CoV in both the rhesus macaque and inthesemodels. common marmoset1–4. NHPs are instrumental for the preclinical In this study, we used our knowledge of which determinants development of therapeutics; however, these models are cost- allow mouse DPP4to act as afunctional MERS-CoV receptor7 by prohibitive for initial screening of large numbers of vaccine and usingCRISPR–Cas9(clusteredregularlyinterspacedshortpalindro- therapeutic candidates, challenging to work with for routine mic repeats and CRISPR-associated gene 9) genome editing tech- pathogenesis studies, limited in availability and typically require nology to insert codons that match the human sequence at high virus challenge doses into multiple sites. Furthermore, two positions 288 and 330 in the mouse Dpp4 gene. This strategy recentstudieshave contradictedtheinitial studiesinNHPs,which resulted in a mouse that is permissive for MERS-CoV infection, may complicate use of the rhesus macaque5 or the common while maximally preserving the species-specific interaction marmoset6modelforroutinevaccineortherapeutictesting. networks critical for DPP4 immune function. Generation of mice 1DepartmentofEpidemiology,UniversityofNorthCarolina-ChapelHill,ChapelHill,NorthCarolina27599,USA.2DepartmentofCancerImmunologyand AIDS,Dana-FarberCancerInstitute,HarvardMedicalSchool,Boston,Massachusetts02215,USA.3DepartmentofMedicine,HarvardMedicalSchool, Boston,Massachusetts02115,USA.4DepartmentsofMicrobiologyandImmunology,UniversityofNorthCarolina-ChapelHill,ChapelHill,North Carolina27599,USA.5DepartmentsofGenetics,UniversityofNorthCarolina-ChapelHill,ChapelHill,NorthCarolina27599,USA.†Theseauthorsjointly supervisedthiswork.*e-mail:[email protected];[email protected];[email protected] NATUREMICROBIOLOGY|www.nature.com/naturemicrobiology 1 ©2016MacmillanPublishersLimited,partofSpringerNature.Allrightsreserved. ARTICLES NATURE MICROBIOLOGY DOI:10.1038/NMICROBIOL.2016.226 a b c 288/330+/+ 288/330+/− C57BL/6J WT Exon 10 A288 Exon 11 T330 WT + − Exon 10 A288 Exon 11 T330 6J +/0 +/0 / 3 3 Lung C57BL/6J WT BL /3 /3 7 8 8 5 8 8 Exon 10 288L Exon 11 330R C 2 2 Exon 10 A288 Exon 11 T330 288/330+/− Brain Exon 10 288L Exon 11 330R Exon 10 288L Exon 11 330R 288/330+/+ Kidney d 1 × 109 288/330+/+ abc 288/330+/− def e) 1 × 108 a d b e C57BL/6J WT ng tissu 11 ×× 110067 c f e 288/330+/+ 288/330+/− C57BL/6J WT u g l er 1 × 105 H&E p −1ml 1 × 104 u. p.f. 1 × 103 e ( Titr 1 × 102 LOD IHC 1 × 101 1 × 100 EMC/2012 Camel MERS icMERS MERS-0 Figure1|ACRISPR–Cas9geneticallyengineeredmousemodelforMERS-CoVreplication.a,C57BL/6Jmiceweregeneticallyengineeredusing CRISPR–Cas9genomiceditingtoencode288Land330RinmDPP4ononechromosome(heterozygous,288/330+/−)oronbothchromosomes (homozygous,288/330+/+).b,NorthernblotofmDPP4mRNAexpression.c,Immunohistochemistry(IHC)ofmDPP4proteininthelungs,brainandkidneys ofindividualC57BL/6Jwild-type(WT),288/330+/−and288/330+/+mice.d,ViraltitresforMERS-CoVat3dayspost-infectionfromC57BL/6JWT, 288/330+/−and288/330+/+(alln=4)miceinfectedwith5×105plaque-formingunits(p.f.u.)oftheindicatedviruses.Bargraphsshowmeans+s.d. Student’st-testwasusedtocalculateP<0.05forcomparisonsofMERS-0witheachvirusin288/330+/+mice(a–congraph)and288/330+/−mice (d–fongraph).e,Pathologyof288/330+/+,288/330+/−andC57BL/6JWTmiceatday3afterinfectionwithMERS-0.Lungtissuesectionswerestainedto examinethepathologybyhaematoxylinandeosinstaining(H&E),orwerestainedbyIHCtodetectnucleocapsidproteinfromMERS-0infection.IHCand H&Epathologyimagesarerepresentativeofatleastthreesamples.Scalebars(c,e),1mm. carrying a chimaeric mouse DPP4 (mDPP4) molecule patterns in the lungs, kidneys and brains of 288/330+/+ and 288/ (A288L/T330R), combined with a mouse-adapted strain of MERS- 330+/− mice reflected those observed in C57BL/6J wild-type mice CoV, allowed us to generate a mouse model that resembles severe (Fig. 1b,c; Supplementary Fig. 2). DPP4 is central to the MERS-CoV-induced respiratory disease without bystander neuro- maintenance ofglucosehomeostasisinmammals16.Blood glucose logical disease. In parallel, we demonstrated that thismodel system levels were within the normal range observed in C57BL/6J wild- canbeusedforthedevelopmentandtestingofMERS-CoVvaccines type mice, supporting the hypothesis that biological mDPP4 andtherapeutics. functions were not altered in the 288/330+/+ and 288/330+/− mice (Supplementary Fig. 2). Moreover, basal CD4+ T-cell expression Results of interleukin-2, tumour-necrosis factor-α, interferon-γ, CD69, A CRISPR–Cas9-generated mouse model for MERS-CoV CD25 and mDPP4 (CD26) from the 288/330+/+ and 288/330+/− infection. We have demonstrated previously that the introduction lineswascomparabletothelevelsobservedinC57BL/6Jwild-type of two amino acids that match the human sequence at positions mice (Supplementary Fig. 3). Notwithstanding functional T-cell 288 and 330 in the mDPP4 receptor can support MERS-CoV assessment, these results suggested that minimal alteration of the docking,entryandreplicationincellculture7.Thesedeterminants 288 and 330 alleles does not alter basal T-cell activation status. are located within exons 10 and 11 of mDPP4 on chromosome 2 Overall expression levels, expression patterns, biological function (Fig. 1a and Supplementary Fig. 1). Therefore, we used and the immunological profiles of mDPP4 were comparable to CRISPR–Cas9 genome editing to introduce these determinants those of C57BL/6J wild-type mice following site-specific (A288L and T330R) into the mDPP4 receptor (Fig. 1a and modificationofthe288and330alleles. Supplementary Table 1). Two lines of C57BL/6J-derived mice The288/330+/+and288/330+/−micesupportedefficientinfection were generated that were either homozygous (288/330+/+) or andreplicationofthehumanMERS-CoVstrainHCoV-EMC/2012, heterozygous (288/330+/−) for the chimaeric mDPP4 alleles the camel MERS strain Dromedary/Al-Hasa-KFU-HKU13/2013 (Fig. 1a). The 288/330+/+ homozygous mice encoded the 288L and a recombinant virus derived from a molecular infectious and 330Rchanges on both chromosomes, therebyexpressing only clone(icMERS)inthelungs,butthesevirusstrainscouldnotrepli- mDPP4withbothchanges(Fig.1a).The288/330+/−heterozygous cate inC57BL/6J wild-typemicethat retainedthe original murine mice encoded the 288L and 330R changes on one chromosome A288 and T330 alleles (Fig. 1d). In parallel, a MERS-CoV tissue- and the C57BL/6J wild-type amino acids, A288 and T330, on the culture-adaptedvariant,derivedbyinfectionofNIH/3T3cellsecto- other chromosome, thereby expressing both mutated and wild- picallyexpressing the chimaeric mDPP4 (A288L/T330R) receptor, type mDPP4 (Fig. 1a). The innate mDPP4 expression levels and was found to encode a three amino acid insertion (RMR) and a 2 NATUREMICROBIOLOGY|www.nature.com/naturemicrobiology ©2016MacmillanPublishersLimited,partofSpringerNature.Allrightsreserved. ARTICLES NATURE MICROBIOLOGY DOI:10.1038/NMICROBIOL.2016.226 a 120 b 110 105 100 %) 100 80 y 0 ( 95 Survival (%) 4600 ht relative to da 898005 g Wei 75 288/330+/+, MERS-15 288/330+/−, MERS-15 20 288/330+/+, MERS-15 70 288/330+/+, MERS-0 288/330+/−, MERS-15 C57BL/6J WT, MERS-15 0 65 0 1 2 3 4 5 6 0 1 2 3 4 5 6 Day post-infection Day post-infection c 1 × 109 Day 3 1 × 108 Day 6 d i ii e) 1 × 107 u s s g ti 1 × 106 n u er g l 1 × 105 p −1ml 1 × 104 u. iii iv p.f. 1 × 103 e ( Titr 1 × 102 LOD < LOD 1 × 101 1 × 100 MERS-15 MERS-0 MERS-15 MERS-15 288/330+/+ 288/330+/+ 288/330+/− C57BL/6J WT Figure2|Mouse-adaptedMERS-CoVcausesfataldiseasein288/330+/+mice.Micewereinoculatedintranasallywith5×106p.f.u.a,Mortalityof 288/330+/−(n=10)and288/330+/+(n=16)micewasmonitoreddailyuptoday6p.i.Datashowthepercentageofsurvivingmice.b,Mouseweights weremeasureddailyuptoday6p.i.for288/330+/+miceinfectedwithMERS-15(n=16)orMERS-0(n=10),288/330+/−miceinfectedwithMERS-15(n=10) andC57BL/6Jwild-type(WT)miceinfectedwithMERS-15(n=7).Dataaredailymeansofthepercentageweightrelativetoday0±s.d.c,Virallungtitresfor MERS-CoVweredeterminedatday3p.i.(288/330+/−+MERS-15,n=4;288/330+/++MERS-15,n=5;288/330+/++MERS-0,n=5;C57BL/6JWT+MERS- 15,n=4)andday6p.i.(288/330+/−+MERS-15,n=4;288/330+/++MERS-15,n=4;288/330+/++MERS-0,n=5;C57BL/6JWT+MERS-15,n=3).Thelimit ofdetection(LOD)isindicated.Barsaremeans+s.d.d,Immunohistochemistryoflungsectionsforanti-MERSnucleocapsidat3daysp.i.Resultsshow 288/330+/+mice+MERS-15(i),288/330+/−mice+MERS-15(ii),288/330+/+mice+MERS-0(iii)andC57BL/6JWTmice+MERS-15(iv).IHCimagesare representativeofatleastthreesamples.Scalebar(d),1mm. singleaminoacidchange(S885L)intheS2regionofthespikegene. MouseadaptationofMERS-CoVinducessevereARDS-likedisease. Thisrecombinantlyderivedvirus,MERS-0,encodingtheRMRand The recombinantly derived MERS-0 virus was mouse adapted by S885L S2 mutations, demonstrated significantly enhanced replica- serial passage for 15roundsthrough the lungs in 288/330+/−mice tion both in cell culture (Supplementary Fig. 4) and in the lungs at 3-day intervals, resulting in the MERS-15 strain. Infection of of288/330+/+and288/330+/−mice(Fig.1d;P<0.05).Despiterepli- 288/330+/+ mice via the intranasal route with MERS-15 resulted catingtosignificantlyhighervirustitresinvivothantheotheriso- in ∼70% mortality (genuine mortality, rather than mice meeting lates, MERS-0 exhibited no evidence of severe clinical disease the typical 20% weight loss cut-off associated with humane symptoms (Supplementary Fig. 4). Lung histology demonstrated euthanasia criteria), while 100% of infected 288/330+/− mice that nucleocapsid antigen from MERS-0 (Fig. 1e), and from the survived (Fig. 2a). However, both lines exhibited 20–25% weight other strains (not shown), was readily detected in the lungs of lossbyday6p.i.,incontrasttoMERS-0-infected288/330+/+mice infectedmicebyimmunohistochemistry,butinfectedlungsexhib- or MERS-15-infected C57BL/6J wild-type mice, which exhibited itedonlymoderatesignsofrespiratorypathologyandinflammation. no weight loss (Fig. 2b). Significantly higher levels of MERS-15 These results demonstrated that we had developed a MERS-CoV replication were detectable in the lungs of both 288/330+/+ and modelthatcouldsupporthighlevelsofvirusreplicationuptoday 288/330+/− mice at days 3 and 6 p.i., while MERS-0 was mostly 3 post-infection (p.i.), but that further in vivo adaptation was clearedfromthelungs byday6p.i.(Fig. 2c,d). SimilartoMER-0, required to achieve the respiratory symptoms characteristic of MERS-15 did not replicate in C57BL/6 wild-type mice. MERS-CoVinfectioninhumans. Importantly, the observed decreases in survival and weight loss NATUREMICROBIOLOGY|www.nature.com/naturemicrobiology 3 ©2016MacmillanPublishersLimited,partofSpringerNature.Allrightsreserved. ARTICLES NATURE MICROBIOLOGY DOI:10.1038/NMICROBIOL.2016.226 a 50 b 0.8 MERS-15, 288/330+/+ MERS-15, 288/330+/+ MERS-15, 288/330+/− 0.7 MERS-15, 288/330+/− MERS-0, 288/330+/+ MERS-0, 288/330+/+ ** MERS-15, C57BL/6J WT 0.6 MERS-15, C57BL/6J WT ** Penh(log)10 5 ** ** ** −1 (ml s)EF50 000...453 * ** ** ** 0.2 ** ** ** ** ** 0.1 * ** * ** ** 0.5 0 0 1 2 3 4 5 6 0 1 2 3 4 5 6 Day post-infection Day post-infection c d i ii i ii iii vii iii iv iv v vi viii Figure3|LungfunctioninMERS-15-infectedmice.a,b,Respiratoryfunctionwasmonitoredinlivemiceuptoday6p.i.usingwhole-bodyplethysmography tomeasurePenh(a)andEF (b)in288/330+/+miceinfectedwithMERS-15(n=9)orMERS-0(n=3),288/330+/−miceinfectedwithMERS-15(n=4) 50 andC57BL/6Jwild-type(WT)miceinfectedwithMERS-15(n=3).Dataaredailymeans±s.d.Student’st-testwasusedtocompare288/330+/+mice infectedwithMERS-15andMERS-0(*P<0.05;**P<0.01).c,Pathologyoflungsfrominfectedmiceatday3p.i.demonstratingsevereinflammationfor 288/330+/+(i)and288/330+/−(ii)miceinfectedwithMERS-15,andmoderateinflammationfor288/330+/+miceinfectedwithMERS-0(iii)andC57BL/6J WTmiceinfectedwithMERS-15(iv).d,Pathologyatday6p.i.infectedinmice.In288/330+/+miceinfectedwithMERS-15,therewassevereinflammation andoedemainthelargeairways(i)andalveoli(ii),andhyalinemembraneformation(iii).The288/330+/−miceinfectedwithMERS-15exhibitedsevere inflammationthroughouttheparenchyma(iv),hyalinemembraneformation(v)andperivascularcuffing(vi).The288/330+/+miceinfectedwithMERS-0(vii) andC57BL/6JWTmiceinfectedwithMERS-15(viii)exhibitedmild-to-moderateinflammation.Sampleswerestainedwithhaematoxylinandeosinandare representativeofatleastthreesamples.Scalebars(c,d),1mm. induced by MERS-15 were not confounded by neurological mice infected with MERS-15 (Fig. 3a,b), demonstrating that complications from brain infection, as plaque assays for MERS-15 elicited severe respiratory distress in mice carrying the replication-competent virus and PCR with reverse transcription chimaericDPP4receptor.Thiswasfurthersupportedbyourobser- (RT-PCR) at days 3 and 6 p.i. were negative (Supplementary vation of severe haemorrhage in the lungs of both 288/330+/+ and Fig. 5). Moreover, quantitative RT-PCR on the same samples 288/330+/− mice infected with MERS-15 at days 3 and 6 demonstrated an increase of >106 detectable viral transcripts in (Supplementary Fig.6),inflammatoryinfiltratesbyday3 (Fig. 3c) infected lungs compared with similarly infected C57BL/6J mice, and respiratory pathology associated with severe acute respiratory with no detectable viral transcripts in the brains of these mice distress, including hyaline membrane formation, intra-alveolar (SupplementaryFig.5c). oedema, perivascular cuffing and severe inflammation, at day Althoughmortalityandweightlossprovideimportantmeasures 6 p.i. (Fig. 3d). Quantitative comparison of the lung pathology in of MERS-CoV-induced disease, these parameters do not directly 288/330+/+miceinfectedwithMERS-15andMERS-0demonstrated assess the impact of virus replication on respiratory function. that MERS-15 induced significant levels of pathology commensu- Therefore, to directly assess the impact of MERS-15 infection on rate with ARDS by day 6 p.i. (Supplementary Fig. 7). Although respiratory function in 288/330+/+ and 288/330+/− mice, we wedidnotconductanexhaustiveassessmentofallextrapulmonary measuredrespiratoryfunctionusingunrestrainedplethysmography, tissuesinthe288/330+/+mice,wecouldnotdetectvirusreplication as demonstrated previously for respiratory pathogenesis in mouse in the brain, even at doses of 5×106plaque-forming units (p.f.u.) models of severe acute respiratory syndrome (SARS) and influ- up to day 6 when the humane euthanasia end points were enza17. MERS-15 elicited severe lung disease as quantified by reached, and the pathology observed in our model was consistent enhanced pause (Penh), a unitless measure that reflects airway with the severe respiratory pathology associated with fatal ARDS obstruction/restrictionduetodebrisintheairway,andbymidtidal intheonlypublishedcasestudyofahumanMERS-CoVinfection18. expiratoryflow(EF ),whichrepresentstheflowrateatwhich50% 50 ofthetidalvolumehasbeenexpelledinasinglebreath17.MERS-15 IdentificationofMERS-CoV-adaptedmutationsassociatedwith infection led to significant increases in both Penh and EF in severe respiratory disease. We anticipated that the MERS-CoV 288/330+/+ and 288/330+/− mice up to day 6 p.i. compared5w0ith genome would acquire mutations due to immunological pressure 288/330+/+ mice infected with MERS-0 and C57BL/6J wild-type and/orenhanced virusfitness during mouseadaptation. Twoviral 4 NATUREMICROBIOLOGY|www.nature.com/naturemicrobiology ©2016MacmillanPublishersLimited,partofSpringerNature.Allrightsreserved. ARTICLES NATURE MICROBIOLOGY DOI:10.1038/NMICROBIOL.2016.226 a 120 b 110 105 100 %) 100 80 y 0 ( 95 %) da al ( 60 e to 90 v v Survi 40 ght relati 8805 MERS-15 C1, 288/330+/+ MERS-15 C1, 288/330+/+ Wei 75 MERS-15 C2, 288/330+/+ 20 MERS-0, 288/330+/+ MERS-15 C2, 288/330+/+ 70 MERS-15 C2, C57BL/6J WT 0 65 0 1 2 3 4 5 6 0 1 2 3 4 5 6 Day post-infection Day post-infection c 1 × 109 Day 3 1 × 108 Day 6 sue) 1 × 107 d i ii iii s ng ti 1 × 106 u g l er 1 × 105 p −1ml 1 × 104 p.f.u. 1 × 103 iv v vi Titre ( 1 × 102 < LOD LOD 1 × 101 1 × 100 MERS-15 C1 MERS-15 C2 MERS-0 MERS-15 C2 288/330+/+ 288/330+/+ 288/330+/+ C57BL/6J WT Figure4|Clonalisolatesofmouse-adaptedMERS-CoVexhibitsevererespiratorydisease.Micewereinoculatedintranasallywith5×106p.f.u.a,The mortalityof288/330+/+miceinfectedwithMERS-15C1(n=7)orMERS-15C2(n=11)wasmonitoreddailyuptoday6p.i.Datareflectthepercentageof survivingmice.b,Mouseweightsweremonitoreddailyfor288/330+/+miceinfectedwithMERS-15C1(n=7),MERS-15C2(n=11)orMERS-0(n=6),and C57BL/6Jwild-type(WT)miceinfectedwithMERS-15C2(n=6).Dataaredailymeans±s.d.c,Virallungtitresweredeterminedatday3p.i.(288/330+/++ MERS-15C1,n=4;288/330+/++MERS-15C2,n=3;288/330+/++MERS-0,n=3;C57BL/6JWT+MERS-15C2,n=3)andday6p.i.(288/330+/++ MERS-15C1,n=4;288/330+/++MERS-15C2,n=6;288/330+/++MERS-0,n=3;C57BL/6JWT+MERS-15C2,n=3).Thelimitofdetection(LOD)is indicated.Barsaremeans+s.d.d,IHCoflungsectionsat3daysp.i.from288/330+/+miceinfectedwithMERS-15C1(i)orMERS-15C2(ii)andstainedfor nucleopcapsid.Thepathologyofthelungsfrom288/330+/+miceinfectedwithMERS-15C2wasassessedbyhaematoxylinandeosinstaining(H&E)atday 6p.i.anddemonstratedsevereinflammation(iii),oedema(iv),hyalinemembraneformation(v)andperivascularcuffing(vi).AllH&Eimagesare representativeofatleastthreesamples.Scalebar(d),1mm. clones, MERS-15 clone 1 (MERS-15 C1) and MERS-15 clone 2 orf4b into orf5 (Supplementary Fig. 9). Moreover, 5′ rapid (MERS-15 C2), were isolated by plaque purification from the amplification of cDNA ends revealed that the nucleotide at MERS-15 heterogeneous virus population. MERS-15 C2 infection position2ofthe5′untranslatedregionwasdeletedinbothclones resulted in increased mortality of the mice (Fig. 4a) and (Supplementary Fig. 9). Generation of an infectious clone significantly increased haemorrhage up to day 6 p.i. compared harbouring all of the MERS-15 C2 mutations (icMERSma1) with MERS-15 C1 (Supplementary Fig. 8), whereas both clonal demonstrated that the disease could be reproduced with an isolates caused 25–30% weight loss (Fig. 4b) and high levels of infectiousdoseof5×106p.f.u.(SupplementaryFig.10).Decreasing virus replication in the mice up to day 6 p.i., when humane the dose by 10-fold to 5×105p.f.u. resulted in weight loss that euthanasia end points were reached (Fig. 4c). The lung pathology paralleledthatobservedwith5×106p.f.u.;however,the5×105p.f.u. elicitedbyMERS-15C2resembledthatobtainedwiththeprimary dose exhibited a slight decrease in mortality up to day 7 p.i. MERS-15 virus (Fig. 4d), demonstrating similar pathologies (Supplementary Fig. 10). Although additional studies will be including oedema, hyaline membrane formation and perivascular needed, comparative genomic analysis of the two clones, C1 and cuffing. Sequencing of the entire MERS-15 C2 genome revealed a C2, indicated that nsP2 and Orf5 may have significant roles in set of unique missense mutations, acquired during in vivo determiningdiseaseoutcome.Therefore,theMERS-15C2derived passaging, in the genes encoding the non-structural proteins, virus, combined with the 288/330+/+ mouse line, represent useful nsP2, nsP6 and nsP8, and a large deletion in orf4b that may be tools for studying MERS-CoV pathogenesis or assessing responsible for the enhanced disease observed with MERS-15 therapeuticcountermeasuresagainstMERS-CoV-inducedARDS. (Supplementary Fig. 9). Sequencing of MERS-15 C1 revealed some differences that may influence the capacity of the virus to Human monoclonal antibody 3B11 protects from MERS-CoV- elicit the increased mortality observed with MERS-15 C2, namely elicited severe respiratory disease. Humanmonoclonalantibodies mutations in nsP2 and an expanded deletion that extended from providearobuststrategyforthetreatmentofnewlyemergedviruses NATUREMICROBIOLOGY|www.nature.com/naturemicrobiology 5 ©2016MacmillanPublishersLimited,partofSpringerNature.Allrightsreserved. ARTICLES NATURE MICROBIOLOGY DOI:10.1038/NMICROBIOL.2016.226 a 120 b 105 100 100 %) 80 y 0 ( 95 %) o da 90 urvival ( 60 elative t 85 S 40 ht r 80 g Wei 75 20 3B11 3B11 70 Isotype control Isotype control 0 65 0 1 2 3 4 5 6 0 1 2 3 4 5 6 Day post-infection Day post-infection c 1 × 109 d Day 3 3B11 16 1 × 108 Day 6 Isotype control e) 1 × 107 14 ** u s g tis 1 × 106 12 n u −1ml per g l 11 ×× 110045 Penh 108 u. p.f. 1 × 103 6 * e ( Titr 1 × 102 LOD 4 < LOD 1 × 101 2 ** * 1 × 100 0 Isotype control 3B11 0 3 6 Day post-infection Figure5|Humanmonoclonalantibody3B11protectsmicefromsevererespiratorydisease.The288/330+/+micewereintraperitoneallyadministered 250µgof3B11humanmonoclonalantibodyorisotypecontrolantibody12hbeforechallengewith5×106p.f.u.MERS-15C2.a,b,Mortality(a)andmouse weight(b)weremonitoreddailyformicereceiving3B11(n=12)oranisotypecontrol(n=12)uptoday6p.i.Datashowthepercentageofsurviving mice(a)ordailymeanweight±s.d.(b).c,Virallungtitresweredeterminedatday3p.i.(n=6forboth3B11-andisotypecontrol-treatedmice)andday6p.i. (n=6for3B11-treatedmice;n=3forisotypecontrol-treatedmice).Thelimitofdetection(LOD)isindicated.Barsaremeans+s.d.d,Lungfunctionwas assessedbyPenhat0,3and6daysp.i.formicereceiving3B11(n=6atdays0,3and6)orisotypecontrol(n=6atdays0and3;n=3atday6).Dataare means+s.d.Student’st-testwasusedtocomparemicereceiving3B11withthosereceivingtheisotypecontrolatday3andday6p.i.(*P<0.05;**P<0.01). in humans. 3B11 is a human monoclonal antibody that targetsthe particles (VRPs) expressing MERS-CoV spike protein (spike–VRP) receptor-binding domain of the MERS-CoV spike protein19, and is ormockvaccinatedwithVRPsexpressinggreenfluorescentprotein effective in NHPs5. Asthe MERS-15 C2 adapted virus acquired no (GFP–VRP), boosted at 4 weeks postprime and challenged with receptor-binding domain mutations (Supplementary Fig. 9), we MERS-15 C2 at 4 weeks postboost. All mice receiving spike–VRP reasoned that 3B11 should protect 288/330+/+ mice from MER-15 survivedandexhibitednoweightlossfollowingchallengecompared C2 challenge. Pretreating mice for 12h with 3B11 provided 100% with GFP–VRP mock-vaccinated animals (Fig. 6a,b). Spike–VRP protection against MERS-15 C2 challenge (Fig. 5a,b). Moreover, vaccination significantly reduced MERS-15 C2 replication in the 3B11treatmentreducedviralloads inthelungs of infectedmiceto lungs of infected mice as shown by both plaque titre (Fig. 6c) and undetectable levels (Fig. 5c and Supplementary Fig. 11) and viralantigenstaining(SupplementaryFig.14),whilealsoprotecting protectedfromlossofrespiratoryfunction(Fig.5d)(Supplementary against severe respiratory disease, as assessed by measurement of Fig. 11), pulmonary haemorrhage (Supplementary Fig. 11) and Penh(Fig.6d)andEF (SupplementaryFig.13),lunghaemorrhage 50 severe pathological changes (Supplementary Fig. 12). In contrast, (SupplementaryFig.13)andpathologicalindicationsofsevereacute pretreatment with isotype control antibody provided no protective respiratory disease (Supplementary Fig. 14). Neutralization of effect. Therefore, these data convincingly demonstrated that our MERS-15 C2 with prechallenge serum from spike–VRP-vaccinated preclinicalmouse modelof severe respiratorydisease and mortality mice validated the presence of high-titre neutralizing antibodies in canserveasaplatformforassessingMERS-CoVtherapeutics. the serum of vaccinated 288/330+/+ mice (Supplementary Fig. 13). Our data demonstrated that the spike–VRP vaccine provoked an Spike protein vaccines derived from Venezuelan equine adaptiveimmuneresponsecapableofprotectingmicefromalethal encephalitisvirusrepliconparticlesprotectfromlethalinfection. challenge with MERS-CoV, thereby extending the utility of our To examine vaccine efficacyinthe 288/330+/+MERS-15C2 model, preclinical mouse model of severe respiratory disease to include micewere vaccinated with Venezuelan equine encephalitis replicon vaccineevaluation. 6 NATUREMICROBIOLOGY|www.nature.com/naturemicrobiology ©2016MacmillanPublishersLimited,partofSpringerNature.Allrightsreserved. ARTICLES NATURE MICROBIOLOGY DOI:10.1038/NMICROBIOL.2016.226 a 120 b 110 100 105 %) 100 %) 80 ay 0 ( 95 Survival ( 4600 ht relative to d 898005 g Wei 75 20 Mock vaccinated (GFP−VRP) Mock vaccinated (GFP−VRP) 70 Vaccinated (spike−VRP) Vaccinated (spike−VRP) 0 65 0 1 2 3 4 5 6 0 1 2 3 4 5 6 Day post-infection Day post-infection c 1 × 109 d Day 3 12 Mock vaccinated (GFP−VRP) 1 × 108 Day 6 ** Vaccinated (spike−VRP) ue) 1 × 107 10 s s g ti 1 × 106 un 8 * −1ml per g l 11 ×× 110045 Penh 6 u. p.f. 1 × 103 4 ** e ( Titr 1 × 102 < LOD LOD 2 1 × 101 * 1 × 100 0 GFP−VRP Spike−VRP 0 3 6 Day post-infection Figure6|Vaccinationof288/330+/+micewithaVRPdeliveringMERS-CoVspikeproteinprotectsmicefromchallengewithMERS-CoV.Thevaccination protocolisdescribedinMethods.a,b,Aftera5×106p.f.u.challenge,mortality(a)andmouseweight(b)weremonitoreddailyformicereceivingGFP–VRP (n=19)orspike–VRP(n=19)vaccineuptoday6p.i.Datareflectthepercentagesurvival(a)ordailymeanweight±s.d.(b).c,Virallungtitreswere determinedonday3p.i.(n=7forspike–VRPandGFP–VRP)andday6p.i.(n=12forspike–VRP;n=6forGFP–VRP).Thelimitofdetection(LOD)is indicated.Barsaremeans+s.d.d,LungfunctionwasassessedbyPenhat0,3and6daysp.i.formicereceivingGFP–VRP(n=12atdays0and3p.i.;n=6 atday6p.i.)orspike–VRP(n=12atalldaysp.i.).Datarepresentmeans+s.d.Student’st-testwasusedtocomparemicereceivingGFP–VRPwiththose receivingspike–VRPatdays3and6p.i.(*P<0.05;**P<0.01). Discussion reportedhistopathologythatincludeddiffusealveolardamagewith The MERS-CoV preclinical mouse model described here demon- denudingofbronchiolarepithelium,hyalinemembraneformation, stratesforthefirsttimethattheCRISPR–Cas9systemcanbeused type II pneumocyte hyperplasia and oedema18. Furthermore, togeneticallyeditanon-permissivehostreceptortogenerateasus- MERS-CoV antigen staining localized the virus to pneumocytes ceptiblemodelforanemerginginfectiouspathogen.The288/330+/+ and syncytial cells18. Infection of type I and II pneumocytes can MERS-CoVmousemodelresemblesthesevere,andoftenfatal,res- lead to cell death, as observed in autopsies of patients who have piratory distress syndrome observed in humans, and can be pre- died from severe respiratory infections with influenza virus and vented through treatment with the 3B11 neutralizing monoclonal SARS-CoV21,22.Moreover,pneumocytecelldeathhasbeenproposed antibody19 or a VRP-based vaccine directed against the tocausedecreasedrespiratoryfunction,asmeasuredbywhole-body MERS-CoV spike protein15,20. Coupled with an inability to elicit plethysmographyinamousemodelofinfluenza23.Commensurate escapemutants,3B11 hasalso beentested inNHPs5, makingitan withthesepreviousstudies,ourMERS-CoVmousemodeldemon- excellentcandidatefordownstreamhumanstudies.However,exist- stratedwidespreadinfectionofpneumocytesandpathologyconsist- ingNHPmodelsrelyonquantitativeRT-PCR,ratherthanmeasures entwithdiffusealveolardamageandsevererespiratorydisease.This ofinfectiousvirus,toquantifyviralloads,andthesemodelsdonot was corroborated by decreased pulmonary function in the reproducibly result in the severe respiratory disease or mortality MERS-CoV model, as measured by plethysmography, which may observed in human MERS patients1–4. Therefore, the results from be associated with widespread infection and possibly the death of our model complement the NHP 3B11 studies by directly demon- pneumocytes and airway epithelial cells. Therefore, this model strating that 3B11 reduces levels of infectious MERS-CoV in the system provides the field with the opportunity to investigate the lungs, while preventing severe virus-induced respiratory pathology, mechanisms that lead to MERS-CoV-induced pathology and lossofrespiratoryfunctionandmortality. severerespiratorydisease,intheabsenceofanyCNScomplications. In fatal cases of human MERS-CoV infections, individuals OtherMERS-CoVmousemodelshaveusedthemoretraditional exhibitsevererespiratorydistressrequiringmechanicalventilation, methodofexpressingthefull-lengthhumanDPP4receptortofacili- andtheonlypublishedhumanautopsyfromaMERS-CoVfatality tateMERS-CoVinfection12–15,24.Thesemodelsexhibitedinfection/ NATUREMICROBIOLOGY|www.nature.com/naturemicrobiology 7 ©2016MacmillanPublishersLimited,partofSpringerNature.Allrightsreserved. ARTICLES NATURE MICROBIOLOGY DOI:10.1038/NMICROBIOL.2016.226 replication in the lungs following intranasal administration at low modelstoevaluatetherapeuticcountermeasures,therebynecessitat- viraldoses(102–105p.f.u.),whichinsomecasesresultedinpathol- ingvirusadaptationtohostimmunitytoachieveeffectivemodels.It ogyindicativeofpneumonia-likedisease12–14.Onelimitationofthe is critical that the GOF regulatory structure does not impede the 288/330+/+ MERS-CoV model described here was the use of high development of robust animal models of human disease, which viral loads to achieve severe, and often fatal, respiratory disease. areessentialforprotectingthepublichealth. Further adaptation may allow the use of lower infectious doses thatwouldproduceamodelofmilddiseasewithsubsequentrecov- Methods eryatlatertimepoints,ashasbeendescribedwithSARS-CoV25.In Viruses,cellsandplaqueassays.AllvirusstockswerepreparedonVeroCCL81 thiscontext,itisinterestingthatthedeletionofMERS-CoVORF4b, cells(ATCC).CCL81cellsweremaintainedroutinelyinDulbecco’smodifiedEagle’s medium(Gibco)supplementedwith10%fetalbovineserum(FBS;Sigma)and a phosphodiesterase and antagonist of RNase L activity in human 1×antibiotic/antimycotic(Gibco).AllviruseswereharvestedinOpti-MEMmedium cells, appeared less critical foreliciting severe disease in rodents26, (Gibco)supplementedwith3%FBS,1×antibiotic/antimycotic,1×non-essential suggesting possible species-specific modes of action in vivo. aminoacids(Gibco)and1×1mMsodiumpyruvate(Gibco).Thewild-typeHCoV- Deletions in some SARS-CoV interferon antagonist genes and EMC/2012strainofMERS-CoVwasusedatpassage10(originallyprovidedbyBart accessoryopen reading frames have also yielded subtle changes in Haagmans(ErasmusMedicalCenterRotterdam,TheNetherlands)atpassage8), icMERSwasgeneratedpreviouslybyScobeyetal.33,MERScamelstrainDromedary/ overallvirulenceinvivo27,28.However,itisimportanttopointout Al-Hasa-KFU-HKU13/2013wasusedatpassage5andwasprovidedatpassage4by that a balance must be achieved between the virulence of mouse- MalikPeiris(UniversityofHongKong,China)andMERS-0wasgeneratedinthe adapted virus, which enhances the model’s capacity to replicate laboratoryofR.S.B.asdescribedbelow.Virustitresweredeterminedbyplaque humandiseasephenotypes,andthenumberofmutationsrequired assaysonVeroCCL81cells33.AllvirusesweremaintainedunderBiosafetyLevel tosignificantlyreducethedoselethalto50%ofanimalstested. (BSL)3conditionswithredundantfansandpersonnelpoweredair-purifying respirators,scrubs,Tyveksuits,Tyvekapronsanddoublelayersofgloves. Conventional models using constitutive overexpression of the AnicMERSvirustaggedwithtomatoredfluorescentprotein33waspassagedfor hDPP4 MERS-CoVreceptor havedemonstrated widespreadinfec- tenroundsonNIH/3T3cells(ATCC)thatweregeneratedtostablyoverexpressthe tion of extrapulmonary tissues including brain, kidney, liver, mDPP4receptorcontainingA288LandT330R.ThemDPP4A288L/T330R spleen and heart12–14, and two of these studies indicated that the expressioncassetteusedtogeneratethecelllinehasbeendescribedpreviously7. mice exhibited multi-organ failure13,14. Furthermore, high viral Sequencingofthepassagedvirusidentifiedaninsertionofthreeaminoacids(RMR) afteraminoacid884inthespikeproteinandanS885Lchange.Thesechangeswere loadsweredetectedinthebrainsofmiceinthetransgenichDPP4 subclonedbackintotheMERS-CoVinfectiousclonebyoverlap-PCRoftheF overexpression models12–14. Importantly, Li et al.13 concluded that fragmentwiththefollowingprimers:5′-GGTTTCCAGAAGTGTGAGCAATTA “mortalitycorrelatedwithbraininfection,suggestingthatinfection CTGCGCG-3′,5′-GCAGGCCTCTGCAGTCGACGGGCCCGGGATCCAA ofthisorganwasmostimportantforthehighmortalityobservedin TGCC-3′,5′-CCTGTTTCTATATCTACTGGCAGTCGTAGAATGCGGCTTGCA K18-hDPP4mice”.Whiletheselethalmodelshavevalueforvaccine CGTAGTGCTATTGAGGATTTGC-3′and5′-GCAAATCCTCAATAGCACTA CGTGCAAGCCGCATTCTACGACTGCCAGTAGATATAGAAACAGG-3′.TheF andimmunotherapeutictesting29,small-moleculeinhibitorsthatare fragmentisonepartofaseven-plasmidsystem(A,B,C,D1,D2,EandF)that effective in the lung may be limited in their efficacy due to an permitspartitioningoftheentiregenometogenerateinfectiousMERS-CoV,as inability to cross the blood–brain barrier30. Similar neurological describedpreviously33.ThePCRproductencodingtheinsertionwassubclonedback complicationshavebeenobservedinmodelsystemsforSARSthat intotheFfragmentusingtherestrictionenzymesMscIandBamHIandvalidatedby used overexpression, or tissue-specific constitutive promoters, to sequencing.RecombinantMERS-0viruswasusedfortheinvivopassage experiments,whichwereGOFstudiesreviewedandapprovedbytheNational express human angiotensin 1-converting enzyme 2 (ACE2) in InstitutesofHealth(NIH).VeroCCL81andNIH/3T3cellswereoriginallyreceived mice31. While additional human pathology studies are needed to fromtheATCC,whichindicatesthatcelllinesareauthenticandconfirmsthatcell determinetheextentofextrapulmonarysitesofMERS-CoVreplica- linesaremycoplasmafree.Noneoftheworkingcelllinestockswasauthenticatedor tionandtheirimpactonMERS-CoVdisease,itisclearthatrespir- testedformycoplasmarecently,althoughtheoriginalseedstocksusedtocreatethe workingstocksarefreefromcontamination.Additionally,bothcelllineshavebeen atory replication and pathology is an important aspect of human authenticatedbymorphologicalandcytopathologicalevaluation.Furthermore,Vero MERS-CoV disease. Therefore, an important attribute of the CCL81cellswereconfirmedforDPP4overexpressionbythecapacitytobeinfected 288/330+/+ model isthat the lackof detectable virus replication in andtoreplicateMERS-CoV. the CNS means this model can be used to study MERS-CoV- induced pulmonary disease without the confounding effects of GenerationofmicewithmDPP4modifiedatpositions288(exon10)and deathduetoCNSinfection. 330(exon11).Theallelesencodingaminoacids288and330areshownin SupplementaryFig.1.GenomicengineeringofthesealleleswiththeCRISPR–Cas9 Recently,adebatehasemergedaroundthesafetyofperforming genomeeditingsystemwasperformedattheUniversityofNorthCarolinaatChapel gain-of-function (GOF) studies with highly pathogenic viruses Hill(UNC-CH)AnimalModelsCoreFacility.ThemessengerRNA(mRNA) (such as MERS-CoV, SARS-CoV, influenza virus H5N1) (http:// encodingCas9endonucleaseandguideRNAs(gRNAs)werebasedonthesystem www.gryphonscientific.com/gain-of-function/). As demonstrated establishedbyMalietal.34andpreparedasdescribedbelow.ThegRNAs here, GOF studies were absolutely necessary to develop a mouse (SupplementaryTable1)weregeneratedbyaninvitrotranscriptionreactionusinga model that reflects the ARDS pathology observed previously in T7HighYieldRNASynthesiskit(NEB),where1µgDraI-linearizedtemplateDNA wasusedina20µlreactionfollowingthekitguidelinesforshortRNAtranscripts. humans infected with respiratory pathogens. Importantly, the Thereactionwasincubatedat37°Covernight,followedbyDNaseI(RNase-free) GOF studies performed here yielded MERS-CoV strains that digestionfor15minat37°C.ThegRNAswerethenpurifiedusinganRNeasy reflect the complexity of clinical isolates identified recently in column(Qiagen)followingtheguidelinesforshortRNApurification.Cappedand humans, where deletions were identified in ORF3 and ORF4A32. polyadenylatedCas9mRNAwaspreparedbyaninvitrotranscriptionreactionusing anmMESSAGEmMACHINET7ULTRAkit(LifeTechnologies).CappedmRNA Moreover,theseGOFstudieshaveallowedustoidentifymutations wasgeneratedwith1µghCas9-T7linearizedplasmidDNAina20µlreaction inMERS-CoVproteinsthatmayinfluencehowMERS-CoVinter- containing1×NTP/ARCASolution,1×T7reactionbufferand2µlT7enzyme.The acts with, and possibly circumvents, host immune responses. reactionwasincubatedat37°Cfor1h,followedbyadditionof1µlTURBODNase Nevertheless,futurestudiestoevaluatehostfactorsthatcontribute anddigestionat37°Cfor15min.Toaddapoly(A)tailtothecappedmRNA,the 20µlreactionmixfromstep1wasmixedwithnuclease-freewater(36µl),5×E-PAP toMERS-CoVdiseasewillbeconstrainedinthismodel,aswellas buffer(20µl),25mMMnCl (10µl),ATPsolution(10µl)andE-PAP(4µl)toa inhDPP4expressionmodels,bythefactthatthemicemustbeback- finalreactionvolumeof100µ2l.Thereactionwasincubatedat37°Cfor30–45min. crossed to mouse lines harbouring modified endogenous genes, ThecappedandpolyadenylatedRNAwaspurifiedbylithiumchlorideprecipitation such as knock-out mice. This limitation may be overcome andresuspendedinmicroinjectionbuffer(5mMTris/HClbuffer,0.1mMEDTA, through additional GOF studies that facilitate MERS-CoV adap- pH7.5). FertilizedzygoteswerecollectedfromC57BL/6Jfemalesthathadbeen tation to the innate mDPP4 receptor molecule. The continued superovulatedandmatedtoC57BL/6Jmales.Pronuclearmicroinjectionwas threats from novel emerging pathogens, such as Zika virus, will performedwith50ngµl−1Cas9mRNA,50ngµl−1gRNADpp4-g59B,25ngµl−1 demand the rapid development of physiologically relevant animal gRNADpp4-g88Band50ngµl−1eachofDpp4-A288L-BandDpp4-T330R-B 8 NATUREMICROBIOLOGY|www.nature.com/naturemicrobiology ©2016MacmillanPublishersLimited,partofSpringerNature.Allrightsreserved. ARTICLES NATURE MICROBIOLOGY DOI:10.1038/NMICROBIOL.2016.226 donoroligonucleotides(SupplementaryTable1).Injectedembryoswereimplanted day0toestablishabaselineandagainatdays3and6p.i.Theisolationand intopseudopregnantrecipients,andtheresultingpupswerescreenedforalleles productionofthe3B11andF10antibodieshasbeendescribedpreviously19. encodingchanges(SupplementaryFig.1)atpositions288and330.Mutationsat the288positionweredetectedbyamplifyingbiopsyDNAsampleswiththe Spike–VRPvaccinestudyandvirusneutralizationassay.TheMERS-CoVgene followingprimers:Dpp4-E10ScF1:5′-GATTCTGAGCAAGCAAACACGC-3′, encodingthespikeproteinandGFPgenewerepackagedintoVRPsgeneratedwith andDpp4-E10ScR1:5′-CCACAAGGTATCCCACAGAGACG-3′.The helperconstructsfromtheV3526attenuatedstrainofVenezuelanequine 752bpPCRproductwassequencedwithprimerDpp4-E10-SqR1: encephalitisvirus,underBSL2conditions,asdescribedpreviously20.Micewere 5′-CAAGAACCACACCAATGGAAAGTC-3′.Mutationsatthe330positionwere administeredaprimaryvaccinationof10µlbyfootpadinjectionofspike–VRP detectedbyamplifyingbiopsyDNAsampleswiththefollowingprimers: (1×105p.f.u.)orcontrolGFP–VRP(1×105p.f.u.).After28days,themicewere Dpp4-E11ScF1:5′-AAGTGCTGGGATTATAGGTGGTCAC-3′,andDpp4-E11ScR1: boostedwiththesamedoseoftheirrespectiveVRPstrain.At28dayspostboost,all 5′-GTGTTTACATTCTAAGTTGGGTTTCTGC-3′.The767bpPCRproductwas vaccinatedmicewerechallengedwith5×106p.f.u.MERS-15C2.Micewere sequencedwithprimerDpp4-E11-SqF1:5′-GCATGTTATCCACTGTGCCATCTC-3′. monitoreddailyforweightandsurvival,andkilledatdays3and6p.i.tocollect Fiveof66liveanimalsproducedshowedevidenceofboththe288and330modifications. lungsforhistology,assessmentofviraltitrebyplaqueassayandevaluationoflung FounderswithbothexpectedmodificationswerebackcrossedtoC57BL/6Jmiceto haemorrhaging.Respiratoryfunctionwasmeasuredatday0toestablishabaseline identifyanimalswiththe288and330modificationsincis.F animalswithboththe288 andthenagainatdays3and6p.i. 1 and330modificationswerethenintercrossedtoproducehomozygousbreederpairsfor ThepresenceofMERS-15C2-specificserumantibodieswasassessedbyaplaque colonyenrichmentanddownstreamstudies. reductionneutralizationtitreassay.Prechallengeserumsampleswerecollectedat 25dayspostboostwiththespike–VRPvaccineortheGFP–VRPcontrol.Virus Mouseinfections.GeneticallyengineeredmicewithamodifiedmDPP4receptor neutralizationassayswereperformedasdescribedpreviously35.Thepercentageof werehousedandbredinaccordancewithguidelinesestablishedbytheDepartment plaquereductionwascalculatedas:1− (numberofplaqueswithspike–VRPor ofLaboratoryAnimalMedicineatUNC-CH.Asthe288/330+/+and288/330+/−mice GFP–VRPserum/numberofplaqueswithserumfromnaïve288/330+/+mice)×100. arenovelmouselinesdevelopedinthelaboratoryofR.S.B.,experimentsutilized availablemaleandfemalemicethatrangedfrom12to20weeksofage.Basedon Respiratoryfunction.Respiratoryfunctionwasmeasuredforindividualmice,atthe availabilityatthetimeofeachexperiment,experimentalandcontrolanimalswere indicatedtimepoints,asdemonstratedpreviouslyforSARS-CoVandinfluenzaA age-andsex-matched.Noblindingwasusedinanyanimalexperiments,and virus17.Briefly,individualmicewereacclimatedfor30mininindividual animalswerenotrandomized.Samplesizesweredeterminedfrompreliminarydata plethysmographychambers(BuxcoSystems)andeachbreathwasthenquantified thatwouldyieldstatisticallysignificantdifferences.Mousestudieswereexecuted overa5minperiod.Micewereroutinelyrandomizedintodifferentchambersto underanimalBSL3conditionsasdescribedpreviously35.Beforeviralinfection,mice avoidmeasurementbiasesthatcouldresultbetweenchambers.DataforPenhand wereanesthetizedbyadministering50µlketamine/xylazinemixture EF wereanalysedasdescribedpreviouslybyourgroup17. 50 intraperitoneallyandtheninfectedintranasallywith50µlvirussolutioncontaining 5×106p.f.u.Incompleteinfectionsduetobubblingofinoculumfromthenasal Histology.Lung,brainandkidneysampleswereplacedin10%phosphate-buffered cavity,theinabilitytoinhaletheentiredoseorinoculumgoingintothemouthwere formalinfor>7daysat4°Cforfixation.Fixedtissuesampleswerethenremoved noted,andthesemicewereconsideredfailuresandwereexcluded,asdescribed fromtheBSL3,placedintocassettesforembeddinginparaffinandsubmittedtothe previously35.Followingsedationandinfection,miceweremonitoreddailyforweight LinebergerComprehensiveCancerCenterAnimalHistopathologyCorefor lossandsurvival,aswellasforsignsthattheanimalsweremoribund(including processing,sectioningandstaining.Tissuesections(5µm)werestainedwith labouredbreathing,lackofmovementandlackofgrooming).Micethatreached20% haematoxylinandeosin,andMERS-CoVnucleocapsidantigenwasdetectedusing weightlosswereplacedunderexceptionandmonitoredatleasttwicedaily.Micethat mouseanti-MERSnucleocapsidserumata1:250dilution.Thenucleocapsid approached30%weightlosswereeuthanizedimmediately.Micedeemedmoribund antiserumwasgeneratedinthelaboratoryofR.S.B.usingMERS-CoVnucleocapsid– wereeuthanizedatthediscretionoftheresearcher.Micewereeuthanizedwithan VRPparticlesinBALB/cmiceasdescribedpreviously20.Antigenwasvisualized isofluraneoverdosefollowedbyasecondarythoracotomy,atvarioustimepoints,to using3,3′-diaminobenzidinestaining.AnOlympusDP71cameraattachedtoan collectlungtissues.Intheabsenceofathoracotomy,cervicaldislocationwasusedas OlympusBX41microscopewasusedtocaptureimageswith×10and×40objectives. asecondaryeuthanasiamethod.AllareapprovedmethodsoftheInstitutional Histopathologywasscored,blindedtoinfectionandanimalstatus,forairway AnimalCareandUseCommittee(IACUC)attheUNC-CH. disease,vasculardisease,parenchymalpneumonia,diffusealveolardamage, eosinophilsandimmunohistochemistryonascaleof0–3(0,none;1,mild;2, Ethicsstatement.Mousestudieswerecarriedoutinaccordancewiththe moderate;3,severe). recommendationsforthecareanduseofanimalsbytheOfficeofLaboratory AnimalWelfareatNIH.IACUCatUNC-CHapprovedtheanimalstudies Flowcytometryanalysis.Wholeperipheralbloodfromeachmousestrainwas performedhere(protocol,IACUC13-272),usingaweightlosscut-offpointof collectedinEDTAandperipheralbloodmononuclearcellswerepurifiedusing ∼30%forhumaneeuthanasia.SyntheticallyreconstructedMERS-CoVswere density-gradientcentrifugationoverFicoll-PaquePLUS(GEHealthcareLife approvedbytheUNC-CHInstitutionalBiosafetyCommittee,whichalsoconsidered Sciences).Mouselungtissueswerefirstdissociatedmechanicallyusingscalpelblades GOFresearchconcernsbeforeexecutionoftheseexperiments. andthendigestedfurtherusingtypeAcollagenase(WorthingtonBiochemical)in mediumpreparedwithDNaseI(1mgml−1)for1hinashakingincubatorat37°C. Analysisofserumglucoselevels.Allbloodglucosemeasurementsweretaken Digestedlungsuspensionswerefiltered,centrifugedandtreatedwithACKlysis followinga6hfast.Bloodglucosewasmeasuredbytailclipsamplingusingan buffer(Gibco).Single-cellsuspensionsfrombloodandlungtissuewereresuspended AlphaTRAK2glucometer(AbbottLaboratories)36.Thissystemisdesignedforuse at1×107cellsml−1inRPMI1640mediumsupplementedwith10%heat-inactivated inlaboratorymice,withanormalrangeof111–205mgdl−1(6.1–11.38mmoll−1) FBSandantibiotic/antimycoticcocktail(allfromGibco),andwereused bloodglucoseandadetectionlimitof20–750mgdl−1(1.1–41.62mmoll−1) immediatelyforflowcytometry.Single-cellsuspensionswereplatedin200µlper bloodglucose. wellon96-well,round-bottomedplatesandstainedforflowcytometryusingan IntracellularFixationandPermeabilizationBufferSet(eBioscience)accordingtothe AdaptationofMERS-0inhumanizedmice.TherecombinantvirusMERS-0was manufacturer’sprotocolandusingantibodiesspecificforCD3(clone145-2C11;BD passedthroughthelungsof288/330+/−miceevery3daysfor15passagestoobtaina Biosciences),CD4(cloneGK1.5;BDBiosciences),CD8(clone53-6.7;eBioscience), MERS-CoVthatwasadaptedtocauserespiratorydiseaseinmice(MERS-15).At CD25(clonePC61;BDBiosciences),CD26/DPP4(cloneH194-112;Biolegend), eachpassage,thelungswerehomogenizedand50µllunghomogenatewasusedfor CD69(cloneH1.2F3;eBioscience),interferon-γ(cloneXMG1.2;BDBiosciences), intranasalinfectionofanaïve288/330+/−mouse.TheMERS-15mouse-adapted tumour-necrosisfactor-α(cloneMP6-XT22;eBioscience)andinterleukin-2(clone viruswasassessedinmicebysurvival,weightloss,lungtitre,haemorrhaging, JES6-5H4;eBioscience).CellswerealsotreatedwithafixableLIVE/DEAD respiratoryfunctionandhistopathologyindicativeofdiffusealveolardamageand discriminator(Invitrogen).Stainedcellswerefixedfor20minin1% ARDS.ClonalisolatesoftheMERS-15viruswereobtainedbyplaquepurification paraformaldehyde,resuspendedinPBSandstoredat4°Cbeforeacquisitionwithin andamplificationinVeroCCL81cells,andweresequencedtodeterminethe 24h.Cellpopulationswerefirstgatedtoexclude(1)debris,(2)doubleteventsand mutationsacquiredduringmouseadaptationofthevirus.Allsequencingwas (3)deadcellsbeforephenotypicandfunctionalgating.Allsampleswerestainedin performedattheUNC-CHGenomeAnalysisFacility.MERS-15C2reproducedthe parallelwithcontrolsoffluorescence–1.Aminimumof100,000live,singletevents severerespiratorydiseaseobservedwithMERS-15;therefore,allsubsequent wereacquiredpersample,anddatawereanalysedusingFlowJosoftware(TreeStar). experimentswereperformedwiththeplaque-purifiedMERS-15C2. NorthernblotanalysisandRT-PCR.Northernblotanalysiswasperformedfor Humanmonoclonalantibody3B11protectionstudy.The288/330+/+micewere detectionoffull-lengthmDPP4inthelungsof288/330+/+,288/330+/−andC57BL/6J prophylacticallyadministered250µgofhumanmonoclonalantibody3B11or wild-typemice.Poly(A)RNAwasisolatedtoeliminateribosomalRNA(rRNA; isotypecontrolantibodyF10byintraperitonealinjection1912hbeforeinfectionwith Qiagen).EquivalentamountsofRNAwereresolvedon0.8%agarosegelsand MERS-15C2.Miceweremonitoreddailyforweightandsurvival,andkilledatdays3 transferredtonitrocellulosemembrane.Abiotinylatedprobe(5′-biotin-gATg and6p.i.tocollectthelungsforhistology,forviraltitreassessmentbyplaqueassay (biotin-dT)gCTggTgAgCTgTgCTgCTAgCgATCCCgTggTCTTCATCC-3′)was andforevaluationoflunghaemorrhaging.Respiratoryfunctionwasmeasuredat usedtodetectmDPP4. NATUREMICROBIOLOGY|www.nature.com/naturemicrobiology 9 ©2016MacmillanPublishersLimited,partofSpringerNature.Allrightsreserved. ARTICLES NATURE MICROBIOLOGY DOI:10.1038/NMICROBIOL.2016.226 ToquantifyviralandtargetedhostmRNAs,MERS-CoV,mDPP4andmouse References glyceraldehyde3-phosphatedehydrogenase(GAPDH)RNAsweremeasuredin 1. Chan,J.F.-W.etal.Treatmentwithlopinavir/ritonavirorinterferon-β1b brainandlungtissuefromMERS-CoV-infectedmice.Briefly,tissueswereremoved improvesoutcomeofMERS-CoVinfectioninanonhumanprimatemodelof andplacedintoRNALater(Ambion)solutionandstoredat−80°Cuntilanalysisby commonmarmoset.J.Infect.Dis.212,1904–1913(2015). RT-PCR.LungtissuewashomogenizedinTRIzolreagent(Invitrogen)andisolated 2. deWit,E.etal.MiddleEastrespiratorysyndromecoronavirus(MERS-CoV) accordingtothemanufacturer’sinstructions.StandardRT-PCRwasperformedwith causestransientlowerrespiratorytractinfectioninrhesusmacaques.Proc.Natl thefollowingprimerpairsforeachoftheindicatedRNAs:MERS-CoVsubgenomic Acad.Sci.USA110,16598–16603(2013). leadersequence:5′-CTATCTCACTTCCCCTCgTTCTC-3′and5′-GAATCATTG 3. Falzarano,D.etal.InfectionwithMERS-CoVcauseslethalpneumoniainthe TTAGGGTTCCG-3′;mouseGAPDH:5′-CAACgACCCCTTCATTgACC-3′and commonmarmoset.PLoSPathogens10,e1004250(2014). 5′-GCAGGGATGATGTTCTGGGC-3′;andmDPP4:5′-TAACGACACAGGAGTG 4. Munster,V.J.,deWit,E.&Feldmann,H.Pneumoniafromhumancoronavirus CCGC-3′and5′-TCTGCTTTTTGACTACAGGG-3′.EquivalentvolumesofPCR inamacaquemodel.N.Engl.J.Med.368,1560–1562(2013). productwereresolvedongelsforanon-quantitativeanswer(presenceorabsence)of 5. Johnson,R.F.etal.3B11-N,amonoclonalantibodyagainstMERS-CoV,reduces viralsubgenomictranscriptsinthebrainandlung. lungpathologyinrhesusmonkeysfollowingintratrachealinoculationofMERS- QuantitativeRT-PCRwascarriedoutonaRocheLightCycler480II,with CoVJordan-n3/2012.Virology490,49–58(2016). accompanyingsoftware,toanalyseMERS-CoVviralRNAandmDPP4mRNAs,and 6. Johnson,R.F.etal.IntratrachealexposureofcommonmarmosetstoMERS- 18SrRNAasanendogenouscontrol.AllRNAswerereversetranscribedunder CoVJordan-n3/2012orMERS-CoVEMC/2012isolatesdoesnotresultinlethal standardconditionsina20µlreactionvolumeusingSuperScriptIIIreverse disease.Virology485,422–430(2015). transcriptase(Invitrogen).MERS-CoVviralRNAwasassessedusingthe 7. Cockrell,A.S.etal.Mousedipeptidylpeptidase4isnotafunctionalreceptor followingprimersat900nMina20µlreactioninaSYBRGreenassaywith2× forMiddleEastrespiratorysyndromecoronavirusinfection.J.Virol.88, SansonAeadlvsaantctehdeUMnEivReSrs-CaloSVYBleRadGerreseenquSeunpceerminixth(eBi5o′ruadn)t.raTnhselaftoedrwraergdiopnrimer 5195–5199(2014). (5′-GAATAGCTTGGCTATCTCAC-3′)andthereverseprimerannealsintheN 8. Coleman,C.M.,Matthews,K.L.,Goicochea,L.&Frieman,M.B.Wild-typeand gene(5′-TTGTTATCGGCAAAGGAAAC-3′).PCRconditionswere45cyclesof innateimmune-deficientmicearenotsusceptibletotheMiddleEastrespiratory syndromecoronavirus.J.Gen.Virol.95,408–412(2014). 95°Cfor10s,59°Cfor10sand72°Cfor15s.StandardTaqmanconditions 9. deWit,E.etal.TheMiddleEastrespiratorysyndromecoronavirus(MERS- wereusedtoanalyseexpressionofmDPP4and18SrRNAs.Thefollowing primerswereusedformDPP4:5′-CCCCAAGACAGTGTGGATTC-3′and CoV)doesnotreplicateinSyrianhamsters.PLoSONE8,e69127(2013). 5′-GAGGATGAGCTGAGAGAGTCTATATTT-3′;probeno.51wasusedfromthe 10.Raj,V.S.etal.Adenosinedeaminaseactsasanaturalantagonistfordipeptidyl RocheUniversalProbeLibrary.PCRconditionswere45cyclesof95°Cfor15sand peptidase4-mediatedentryoftheMiddleEastrespiratorysyndrome 60°Cfor50s.A20×commerciallyavailableprimer/probesetwasutilizedto coronavirus.J.Virol.88,1834–1838(2014). quantitatethe18SrRNA(LifeTechnologies). 11.Ohnuma,K.,Dang,N.H.&Morimoto,C.Revisitinganoldacquaintance: CD26anditsmolecularmechanismsinTcellfunction.TrendsImmunol.29, Statisticalanalysis.Allquantitativedataarepresentedasmeans±1s.d.Significance 295–301(2008). betweenspecificdatasetsisdescribedintherespectivefigurelegendsandwas 12.Agrawal,A.S.etal.GenerationofatransgenicmousemodelofMiddleEast determinedbyStudent’st-testusingaone-tailedortwo-taileddistributionin respiratorysyndromecoronavirusinfectionanddisease.J.Virol.89, MicrosoftExcelsoftware. 3659–3670(2015). 13.Li,K.etal.MiddleEastrespiratorysyndromecoronaviruscausesmultipleorgan Biosafetyandbiosecurity.InvivoadaptationoftheMERS-0virusinmicehadbeen damageandlethaldiseaseinmicetransgenicforhumandipeptidylpeptidase4. executedbeforepublicationoftheUSGovernment’sstatementonfundingpauseon J.Infect.Dis.213,712–722(2016). certaintypesofGOFresearch37.Whennoticetoceaseallinvivopassage 14.Zhao,G.etal.Multi-organdamageinhumandipeptidylpeptidase4transgenic experimentswasreceived,allstudiestoadapttheMERS-0virusinvivowere miceinfectedwithMiddleEastrespiratorysyndrome-coronavirus.PLoSONE immediatelyhalted.Followingourformalwrittenrequestforcontinuation,andon 10,e0145561(2015). receivinganexemptionfromthepauseandapprovaltocontinueafteraNational 15.Zhao,J.etal.RapidgenerationofamousemodelforMiddleEastrespiratory InstituteofAllergyandInfectiousDiseases/NIHreview,theinvivoadaptationof syndrome.Proc.NatlAcad.Sci.USA111,4970–4975(2014). MERS-0wasthencontinuedbyserialpassageinmice.AllstudiesusingMERS-CoV 16.Lambeir,A.M.,Durinx,C.,Scharpe,S.&deMeester,I.Dipeptidyl-peptidaseIV wereexecutedinBSL3facilitiesatUNC-CH,underconditionsdescribedpreviously35. frombenchtobedside:anupdateonstructuralproperties,functions,andclinical Thefollowingbiosafetyandbiosecurityparagraphisasdescribedby aspectsoftheenzymeDPPIV.Crit.Rev.Clin.Lab.Sci.40,209–294(2003). Menacheryetal.35Allworkforthesestudieswasperformedwithapprovedstandard 17.Menachery,V.D.,Gralinski,L.E.,Baric,R.S.&Ferris,M.T.Newmetricsfor operatingproceduresandsafetyconditionsforMERS-CoV(notaselectagent), evaluatingviralrespiratorypathogenesis.PLoSONE10,e0131451(2015). SARS-CoV(selectagent)andderivativestherein.OurinstitutionalCoVBSL3 18.Ng,D.L.etal.Clinicopathologic,immunohistochemical,andultrastructural facilitieshavebeendesignedtoconformtothesafetyrequirementsthatare findingsofafatalcaseofMiddleEastrespiratorysyndromecoronavirus recommendedbytheBiosafetyinMicrobiologicalandBiomedicalLaboratories,the infectionintheUnitedArabEmirates,April2014.Am.J.Pathol.186, USDepartmentofHealthandHumanServices,thePublicHealthService,the 652–658(2016). CentersforDiseaseControlandtheNIH.Laboratorysafetyplansweresubmittedto, 19.Tang,X.C.etal.IdentificationofhumanneutralizingantibodiesagainstMERS- andthefacilityhasbeenapprovedforuseby,theUNCDepartmentof CoVandtheirroleinvirusadaptiveevolution.Proc.NatlAcad.Sci.USA111, EnvironmentalHealthandSafety(EHS)andtheCDC.Electroniccardaccessis E2018–E2026(2014). requiredforentryintothefacility.AllworkershavebeentrainedbyEHStosafelyuse 20.Agnihothram,S.etal.AmousemodelforBetacoronavirussubgroup2cusinga poweredair-purifyingrespirators,andappropriateworkhabitsinaBSL3facilityand batcoronavirusstrainHKU5variant.mBio5,e00047-14(2014). activemedicalsurveillanceplansareinplace.OurBSL3facilitiescontainredundant 21.Korteweg,C.&Gu,J.Pathology,molecularbiology,andpathogenesisofavian fans,emergencypowertofans,andbiologicalsafetycabinetsandfreezers,andour influenzaA(H5N1)infectioninhumans.Am.J.Pathol.172,1155–1170(2008). facilitiescanaccommodateSealSafemouseracks.MaterialsclassifiedasBSL3agents 22.Ng,W.-F.,To,K.-F.,Lam,W.W.,Ng,T.-K.&Lee,K.-C.Thecomparative consistofMERS-CoV,SARS-CoV,batCoVprecursorstrainsandmutantsderived pathologyofsevereacuterespiratorysyndromeandavianinfluenzaAsubtype fromthesepathogens.WithintheBSL3facilities,experimentationwithinfectious H5N1–areview.Hum.Pathol.37,381–390(2006). virusisperformedinacertifiedClassIIBiosafetyCabinet.Allmembersofstaffwear 23.Sanders,C.J.etal.Compromisedrespiratoryfunctioninlethalinfluenza scrubs,Tyveksuitsandaprons,poweredair-purifyingrespiratorsandshoecovers, infectionischaracterizedbythedepletionoftypeIalveolarepithelialcells andtheirhandsaredouble-gloved.BSL3usersaresubjecttoamedicalsurveillance beyondthresholdlevels.Am.J.Physiol.LungCell.Mol.Physiol.304, planmonitoredbytheUniversityEmployeeOccupationalHealthClinic(UEOHC), L481–L488(2013). whichincludesayearlyphysical,annualinfluenzavaccinationandmandatory 24.Pascal,K.E.etal.Pre-andpostexposureefficacyoffullyhumanantibodies reportingofanysymptomsassociatedwithcoronvirusinfectionduringperiods againstSpikeproteininanovelhumanizedmousemodelofMERS-CoV whenworkingintheBSL3.AllBSL3usersaretrainedinexposuremanagementand infection.Proc.NatlAcad.Sci.USA112,8738–8743(2015). reportingprotocols,arepreparedtoself-quarantineandhavebeentrainedforsafe 25.Frieman,M.etal.Moleculardeterminantsofsevereacuterespiratorysyndrome deliverytoalocalinfectiousdiseasemanagementdepartmentinanemergency coronaviruspathogenesisandvirulenceinyoungandagedmousemodelsof sUitEuOatHioCn,.wAiltlhporetepnotritaslfielxepdotsourbeoetvhetnhtesaCrDeCrepaonrdtetdheanNdIHin.vestigatedbyEHSand humandisease.J.Virol.86,884–897(2012). 26.Thornbrough,J.M.etal.MiddleEastrespiratorysyndromecoronavirusNS4b Dataavailability.Thedatathatsupportthefindingsofthisstudyareavailablefrom proteininhibitshostRNaseLactivation.mBio7,e00258(2016). 27.Dediego,M.L.etal.Pathogenicityofsevereacuterespiratorycoronavirus thecorrespondingauthoronrequest. deletionmutantsinhACE-2transgenicmice.Virology376,379–389(2008). 28.Sims,A.C.etal.Releaseofsevereacuterespiratorysyndromecoronavirus Received27April2016;accepted14October2016; nuclearimportblockenhanceshosttranscriptioninhumanlungcells.J.Virol. published28November2016 87,3885–3902(2013). 10 NATUREMICROBIOLOGY|www.nature.com/naturemicrobiology ©2016MacmillanPublishersLimited,partofSpringerNature.Allrightsreserved.

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.