ebook img

2014 Protection from SARS coronavirus conferred by live measles vaccine expressing the spike glycoprotein PDF

2014·1.88 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview 2014 Protection from SARS coronavirus conferred by live measles vaccine expressing the spike glycoprotein

Virology452-453(2014)32–41 ContentslistsavailableatScienceDirect Virology journal homepage: www.elsevier.com/locate/yviro Protection from SARS coronavirus conferred by live measles vaccine expressing the spike glycoprotein Nicolas Escrioua,c,d,n,1, Benoît Callendreta,c,d, Valérie Lorina,c,d,1, Chantal Combredetb,c, Philippe Marianneaue, Michèle Févrierb,c, Frédéric Tangyb,c,nn aInstitutPasteur,UnitédeGénétiqueMoléculairedesVirusàARN,DépartementdeVirologie,F-75015Paris,France bInstitutPasteur,UnitédeGénomiqueViraleetVaccination,DépartementdeVirologie,F-75015Paris,France cCNRS,UMR3569,F-75015Paris,France dUniv.ParisDiderot,Sorbonne,ParisCité,EA302,F-75015Paris,France eInstitutPasteur,UnitédeBiologiedesInfectionsViralesEmergentes,DépartementdeVirologie,F-69007Lyon,France a r t i c l e i n f o a b s t r a c t Articlehistory: TherecentidentificationofanovelhumancoronavirusresponsibleofaSARS-likeillnessintheMiddle- Received21October2013 EastadecadeaftertheSARSpandemic,demonstratesthatreemergenceofaSARS-likecoronavirusfrom Returnedtoauthorforrevisions ananimalreservoirremainsacrediblethreat.BecauseSARSiscontractedbyaerosolizedcontamination 7November2013 oftherespiratorytract,avaccineinducingmucosallong-termprotectionwouldbeanassettocontrol Accepted3January2014 newepidemics.Tothisaim,wegeneratedliveattenuatedrecombinantmeaslesvaccine(MV)candidates expressingeitherthemembrane-anchoredSARS-CoVspike(S)proteinoritssecretedsolubleectodomain Keywords: (Ssol). In mice susceptible to measles virus, recombinant MV expressing the anchored full-length S Coronavirus induced the highest titers of neutralizing antibodies and fully protected immunized animals from Severeacuterespiratorysyndrome intranasal infectious challenge with SARS-CoV. As compared to immunization with adjuvanted Spikeglycoprotein recombinantSsolprotein,recombinantMVinducedstrongerandTh1-biasedresponses,ahallmarkof Measlesvaccine liveattenuatedvirusesandahighlydesirablefeatureforanantiviralvaccine. &2014ElsevierInc.Allrightsreserved. Introduction Chinesecivetsandracoondogs(Guanetal.,2003)fromwhichthe viruswaslikelyintroducedintothehumanpopulation(Kanetal., Severeacuterespiratorysyndrome(SARS)isanewlyemerged, 2005; Song et al., 2005). Other SARS-CoV-like viruses sharing humaninfectiousdiseasethatfirstappearedinChinainlate2002. more than 88% nucleotide identities with SARS-CoV have been Between November 2002 and July 2003, the virus spread to 29 isolatedfromChinesehorseshoebats,whichhavethereforebeen differentcountries on5 continentsand wasresponsible for8096 proposed to represent a natural reservoir host of SARS-CoV clinical cases, leading to 774 deaths (WHO, 2004). WHO case (Lietal.,2005).Todate,endemicbatSARS-CoV-likeviruseshave management guidelines and restricted travel advices allowed to alsobeendetectedinAfricaandEurope(forreview:Balbonietal., bring SARS under control by July 2003. The etiological agent of 2012), and reemergence of a SARS-like disease from an animal SARS was identified as a novel coronavirus, named SARS- reservoir remains a credible public health threat. An efficient associated coronavirus (SARS-CoV) (Drosten et al., 2003; Ksiazek vaccine would be the most effective way to control a new etal.,2003)thatisgeneticallydistinctfrompreviouslycharacter- epidemic. ized members of the Coronaviridae family (Rota et al., 2003). Similar to other coronaviruses, SARS-CoV is an enveloped, During the 2002–2003 outbreak, SARS-CoV has been isolated in positive-stranded RNAvirus whose replication takes place in the cytoplasm of infected cells. Viral particles are composed of four majorstructuralproteins:thenucleoprotein(N),thesmallenvel- nCorrespondenceto:UnitédeGénomiqueViraleetVaccination,InstitutPasteur, ope protein (E), the membrane protein (M), and the large spike 25-28 rue du Dr. Roux, 75724 Paris Cedex 15, France. Tel.:þ33140613901; fax:þ33140613167. protein (S). The spike protein is a type-I transmembrane glyco- nnCorrespondenceto:UnitédeGénomiqueViraleetVaccination,InstitutPasteur, proteinof1255aminoacids.Itassemblesintohomotrimersatthe 25-28 rue du Dr. Roux, 75724 Paris Cedex 15, France. Tel.:þ33145688770; surface of viral particles, and gives the virion its crown-like fax:þ33140613167. appearance (Neuman et al., 2006). Each monomer (180kDa) is E-mailaddresses:[email protected](N.Escriou), composed of a signal sequence (a.a.1–14), a large ectodomain (a.a. [email protected](F.Tangy). 1Presentaddress:InstitutPasteur,UnitédeGénomiqueViraleetVaccination, 15–1190) with 23 potential N-glycosylation sites,a transmembrane DépartementdeVirologie,F-75015Paris,France. domain (a.a. 1191–1227), and a short cytoplasmic tail of 28 a.a. 0042-6822/$-seefrontmatter&2014ElsevierInc.Allrightsreserved. http://dx.doi.org/10.1016/j.virol.2014.01.002 N.Escriouetal./Virology452-453(2014)32–41 33 (Ksiazeketal.,2003;Rotaetal.,2003).TheSproteinisresponsible Results forviralentry,bindstothecellularreceptorACE2(Lietal.,2003)and mediates fusion between the viral and cellular membranes RecombinantMVSchw-SARSvirusesexpresstheSARS-CoVspike (Petit et al., 2005; Simmons et al., 2005). Structurally, the glycoprotein,secreteitssolubleectodomain,andreplicateefficiently N-terminal globular head (S1 domain, a.a. 1–680) contains the receptor-binding region (Wong et al., 2004), and the membrane- Wesynthesizedhumancodon-optimizedgenesencodingthefull- anchored stalk region (S2 domain, a.a. 727–1255) mediates oligo- length,membraneanchoredSARS-CoVspike(S)proteinanditsentire merizationandfusion(Petitetal.,2005).Similarlytoothercorona- ectodomain (residues 1–1193, hereafter designed as Ssol), which is viruses, cleavage of the S protein by proteases into its S1 and S2 expressedinmammaliancellsasasolubleandsecretedpolypeptide subunits is required foractivation of the membrane fusion domain (Callendret et al., 2007, Callendret et al., unpublished results). Their following binding to target cell receptors (Matsuyama et al., 2010; lengthrespectsthe“ruleofsix”,whichstipulatesthatthetotalnumber Simmonsetal.,2005). ofnucleotidesintotheMVgenomemustbeamultipleof6(Calainand Duetoitscriticalinvolvementinreceptorrecognition,aswell Roux, 1993). MV editing- and polyadenylation-like sequences were asvirusattachmentandentry,theSproteinisthemostpromising mutated(LambandKolakofsky,2001;Schneideretal.,1997).BothS andstudiedcandidateantigenforSARS-CoVvaccinedevelopment. andSsolsequenceswereinsertedasanadditionaltranscriptionunit Itisthemajortargetforneutralizingantibodiesinhumanpatients (ATU) into MV vector (pTM-MVSchw plasmid), which contains an (Heetal.,2005;Nieetal.,2004)andinanimalmodels(Buchholz infectiousMVcDNAcorrespondingtotheanti-genomeoftheSchwarz et al., 2004; Tripp et al., 2005). Passive transfer of IgG from vaccine strain(Combredetetal., 2003)(Fig.1A).The resulting pTM- convalescentSARSpatientsenhancedtherecoveryofacutephase MVSchw-S and pTM-MVSchw-Ssol plasmids were transfected into patients when administered within 15 days after the onset of helper 293-T7-MV cells as previously described (Combredet et al., symptoms(Chengetal.,2005;Yehetal.,2005).Administrationof 2003). The corresponding recombinant measles viruses MV-S and S-specific antibodies, including monoclonal antibodies, to naïve MV-Ssol were successfully rescued as indicated by the formation of animals conferred protection against a subsequent SARS-CoV syncytia,andthenpropagated inVerocell culture.We analyzedthe infection, demonstrating that the antibodies alone can protect replication of MV-S and MV-Ssol viruses on Vero cells by using the againstSARSinmice(Bishtetal.,2004),hamsters(Robertsetal., sameMOI(0.01)thanforstandardMVstockproduction(Fig.1B).The 2006), ferrets (ter Meulen et al., 2004) and Rhesus macaques growthofMV-Ssolwasonlyslightlydelayed,comparedwiththatof (Miyoshi-Akiyama et al., 2011). Accordingly, several candidate parentalemptySchwarz MV(MVSchwarz).Thefinalyield,routinely vaccines relying on the induction of spike-specific neutralizing obtained at 60h post-infection, was high and identical to that of antibodies, including DNAvaccines (Callendret et al., 2007; Yang parentalMVSchwarz(106TCID50/ml).ViralgrowthandyieldofMV-S et al., 2004), live viralvectors (Buchholz et al., 2004; Chen et al., weremoreaffectedthanthatofMV-Ssol.Thismaybeduetoreduced 2005; Kapadia et al., 2005), live attenuated vaccines (Lamirande MVbuddingbecauseoftheinsertionoffulllengthSatthesurfaceof et al., 2008), subunit vaccines (Bishtet al., 2005; He et al., 2006; theinfectedcells,asalreadyobservedforMVexpressingmembrane- Zhou et al., 2006) and inactivated virus vaccine (Stadler et al., anchoredformsofHIV1gp160(Lorinetal.,2004). 2005;Zhouetal.,2005),havebeenreportedtoinduceaprotective We analyzed the expression of SARS-CoV spike antigens by immune response in various animal models. Onlya few of them indirectimmunofluorescence(IFA)ofVerocellsinfectedbyrecom- havebeenevaluatedinphaseIclinicaltrialsand,lackinganatural binant viruses and by immunoblotting of infected-cell lysates. At challenge, there is no data on efficacy in humans (Roberts et al., 48hpost-infection,IFAperformedonpermeabilizedcellsusingan 2008;RoperandRehm,2009). anti-Shyperimmune mouse asciticfluid revealedastrongexpres- An ideal vaccine against SARS should induce long-lasting pro- sion of both full-length S and entire ectodomain Ssol of the spike tectiveresponsesafterasingleadministration,beproducedatlow protein along the compartments of the secretory pathway in costandscaleduptomillionsofdoses.Liveattenuatedvaccinesare measles-induced syncytia (Fig. 1C, upper panels). When infected particularlyappropriate for mass vaccination as theyare inexpen- cellswerenotpermeabilizedbeforelabeling,onlythecellsurfaceof sive tomanufacture andinduceastrongimmunityandlong-term MV-S induced syncytia was readily stained, indicating that the memory after a single injection. To evaluate such a vaccine membrane-anchored S is efficiently transported to the surface approach, we previously developed a vector derived from the (Fig. 1C, lower panels). Western blot analysis of cell lysates and live-attenuated Schwarz strain of measles virus (MV) (Combredet supernatants using rabbit anti-S polyclonal antibodies confirmed etal.,2003).MVvaccineisalive-attenuatednegative-strandedRNA the expressionofS and Ssol proteinsinrecombinant MV-infected virus proven to be one of the safest and most effective human Verocellswiththeexpectedapparentmolecularmassof(cid:2)180kDa vaccines. Produced on a large scale in many countries and dis- (Fig.1D, left panel). Under reducing SDS-PAGE conditions the full tributedatlowcostthroughtheExtendedProgramonImmuniza- lengthSproteinmigratesasadoublet,whichwasdescribedastwo tion(EPI),thisvaccineinduceslife-longimmunitytomeaslesafter differentially glycosylated forms (Song et al., 2004). The lighter oneortwoinjections.WepreviouslyshowedthatMVvectorstably productwassuggestedtobeanER-residentformof theglycopro- expresseddifferentproteinsfromHIVandflavivirusesandinduced tein and the heavier a Golgi-processed form containing complex strong and long-term transgene-specific neutralizing antibodies carbohydrates. Other bands of lower molecular weight were also andcellularimmuneresponses,eveninthepresenceofpreexisting observedthatprobablycorrespondtominordegradationfragments, immunitytoMV(Brandleretal.,2007,2013;Despresetal.,2005; since they were not present at earlier time points (not shown). Guerboiset al., 2009; Lorin etal., 2004). In the present study, we Expression levels were similar in lysates of MV-infected Vero-NK evaluated the immunogenic potential of recombinant MV-SARS cells and SARS-CoV infected VeroE6 cells. As expected, the full- vectorsexpressingeitherthefull-lengthorthesecretedectodomain lengthSproteinwasonlydetectedincelllysates.Incontrast,Ssol of the spike glycoprotein of SARS-CoV. In a mouse model of MV was clearly detected both in lysate and supernatant of MV-Ssol infection,MV-SARSrecombinantvirusesinducedneutralizinganti- infected Vero cells at 40h after infection (Fig. 1D, right panel), bodies against SARS-CoV and fully protected immunized animals indicating an efficient secretion. Consistently, the Ssol protein from intranasal challenge with SARS-CoV. Antibody responses secreted in the cell culture medium was heavier than the Ssol inducedbyMV-SARSvectors werequantitativelyandqualitatively observed within cell lysates, which is in agreement with this compared to responses induced by a prototype subunit vaccine glycoprotein being synthesized in an immature form in the ER preparedfromalum-adjuvantedrecombinantSsolprotein. priortotransfertotheGolgi,fromwhichitissecreted. 34 N.Escriouetal./Virology452-453(2014)32–41 7 1193 1255 SP=1-13 TM ml) 6 S-ORF 0/ 5 D CI 5 Ssol-ORF T Flag er] ( 4 BsiWI eGFP BssHII MV tit 3 T7 N P M F H L T7t [0 g1 2 o hhR C vR l V 1 pTM-MVSchw-ATU2 12 36 60 84 hours post-infection MV-Schwarz MV-S MV-Ssol Permeabilized Not Permeabilized V o MVSchw C MVSchw S- S - - + ck R S - + - Ssol - + - mo SA Ssol - - + S / Ssol 172 172 110 110 79 79 62 62 Lysates Supernatants Fig. 1. Characterization of MVSchw-SARS recombinant viruses expressing the full-length transmembrane spike glycoprotein (S) or its secreted ectodomain (Ssol). (A)SchematicrepresentationofthepTM-MVSchw-ATU2vectorcontainingtheSchwarzMVcDNAwithagreenfluorescentprotein(eGFP)geneasanadditionaltranscription unit(ATU).Codon-optimizedsyntheticgenescodingforthefull-lengthSproteinorsecretedectodomain(Ssol)wereinsertedintopTM-MVSchwbetweentheBsiWIand BssHIIsitesoftheATU,inplaceoftheeGFPgene.MVgenesareindicated:N(nucleoprotein),PVC(phoshoproteinandV/Caccessoryproteins),M(matrix),F(fusion), H(hemaglutinin),L(polymerase).T7:T7RNApolymerasepromoter.hhR:hammerheadribozyme.T7t:T7RNApolymeraseterminator.h∂vR:hepatitisdeltavirus(HDV) ribozyme.(B)GrowthkineticsofrecombinantMVSchw-SARSviruses.VerocellswereinfectedwiththeparentalMVSchw(opencircles)orrecombinantMV-S(filledsquares) orMV-Ssol(filledtriangles)virusesatanM.O.I.of0.01.Attheindicatedtimepoints,cellswerecollectedandcell-associatedvirustitersweredeterminedasdescribedin Materialsandmethods.(C)ImmunostainingofspikepolypeptidesinsyncytiaofMVSchw-SARS-infectedVerocells.Cellswerefixed24–48hafterinfectionwiththe indicatedvirusesandpermeabilizedwithtritonX-100(upperpanels)ornon-permeabilized(lowerpanels),thenlabeledasdescribedinMaterialsandmethodswithanti-S mousepolyclonalantibodiesandCy3-conjugatedanti-mouseIgGantibodies.(D)LysatesandsupernatantsofVero-NKcellsinfectedwithMVSchw-SARSviruseswere analyzedbywesternblotasdescribedinMaterialsandmethodsusingrabbitpolyclonalantibodiesspecificfortheSprotein.Ascontrols,wholecelllysatespreparedfrom uninfectedorSARS-CoVinfectedVeroE6cellswereanalyzed.Thepositionsoffull-lengthSandSsolpolypeptidesaswellasmolecularweightmarkers(kDa)areshown. MV-SandMV-SsolinduceTh1-typeimmuneresponseandSARS-CoV to MV infection (Mrkic et al.,1998) and compared to the immuno- neutralizingantibodiesinmice genicity of purified Ssol polypeptide produced in mammalian cells, whichconstitutesapotentialsubunitvaccinecandidateagainstSARS TheimmunogenicityoftherecombinantMVSchwarz-SARSviruses (Du et al., 2008). The CD46-IFNAR mice express CD46, the human wasinvestigatedingeneticallymodifiedCD46-IFNARmicesusceptible receptor for vaccine MV strains, and lack the INF-α/β receptor. They N.Escriouetal./Virology452-453(2014)32–41 35 havebeenusedpreviouslyasamodeltoevaluatetheimmunogenicity preimmune sera (not shown) and sera from control animals that of recombinant MV (Brandler et al., 2007; Combredet et al., 2003; receivedemptyMVSchwremainednegative(Fig.2A).Thesetiters Despresetal.,2005;Guerboisetal.,2009;Lorinetal.,2004).Eightto werehigherforbothMV-SandMV-Ssolinjectedanimals(average twelve-week-oldmaleCD46-IFNARmicewereimmunizedwithtwo titerof3.170.3and2.770.1log10,respectively)thanforanimals intraperitoneal(i.p.)injectionsat4-weekintervalof105TCID ofMV- immunized with Alum-adjuvanted Ssol protein (2.170.3log10 50 S orMV-Ssol recombinantviruses.As controls,agroupofmicewas titer,po10(cid:3)3).Afterthesecondinjection,titerswereboosted10– injectedwithemptyMVvector(105TCID )andanothergroupwith 20 times for animals immunized with MV vectors. Tallying with 50 2mg of purified Ssol protein adjuvanted with 50mg of aluminum the results observed after the first injection, MV-S induced the hydroxide (alum), usual doses for small rodents. Mice sera were highest IgG titers (4.470.5log10, po0.1). MV-Ssol induced collected three weeks after each injection. SARS-CoV- and measles- similartiters(3.870.2log10)thanalum-adjuvantedSsolprotein specificantibodyresponseswereevaluatedforeachindividualmouse (3.870.3log10). Interestingly, antibodies to MV were raised at by indirect ELISA against SARS-CoV and MV native antigens, similarlevelsinallmicethatreceivedeitherMVSchworMV-SARS respectively. viruses(Fig.2B),indicatingthatexpressionof theheterologous S Significanttitersofanti-SARSIgGwereraisedinallmiceafter proteinbytherecombinantvirusesdidnotaltertheirreplication the first injection of recombinant MV-SARS viruses, whereas invivonormodifytheirmeasles-specificimmunogenicity. 5 5 A IgG titer] 4 SA IgG titer] 4 LIS ELI V E us S-Co 3 es vir 3 R sl A a S e anti- 2 nti-M 2 [10 [a0 g 1 o g l o l 1 1 S1 S2 S1 S2 S1 2S S1 S2 PI S1 S2 S1 S2 S1 S2 I I I I I I I I I I I I I I MVSchw MV-S MV-Ssol MVSchw MV-S MV-Ssol Measles virus Protein Measles virus 4 er] 5 e tit A isotyp 4 gA titer] ELIS SA I 3 CoV 3 V ELI S- Co AR S- nti-S 2 SAR 2 g [a10 og [10 o l l 1 G1 G2a G1 G2a G1 G2a G1 G2a 1 Ig Ig Ig Ig Ig Ig Ig Ig IS2 IS2 IS2 IS2 MVSchw MV-S MV-Ssol MVSchw MV-S MV-Ssol Measles virus Protein Measles virus Protein Fig.2. AntibodyresponseinIFN-α⧸βR(cid:3)/(cid:3)CD46þ/(cid:3)miceimmunizedwithMVSchw-SARSrecombinantviruses.Groupsof6IFN-α⧸βR(cid:3)/(cid:3)CD46þ/(cid:3)micewereinjectedtwice intraperitoneallyatfour-weekintervalwith105TCID50oftheindicatedrecombinantMVSchw-SARSmeaslesvirusesorwithparentalMVSchw,ascontrol.Anothergroupof micewasimmunizedwithtwointramuscularinjectionsof2mgofpurifiedSsolpolypeptideadjuvantedwith50mgAlum.Serawerecollectedbeforeimmunization(PI)or 3weeksaftereachinjection(IS1andIS2,respectively).SARS-CoV-specific(A)orMV-specific(B)IgGantibodytitersweredeterminedbyindirectELISA,asdescribedin Materialsandmethods.(C)SARS-CoV-specific,IgG1(filledcircles)andIgG2a(opencircles)isotypetitersweredeterminedforeachIS2serumbyindirectELISA.(D)SARS- CoV-specificIgAantibodytitersweredeterminedforeachIS2serumbyindirectELISA.Valuesobtainedforeachindividualmousearerepresentedwithcircles,withmeans foreachgroupofmiceshownbyhorizontalbars.Detectionlimitsoftheassaysareindicatedbydottedlines. 36 N.Escriouetal./Virology452-453(2014)32–41 Additionally, the quality of the humoral response induced by wereinoculatedintranasallywith105pfuofSARS-CoVfiveweeks the various immunogens was studied on sera collected 3 weeks after the second immunization. Mice inoculated with empty after the second injection by IgG and IgA isotype analysis and MVSchwwereusedascontrols.Toevaluatethelevelofprotection neutralization assay. We first determined the specific IgG1 and against viral replication, we quantified the SARS-CoV infectious IgG2aisotypetiterstotheSARS-CoVantigensbyanti-SARSELISA titers in lung homogenates prepared two days after challenge (Fig. 2C). The immunizations with the alum-adjuvanted Ssol (Fig. 4). Control mice immunized with empty MVSchw were all protein almost exclusively induced IgG1, indicating that the infected except one, SARS-CoV replicating in their lungs at titers inducedimmuneresponsesarepredominantlyofTh2-typeaswe upto106pfu/lung.ThisshowsthatCD46-IFNARmicearesuscep- previouslyobservedinBALB/cmice(Callendretetal.,unpublished tibletointranasalSARS-CoVinfection,inagreementwithprevious results).Contrariwise,MV-SandMV-Ssolvirusesinducedsignifi- observations describing a self-limited bronchiolitis with mild or cantlyhighertitersofIgG2athanIgG1antibodies,particularlyfor moderatepneumonitisin129/Svmice(Hoganetal.,2004)andno MV-S(averageratioIgG2aoverIgG1of14.7and2.7respectively), increaseinsusceptibility,pathogenesisandhistologicaloutcomes reflecting a predominant Th1-type immune response induced by in IFNAR mice of the same genetic background (Frieman et al., the live recombinant measles vector. Interestingly, MV-Ssol and 2010). MV-S viruses also induced moderate (2.470.3log10) to high On the contrary, all mice immunized with MV-S were fully titers (3.270.3log10) of anti-SARS IgA antibodies respectively protected from challenge. The absence of SARS-CoV replication (Fig. 2D), whereas sera from animals immunized with alum- wasconfirmedbyquantitativereal-timeRT-PCR,whichevidenced adjuvantedSsolproteinremainednegative(log10titero1.7). more than a 1000-fold reduction of SARS-CoV RNA levels in the Wethenfurtherexaminedwhethertheantibodyresponsehad lungsofMV-S-immunizedmice(log10geq/lungso3.8,belowthe SARS-CoV neutralizing activity, which represents the unique detection level) compared to MVSchw-immunized mice correlate of protective immunity against SARS (Enjuanes et al., (7.671.9log10 geq/lungs). Mice immunized with MV-Ssol or 2008;Robertsetal.,2008).Neutralizingtitersweredeterminedby adjuvanted Ssol were also protected, albeit less efficiently; one usinganinfectivityreductionassayasthehighestserumdilution mouse in either group had low residual viral titers in the lungs thatsuppressedSARS-CoVcytopathiceffectinatleast50%ofthe (Fig.4)andSARS-CoVRNAremaineddetectablealbeitatstrongly inoculated wells of cultured FRhK-4 cells (Fig. 3). Immunization reduced levels in the lungs of half of the immunized mice (not withMV-Ssolandalum-adjuvantedSsolproteininducedcompar- shown). ablelevelofneutralizingantibodies(2.470.3and2.670.3log10 Altogether, these experiments demonstrate that recombinant titer, respectively), whereas MV-S induced significantly three- to MV-SARSvirusesexpressingeitherthefull-lengthorthesecreted four-foldhigherneutralizingtiters(3.070.4log10titer,po0.1). ectodomainofthespikeproteininducedneutralizingantibodiesto SARS-CoV at titers that were sufficient to protect animals from experimental intranasal infection. Noticeably, the efficiency of ImmunizationwithrecombinantMV-SARSprotectsfromintranasal protection followed the hierarchy observed for neutralization experimentalchallenge antibody levels, MV-S conferring complete and better protection TodeterminewhetherimmunizationbyrecombinantMV-SARS could induce protection from an experimental challenge, mice 7 4 er] s) 6 body tit U/lung 5 nti PF utralizing a 3 oV titer] ( 4 e C V n S- o R 3 C 2 A S- S AR [10 [S0 log 2 1 g o l 1 1 IS2 IS2 IS2 IS2 MVSchw MV-S MV-Ssol MVSchw MV-S MV-Ssol Measles virus Protein Measles virus Protein Fig. 4. Protection of MVSchw-SARS-immunized mice from intranasal challenge withSARS-CoV.FiveweeksafterthesecondinjectionofMVSchw-SARSrecombi- Fig.3. NeutralizingantibodyresponseinIFN-α⧸βR(cid:3)/(cid:3)CD46þ/(cid:3)miceimmunized nantvirusesorSsolpolypeptide,miceweresubjectedtointranasalchallengewith with MVSchw-SARS recombinant viruses. SARS-CoV neutralizing antibody titers 105pfuofSARS-CoV.SARS-CoVinfectioustiters(expressedaslog10pfu/lungsfor weredeterminedforeachIS2serumasthereciprocalofthehighestdilutionof individual mice) were dermined in lung homogenates collected two days after serumwhichcompletelypreventedSARS-CoVcytopathiceffectin50%ofthewells. challenge,usingplaqueassayonVerocells.Valuesforeachindividualmouseare Values obtained for each individual mouse are represented with circles, with representedwithfilledcircles,andmeansforeachgroupbyhorizontalbars.The meansforeachgroupofmiceshownbyhorizontalbars.Detectionlimitsofthe detectionlimitsoftheassaysareindicatedbydottedlines.Datashownarefrom assaysareindicatedbydottedlines. oneexperimentrepresentativeoftwo. N.Escriouetal./Virology452-453(2014)32–41 37 from virus replication in mice lungs than both MV-Ssol and the Usually given intramuscularly, measles vaccine protects very referenceadjuvantedsubunitvaccine. efficiently against measles disease, which is contracted by aero- solized contamination of the upper respiratory tract, similarly to SARS. Our data demonstrate that parenteral immunization with Discussion MV-SARS vector protected mice lungs from SARS-CoV intranasal infection. A similar approach was previously reported by Liniger Theobjectiveofthisstudywastoevaluatetheproof-of-concept etal.(2008)thatalsodemonstratedtheinductionofneutralizing ofanewSARS-CoVvaccinestrategybasedonastandardmeasles antibodies in mice to SARS-CoV spike expressed bya MV vector. vaccine engineered to express the SARS-CoV spike protein. This However, this study did not evaluate the efficacy of vaccine strategymightprovideasaferecombinantvaccinetoprotectfrom preparationtoprotectimmunizedmicefromSARS-CoVchallenge. SARS-CoVintheregionsthatmightbecomeaffectedbySARS-CoV Our observation that MV-SARS induced a strong Th1 response re-emergence. appears of particular importance given the recently reported Due toits critical roleinviralentry, the S protein is the most safety concerns by Tseng et al., which described Th2-type lung promising candidate antigen for SARS-CoV vaccine development immunopathologyuponchallengeofmicevaccinatedwithinacti- (Enjuanes et al., 2008; Roberts et al., 2008; Roper and Rehm, vatedwholevirus,SARSVLPoralum-adjuvantedSprotein(Tseng 2009).Wedesignedhumancodon-optimizedgenesencodingthe et al., 2012). They suggested that most previously described full-lengthSARS-CoVspike(S)proteinanditssolubleectodomain vaccine-inducedimmunopathologymightproceedfromthesame (Ssol). These sequences were inserted into MV vector. Recombi- Th2-type immunopathology with prominent eosinophil infiltra- nant viruses were produced by reverse genetics and grew at tion upon SARS-CoV challenge. Such effects will likely not occur standardtiters.TheyexpressedhighlevelsofSARS-CoVfull-length withlivevaccinessincetheyinducepotentTh1-biasedresponses. spikeproteinatthecellmembraneandledtoefficientsecretionof Inagreementwiththishypothesis,itwasrecentlyreportedthata thesolubleectodomain.ImmunizationofmicesusceptibletoMV live attenuated SARS-CoV lacking E protein expression provided with recombinant MV-S and MV-Ssol viruses induced specific long-term protection against lethal challenge in an aged-mice antibodies that neutralized SARS-CoV infection in vitro. The model in the absence of any sign of vaccine-induced immuno- induction of measles-specific immunity was not altered by the pathology(Fettetal.,2013). expression of the transgenes. Immunization primed a SARS-CoV- Live attenuated RNAvirus vaccines like those against mumps, specificmemoryresponsethatwasvigorouslyboostedbyasecond measles, polio or rubella viruses induce long-term cell-mediated injection. The anchored full-length form of the spike protein andhumoralimmunityafteroneortwoinjections.UsingMVasa induced the highest titers of neutralizing antibodies, as we vaccination vector presents a number of advantages: this highly previouslyobservedwithHIVgp160(Lorinetal.,2004),andalso efficient and most safe vaccine is easily produced at large scale, amorerobustresponsethanaprototypesubunitvaccineprepared vaccine strains are genetically stable, MV does not recombine or from adjuvanted recombinant Ssol protein. As compared to integrategeneticmaterial,vaccinedoesnotpersistordiffuse.The immunization with adjuvanted Ssol protein, both recombinant Schwarz/Moraten strain from which we derived our vector MV-SARS viruses induced higher titers of IgG2a than IgG1 anti- (Combredet et al., 2003) is currently the most attenuated and bodies, indicating a Th1 biased response, a hallmark of live the most widely used measles vaccine. Measles vector expresses attenuated viruses and a highly desirable feature for an antiviral verystablylargeamountsofheterologousgeneticmaterial,likely vaccine. Remarkably, both recombinant MV-SARS vectors also due to the absence of geometric constraints on the size of induced SARS-CoV specific IgA, whereas the subunit reference helicoidal nucleocapsids in this pleiomorphic virus (Tangy and vaccine did not. This raises an interesting point since several Naim, 2005). Although the stability of expression of the specific clinical studies already evidenced that parenteral administration SARStransgeneremainstobedetermined,theremarkablegenetic ofliveattenuatedmeaslesvaccinetochildrenstimulatessecretory stabilityofadded, expressed ORFshas alreadybeen described by IgAresponsesin nasal washes (Bellanti et al., 2004; Simon etal., us and others for a variety of transgenes inserted into measles 2011).AlthoughwedidnotassesstheabilityofrecombinantMV- vector and other members of the Mononegavirales. The measles SARS to induce secretory IgA in the lungs and upper respiratory vector demonstrated a strong capacity to stimulate both cellular tract of immunized mice, this result is strongly indicative of the andhumoralneutralizingimmunityagainstanumberofantigens potential of MV-SARS to induce SARS-CoV specific secretory IgA andprovidedprotectionfromexperimentalchallengebothinmice responses. and primates (Brandler et al., 2007, 2012; Despres et al., 2005; To evaluate the efficacy of recombinant MV-SARS vectors, we Lorinetal.,2004;TangyandNaim,2005).Ameasles-HIVvaccine relied on challenge with wt human SARS-CoV and evaluation of candidate currently under clinical development has been evalu- lungvirustiterssince,unfortunately,mouse-adaptedSARS-CoVis ated in phase I clinical trial, demonstrating the GMP preclinical not lethal in 129/Sv mice (Frieman et al., 2010). After two andclinicalsafetyandimmunogenicityofthisvector(Lorinetal., successiveimmunizationswithrecombinantMV-Svirus,allmice 2012;Stebbingsetal.,2012). were fully protected from intranasal infectious challenge with RecombinantMVvaccinesmightbeusedtoimmunizeboththe SARS-CoVandneitherinfectiousvirusnorresidualviralRNAcould pediatric and adult/adolescent populations in case of SARS-CoV be recovered from the lungs of the challenged animals. Interest- outbreaks.Thepresenceofanti-MVimmunityinnearlytheentire ingly, despite a lower replication rate in cell culture, MV-S adulthumanpopulationmightrestricttheuseofrecombinantMV conferred a better protection from SARS-CoV replication in mice to naïve infants, an already worthy goal in any event. However, lungsthanMV-Ssol.Thismayreflectbetterimmunogenicityofthe numerous studies have shown that revaccinating immunized native anchored-form of S or suggest structural dissimilarities individuals results in a boost of anti-MV antibodies, suggesting between the monomeric soluble Ssol ectodomain and its corre- that the attenuated live vaccine replicates and expresses its spondingmembrane-associatedtrimericform.Inthatrespect,the proteins in spite of preexisting immunity (Dilraj et al., 2000; absence, or inefficient presentation, of antibody epitopes on Rager-Zismanetal.,2003;Sepulveda-Amoretal.,2002).Likewise, truncated soluble immunogens derived from functional virion- the presence of maternal anti-MV antibodies has been shown to associated glycoproteins has already been evidenced for filovirus limit the induction of anti-measles antibodies but notthe induc- attachment proteins (Sullivan et al., 2006) and HIV gp160 tion of specific T-cell responses in infants given measles vaccine (Davenportetal.,2011;Kovacsetal.,2012). duringthefirstyearoflife(Gansetal.,2003,2001).Moreover,we 38 N.Escriouetal./Virology452-453(2014)32–41 previously demonstrated that recombinant MV vectors were with the FLAG tag was producedand purified byimmunoaffinity immunogenic and induced protection in the presence of MV chromatography (Sigma-Aldrich) from the supernatant of stable preexisting immunity in animal models (Brandler et al., 2013; mammaliancelllines(Callendretetal.,unpublishedresults). Lorin et al., 2004), which opens the possibility of using recombi- nantMVvectortoimmunizeadolescentsandadults,althoughthis ConstructionandrescueofrecombinantMVSchw-SARSviruses pointneedstobeevaluatedinhumantrials.Measlesappearsvery difficult to eliminate and still causes 160,000 deaths annually Ahumancodon-optimizedgeneencodingtheSARS-CoVspike worldwide, mostly in poorly developed countries (Centers for (S)proteinof the♯031589 specimen(Callendretetal., 2007)was Disease and Prevention, 2009). Europe also recently experienced chemically synthesized by Geneart (Regensburg, Germany) and severe measles outbreaks (Cottrell and Roberts, 2011). Improving subcloned into the pCI mammalian expression vector (Promega), and maintaining measles vaccination for decades is essential to yielding plasmid pCI-Ssynth. In addition to codon bias optimiza- contain this most contagious disease. In this context, the use of tion,regionsofveryhigh(480%)orlow(o30%)GCcontentwere recombinant MV designed to immunize the pediatric or adult avoided whenever possible. Furthermore, cis-acting sequence populationsappearsdesirable. motifs such as internal TATA-boxes, chi-sites, ribosomal entry In conclusion, we have produced new recombinant MV-SARS sites, ARE, INS, and CRS sequence elements, as well as repetitive virusesabletoinduceneutralizingantibodiestoSARS-CoVandfull sequences,RNAsecondarystructuresandsplicedonorandaccep- protection from intranasal challenge, thus making the proof-of- tor sites, were avoided. The resulting optimized gene had an concept of this strategy for SARS vaccine development and more increased GC content (61.7% from 38.9%). The sequence of the generally for severe respiratory infectious diseases. These char- codon-optimized S gene is available upon request. A codon- acterized SARS vaccine candidates deserve to be evaluated in a optimized gene encoding the soluble and secreted spike ectodo- much more adapted non-human-primate model, in which the main (Ssol) was obtained by PCR amplification using the cross-protective potential of the induced immune responses pCI-Ssynth plasmid as a template and oligonucleotides 50- against zoonotic SARS isolates/variants could be addressed. ACTAGCTAGC GGATCCACCA TGTTCATCTT CCTG-30 containing Indeed, several studies have underlined the need to induce Nhe-1restrictionsite(underlined)and50-AGTATCCGGACTTGATG- broadly neutralizing antibodies able to protect against heterolo- TAC TGCTCGTACT TGC-30 containing BspE1 restriction site. The gous viral variants, which may arise during independent emer- PCRfragmentwasinsertedintopCI-Ssolwhichcontainsthewild- gence events (Bolles et al., 2011; Sheahan et al., 2011). Such typenon-optimizedgeneencodingSsol(Callendretetal.,unpub- antigenicvariantshavealreadybeenisolatedfromanimalsduring lisheddata),yieldingplasmidpCI-Scube. the2002–2003epidemicsandfromsporadichumancasesduring Measles recombinant vector was derived from plasmid pTM- the 2003–2004 reemergence (Deming et al., 2006; Yang et al., MVSchw-ATU2whichcarriesaninfectiouscDNAcorrespondingto 2005), and are likely to emerge again from the large heteroge- the anti-genome of the Schwarz MV vaccine strain and an neous zoonotic reservoir of SARS-like viruses, should a newout- additional transcription unit containing unique restriction sites break occur. The recent identification of a novel human for the insertion of foreign sequences downstream of the P gene betacoronavirus,MERS-CoV,astheagentofaSARS-likeillnessin (Combredetetal.,2003)(Fig.1A).Thefull-length(S)andsecreted the Middle-East, has raised great concerns about the pandemic (Ssol)spikesequenceswereamplifiedbyPCRusingthepCI-Ssynth potential of the disease (Perlman, 2013; WHO, 2013; Zaki et al., or pCI-Scube plasmids as templates and oligonucleotides 2012). Adecade after the SARS pandemic, it has renewed world- 50-ATAGGATCCC GTACGACCAT GTTCATCTTC CTGCTGTTC-30 con- wide attention on coronaviruses and stressed the need of con- taining BsiWI restriction site (underlined) and 50-ATAGGATCCG tinued research and investment in the development of safe and CGCGCTTATC AGGTGTAGTG CAGCTTCAC-30 or 50-ATAGGATCCG effectivevaccinesagainsthighlypathogeniccoronaviruses. CGCGCTCATT ATTTATCGTC GTCATCTTTA TAATC-30 containing BssHII restriction site (underlined). After digestion with BsiWI andBssHIIrestrictionenzymes,theresultingDNAfragmentswere Materialsandmethods inserted into the corresponding sites of pTM-MVSchw-eGFP. The sequences inserted into the MV vector respect the “rule of six”, Celllines,virusesandantigens which stipulates that the number of nucleotides of the MV genome must be a multiple of 6 (Calain and Roux, 1993; FRhK-4 (Fetal Rhesus monkey Kidney) and Vero-NK (African Schneider et al., 1997). The resulting plasmids pTM-MVSchw-S GreenMonkeyKidney)cellsweregrownat371Cunder5%CO in andpTM-MVSchw-Ssolwere usedtorescue recombinantviruses 2 completeDMEM[Dulbecco0smodifiedEaglemediumwith4.5mg/ using a helper-cell-based system as previously described ml L-glucose, 100U/ml penicillin and 100mg/ml streptomycin], (Combredet et al., 2003). Single viral clones were amplified on supplemented with 5% heat-inactivated fetal calf serum (FCS) Vero-NK cells.Allviralstockswerestoredat (cid:3)801Candtitrated (DMEM-5). Helper 293-T7-MV cells stably expressing T7 RNA by an endpoint limiting dilution assay on Vero-NK cell mono- polymeraseandNandPgenes fromSchwarz MVweregrownin layers. Growth curves of recombinant and parental viruses were completeDMEMsupplementedwith10%FCS(DMEM-10). determined on Vero-NK cells infected at an M.O.I. of 0.01, as SARS-CoV FFM-1 strain (Drosten et al., 2003) was kindly described(Combredetetal.,2003). provided by Dr. H.W. Doerr (Institute of Medical Virology, Frank- furt University Medical School, Germany). Viral stocks were Analysisofspikeproteinexpressionininfectedcells produced and titrated as described previously (Callendret et al., 2007). All work involving infectious SARS-CoV was performed in For indirect immunofluorescence assays, monolayers of Vero- anenhancedbiosafetylevel3containmentlaboratorywithrigor- NKcellsplatedon20mmglasscoverslipsina12-wellplatewere oussafetyproceduresaccordingtoWHOguidelines. infected with the recombinant MVSchw-SARS or parental MV- Crude cell lysates prepared from SARS-CoV infected VeroE6 Schw viruses at a multiplicity of infection (M.O.I.) of 0.05. When cells and inactivated frozen by gamma irradiation, as described syncytiawere clearly visible but notyet confluent (24–48h after (Callendret et al., 2007), were used as SARS native antigens for infection) cells were washed in D-PBS, fixed with PBS-4% paraf- ELISA. A soluble monomeric spike protein, termed Ssol and ormaldehyde for 15min and in some instances permeabilized correspondingtotheentireSectodomain(residues1–1193)fused with PBS-0.2% triton X-100 for 10min. Coverslips were then N.Escriouetal./Virology452-453(2014)32–41 39 incubated for 60min with anti-Ssol hyperimmune mouse ascitic the highest dilution of each serum, which suppressed CPE in at fluid diluted 1/1000 in PBS-1% donkey serum (DKS). After sub- least2outof4wells. sequent incubation with a Cy3-conjugated anti-mouse IgG sec- ondary antibody (Jackson Immunoresearch), the samples were ChallengeinfectionofanimalswithSARS-CoV mounted on slides with DAPI-containing Vectashield (Vector laboratory) and analyzed under an Axioplan 2 epifluorescence Fiveweeksafterthesecondimmunization,animalswereligh- microscope(Zeiss).PictureswereacquiredwithanAxiocamMRm tly anesthetized with Isoflurane (Mundipharma) and inoculated cameraandprocessedwiththeAxiovisionsoftware(v4.2,Zeiss). intranasally with 105pfu of SARS-CoV in 40ml PBS. Mice were For western blot assays, cytosolic cell extracts were prepared euthanized48hafterchallengeinfection.Lunghomogenateswere fromVero-NKcellsinfectedwiththerecombinantMVSchw-SARS preparedin500mlDMEMsupplementedwith2%FCSandtitrated or parental MV-Schw viruses, essentially as described previously for infectious virus on VeroE6 monolayers, as described (Lorin et al., 2004). Proteins were separated by 8% SDS-poly- (Callendretetal.,2007).ViralRNAwasextractedusingtheQIAamp acrylamide gels and transferred onto a PVDF membrane prior to Viral RNA Mini kit (Qiagen) from 100ml of tissue homogenates immunoblotting with rabbit anti-S antibodies, as described accordingtothemanufacturer0srecommendations,elutedin60ml (Callendretetal.,2007). of RNAse-free water and analyzed by real-time RT-PCR, as describedbelow.Challengeinfectionofallanimalsandsubsequent analysis involving infectious materials were done in the “Jean Miceexperimentsandcharacterizationofhumoralimmuneresponses Merieux” biosafety level 4 containment laboratory. Statistical analysiswasperformedonthelog10oftheviraltitersmeasured Allexperimentswereapprovedandconductedinaccordanceto for individual mice using the Student0s independent t-test, the Pasteur Institute guidelines in compliance with European withtheassumptionsusedforsmallsamples(normaldistribution animal welfare regulations. To obtain CD46þ/(cid:3) IFNα/ßR(cid:3)/(cid:3) mice of the variables and same variance for the populations to be permissive for measles vaccine (Mrkic et al., 1998), FVB mice compared). heterozygous for the measles vaccine CD46 receptor transgene werebackcrossedto129/SvmicelackingthetypeIFN(Combredet etal.,2003).Aftermorethan10generationsofbackcrossinginour SARS-CoVgenomeRNAquantificationbyreal-timeRT-PCR breedingcolony,theresultingCD46-IFNARlineacquiredauniform 129/Svbackground. SARS-CoV genome RNA levels in tissue RNA samples were Six- to nine-week-old CD46-IFNAR mice were used to assess quantified by real-time RT-PCR with the PRISM 7700 sequence the immune response induced by recombinant MVSchw-SARS. detection system. Briefly, RNA samples (2ml) were reverse- Groups of 6 mice were injected intraperitoneally (i.p.) with 105 transcribedandamplifiedwiththeTaqMansOneStepPCRMaster TCID of recombinant MVSchw-SARS or parental MVSchw. Con- Mix Reagents Kit (Applied Biosystems) according to the man- 50 trol groups of mice were injected intramuscularly with formula- ufacturer0srecommendations,incombinationwithprimersetand tions containing 2mg of purified Ssol polypeptide and 50mg flurorogenicprobespecificforthenucleoprotein(N)gene(Drosten aluminum hydroxide (Alu-Gel-S, Serva). Booster injections were et al., 2004). Reactions were performed in thermo-fasts 96-well administered 4 weeks thereafter. Serum samples were collected reaction plates (Abgene) with 25ml mixtures containing 2ml of one week before immunization and 3 weeks after each injection templateRNA,300nMconcentration(each)ofprimersSANS1(50- (PI,IS1andIS2sera). TGGACCCAC AGATTCAAC TGA-30) and SANPAs2 (50-GCTGTGAAC WemeasuredtheinductionofSARS-CoVspecificantibodiesin CAAGACGCAGTAT-30)(Eurogentec),anda100nMconcentrationof immunized mice by indirect ELISA and neutralization assay, as probe SANP1 (6-FAM-TAACCAGAATGGAGGACGCAATGG-TAMRA) described previously (Callendret et al., 2007). Briefly, microtiter (Eurogentec). The cycling conditions were 451C for 15min, fol- plates were coated with SARS-CoV infected or mock-infected lowedby951Cfor5minandthen45cyclesof951Cfor15sand VeroE6 crude cell lysates and incubated with serial dilutions of 601Cfor60s.Fluorescencewasreadatthecombinedannealing- thetestsera.Boundantibodieswererevealedwithmouse-specific extension stepat601C.Absolutequantification ofRNAwas done anti-IgG (1/2000, Amersham) secondary antibody coupled to by using in vitro transcribed RNA standards prepared from the horseradish peroxidase and TMB (3,30-5,50-tetramethylbenzidine, cloned SARS-CoV N gene and quantified spectrophotometrically. KPL). Readings from wells coated with mock lysates were sub- Analyticalsensitivityofthisreal-timeNRT-PCRassaywasexperi- stracted from wells with SARS-CoV lysates and the SARS-CoV mentally determined by using limiting serial dilutions of the N specificIgGtiterswerecalculatedasthereciprocalofthehighest RNAstandard.Usingprobitnon-linearregressionanalysis,the95% dilution of individual serum, giving an absorbance of 0.5. The detectionlimitoftheRT-PCRwascalculatedat40copiesofinput isotype determination of the antibody responses was performed RNAperreaction,whichcorrespondedto3.8log10virusgenome- using isotype-specific (IgG1 and IgG2a) secondary antibodies equivalent (geq) per mouse tissue, assuming 100% efficiency in coupled to horseradish peroxidase (Southern Biotech). IgA titers RNApreparation. weresimilarlymeasuredusingmouse-specificanti-IgAsecondary antibody (1/2000, Southern Biotech) and calculated as the reci- procal of the highest dilution of individual serum, giving an Acknowledgments absorbanceof0.2.MVspecificantibodiesweresimilarlymeasured using ELISA plates coatedwith purified measles antigens (Trinity We thank Prof. Dr. H.W. Doerr (Institute of Medical Virology, Biotech,USA).Forneutralization,two-foldserialdilutionofheat- Frankfurt University Medical School, Germany) for providing us inactivated serum samples were incubated at 371C for 60min withtheSARS-CoVFFM-1strain.WealsothankDr.AnnetteMartin with 100 TCID50 of SARS-CoV and added to a subconfluent forcriticalreadingofthemanuscriptandhelpfulsuggestions,Prof. monolayer of FRhK-4 cells in a 96-well microtiter plate. Each SylvievanderWerfforcontinuoussupportandPhilippeLothfor dilutionofserumwastestedinquadruplicateandcytopathiceffect experttechnicalassistanceinperformingtheSARS-CoVchallenge (CPE) endpoints were read up to 7 days after inoculation. Neu- experiment. This work was supported in part by Grants from tralizing antibody titers were determined according to the Reed GlaxoSmithKline Biologicals. B.C. was supported by a fellowship andMuenchmethod(ReedandMuench,1938)asthereciprocalof from GlaxoSmithKline Biologicals. The funders had no role in 40 N.Escriouetal./Virology452-453(2014)32–41 study design, data collection and analysis, decision topublish, or Dilraj,A.,Cutts,F.T.,Bennett,J.V.,FernandezdeCastro,J.,Cohen,B.,Coovadia,H.M., preparationofthemanuscript. 2000.Persistenceofmeaslesantibodytwoyearsafterrevaccinationbyaerosol orsubcutaneousroutes.Pediatr.Infect.Dis.J.19,1211–1213. Drosten,C.,Chiu,L.L.,Panning,M.,Leong,H.N.,Preiser,W.,Tam,J.S.,Gunther,S., Kramme,S.,Emmerich,P.,Ng,W.L.,Schmitz,H.,Koay,E.S.,2004.Evaluationof References advancedreversetranscription-PCRassaysandanalternativePCRtargetregion fordetectionofsevereacuterespiratorysyndrome-associatedcoronavirus.J. Balboni,A.,Battilani,M.,Prosperi,S.,2012.TheSARS-likecoronaviruses:theroleof Clin.Microbiol.42,2043–2047. batsandevolutionaryrelationshipswithSARScoronavirus.N.Microbiol.35, Drosten,C.,Gunther,S.,Preiser,W.,vanderWerf,S.,Brodt,H.R.,Becker,S.,Rabenau,H., 1–16. Panning,M.,Kolesnikova,L.,Fouchier,R.A.,Berger,A.,Burguiere,A.M.,Cinatl,J., Bellanti,J.A.,Zeligs,B.J.,Mendez-Inocencio,J.,Garcia-Garcia,M.L.,Islas-Romero,R., Eickmann,M.,Escriou,N.,Grywna,K.,Kramme,S.,Manuguerra,J.C.,Muller,S., Omidvar,B.,Omidvar,J.,Kim,G.,FernandezDeCastro,J.,SepulvedaAmor,J., Rickerts,V.,Sturmer,M.,Vieth,S.,Klenk,H.D.,Osterhaus,A.D.,Schmitz,H.,Doerr, Walls, L., Bellini, W.J., Valdespino-Gomez, J.L., 2004. Immunologic studies of H.W.,2003.Identificationofanovelcoronavirusinpatientswithsevereacute specificmucosalandsystemicimmuneresponsesinMexicanschoolchildren respiratorysyndrome.N.Engl.J.Med.348,1967–1976. after booster aerosol or subcutaneous immunization with measles vaccine. Du,L.,He,Y.,Jiang,S.,Zheng,B.J.,2008.Developmentofsubunitvaccinesagainst Vaccine22,1214–1220. severeacuterespiratorysyndrome.DrugsToday(Barc.)44,63–73. Bisht,H.,Roberts,A.,Vogel,L.,Bukreyev,A.,Collins,P.L.,Murphy,B.R.,Subbarao,K., Enjuanes, L., Dediego, M.L., Alvarez, E., Deming, D., Sheahan, T., Baric, R., 2008. Moss,B.,2004.Severeacuterespiratorysyndromecoronavirusspikeprotein Vaccines to prevent severe acute respiratory syndrome coronavirus-induced expressedbyattenuatedvacciniavirusprotectivelyimmunizesmice.Proc.Natl. disease.VirusRes.133,45–62. Acad.Sci.USA101,6641–6646. Fett,C.,DeDiego,M.L.,Regla-Nava,J.A.,Enjuanes,L.,Perlman,S.,2013.Complete Bisht,H.,Roberts,A.,Vogel,L.,Subbarao,K.,Moss,B.,2005.Neutralizingantibody protection against severe acute respiratory syndrome coronavirus-mediated andprotectiveimmunitytoSARScoronavirusinfectionofmiceinducedbya lethalrespiratorydiseaseinagedmicebyimmunizationwithamouse-adapted soluble recombinant polypeptide containing an N-terminal segment of the viruslackingEprotein.J.Virol.87,6551–6559. spikeglycoprotein.Virology334,160–165. Frieman,M.B.,Chen,J.,Morrison,T.E.,Whitmore,A.,Funkhouser,W.,Ward,J.M., Bolles, M., Deming, D., Long, K., Agnihothram, S., Whitmore, A., Ferris, M., Lamirande,E.W.,Roberts,A.,Heise,M.,Subbarao,K.,Baric,R.S.,2010.SARS-CoV Funkhouser,W.,Gralinski,L.,Totura,A.,Heise,M.,Baric,R.S.,2011.Adouble- pathogenesis is regulated by a STAT1 dependent but a type I, II and III inactivated severe acute respiratory syndrome coronavirus vaccine provides interferonreceptorindependentmechanism.PLoSPathog.6,e1000849. incompleteprotectioninmiceandinducesincreasedeosinophilicproinflam- Gans, H., DeHovitz, R., Forghani, B., Beeler, J., Maldonado, Y., Arvin, A.M., 2003. matorypulmonaryresponseuponchallenge.J.Virol.85,12201–12215. Measles and mumps vaccination as a model to investigate the developing Brandler,S.,Lucas-Hourani,M.,Moris,A.,Frenkiel,M.P.,Combredet,C.,Fevrier,M., immune system: passive and active immunity during the first year of life. Bedouelle, H., Schwartz, O., Despres, P., Tangy, F., 2007. Pediatric measles Vaccine21,3398–3405. vaccine expressinga dengue antigeninduces durableserotype-specific neu- Gans,H.,Yasukawa,L.,Rinki,M.,DeHovitz,R.,Forghani,B.,Beeler,J.,Audet,S., tralizingantibodiestodenguevirus.PLoSNegl.Trop.Dis.1,e96. Maldonado, Y., Arvin, A.M., 2001. Immune responses to measles and Brandler, S., Marianneau, P., Loth, P., Lacote, S., Combredet, C., Frenkiel, M.P., mumpsvaccinationofinfantsat6,9,and12months.J.Infect.Dis.184, Despres, P., Contamin, H., Tangy, F., 2012. Measles vaccine expressing the 817–826. secreted form of West Nile virus envelope glycoprotein induces protective Guan,Y.,Zheng,B.J.,He,Y.Q.,Liu,X.L.,Zhuang,Z.X.,Cheung,C.L.,Luo,S.W.,Li,P.H., immunityinsquirrelmonkeys,anewmodelofWestNilevirusinfection.J. Zhang,L.J.,Guan,Y.J.,Butt,K.M.,Wong,K.L.,Chan,K.W.,Lim,W.,Shortridge,K.F., Infect.Dis.206,212–219. Yuen,K.Y.,Peiris,J.S.,Poon,L.L.,2003.Isolationandcharacterizationofviruses Brandler,S.,Ruffie,C.,Combredet,C.,Brault,J.B.,Najburg,V.,Prevost,M.C.,Habel,A., relatedtotheSARScoronavirusfromanimalsinsouthernChina.Science302, Tauber,E.,Despres,P.,Tangy,F.,2013.Arecombinantmeaslesvaccineexpres- 276–278. sing chikungunya virus-like particles is strongly immunogenic and protects Guerbois,M.,Moris,A.,Combredet,C.,Najburg,V.,Ruffie,C.,Fevrier,M.,Cayet,N., micefromlethalchallengewithchikungunyavirus.Vaccine31,3718–3725. Brandler, S., Schwartz, O., Tangy, F., 2009. Live attenuated measles vaccine Buchholz,U.J.,Bukreyev,A.,Yang,L.,Lamirande,E.W.,Murphy,B.R.,Subbarao,K., expressing HIV-1 Gag virus like particles covered with gp160DeltaV1V2 is Collins, P.L., 2004. Contributions of the structural proteins of severe acute stronglyimmunogenic.Virology388,191–203. respiratorysyndromecoronavirustoprotectiveimmunity.Proc.Natl.Acad.Sci. He,Y.,Li,J., Heck,S.,Lustigman,S.,Jiang,S.,2006. Antigenicandimmunogenic USA101,9804–9809. characterization of recombinant baculovirus-expressed severe acute respira- Calain,P.,Roux,L.,1993.Theruleofsix,abasicfeatureforefficientreplicationof tory syndrome coronavirus spike protein: implication for vaccine design. J. SendaivirusdefectiveinterferingRNA.J.Virol.67,4822–4830. Virol.80,5757–5767. Callendret,B.,Lorin,V.,Charneau,P.,Marianneau,P.,Contamin,H.,Betton,J.-M.,van He,Y.,Zhu,Q.,Liu,S.,Zhou,Y.,Yang,B.,Li,J.,Jiang,S.,2005.Identificationofa derWerf,S.,Escriou,N.,2007.HeterologousviralRNAexportelementsimprove critical neutralization determinant of severe acute respiratory syndrome expression of severe acute respiratory syndrome (SARS) coronavirus spike (SARS)-associatedcoronavirus:importancefordesigningSARSvaccines.Virol- protein and protective efficacy of DNAvaccines against SARS. Virology 363, ogy334,74–82. 288–302. Hogan,R.J.,Gao,G.,Rowe,T.,Bell,P.,Flieder,D.,Paragas,J.,Kobinger,G.P.,Wivel,N.A., CallendretB.,LorinV.,MarianneauP.,ContaminH.,RoseT.,HuerreM.,vanderWerf Crystal,R.G.,Boyer,J.,Feldmann,H.,Voss,T.G.,Wilson,J.M.,2004.Resolutionof S.,CharneauP.,EscriouN.,EfficientprotectionfromSARScoronavirusinfection primary severe acute respiratory syndrome-associated coronavirus infection conferredbya recombinantspike glycoproteinexpressedas asoluble poly- requiresStat1.J.Virol.78,11416–11421. peptideinstablemammaliancelllines,Unpublishedresults. Kan,B.,Wang,M.,Jing,H.,Xu,H.,Jiang,X.,Yan,M.,Liang,W.,Zheng,H.,Wan,K.,Liu, Centers for Disease Control Prevention, 2009. Global measles mortality, 2000– Q.,Cui,B.,Xu,Y.,Zhang,E.,Wang,H.,Ye,J.,Li,G.,Li,M.,Cui,Z.,Qi,X.,Chen,K., 2008.MMWR,MorbidityandMortalityWeeklyReport,vol.58,pp.1321–1326. Du,L.,Gao,K.,Zhao,Y.T.,Zou,X.Z.,Feng,Y.J.,Gao,Y.F.,Hai,R.,Yu,D.,Guan,Y., Chen,Z.,Zhang,L.,Qin,C.,Ba,L.,Yi,C.E.,Zhang,F.,Wei,Q.,He,T.,Yu,W.,Yu,J.,Gao,H., Xu, J., 2005. Molecular evolution analysis and geographic investigation of Tu,X.,Gettie,A.,Farzan,M.,Yuen,K.Y.,Ho,D.D.,2005.Recombinantmodified severeacuterespiratorysyndromecoronavirus-likevirusinpalmcivetsatan vacciniavirusankaraexpressingthespikeglycoproteinofsevereacuterespira- animalmarketandonfarms.J.Virol.79,11892–11900. torysyndromecoronavirusinducesprotectiveneutralizingantibodiesprimarily Kapadia,S.U.,Rose,J.K.,Lamirande,E.,Vogel,L.,Subbarao,K.,Roberts, A.,2005. targetingthereceptorbindingregion.J.Virol.79,2678–2688. Long-termprotectionfromSARScoronavirusinfection conferredbyasingle Cheng,Y.,Wong,R.,Soo,Y.O.,Wong,W.S.,Lee,C.K.,Ng,M.H.,Chan,P.,Wong,K.C., immunizationwithanattenuatedVSV-basedvaccine.Virology340,174–182. Leung, C.B., Cheng, G., 2005. Use of convalescent plasma therapy in SARS Kovacs,J.M.,Nkolola,J.P.,Peng,H.,Cheung,A.,Perry,J.,Miller,C.A.,Seaman,M.S., patientsinHongKong.Eur.J.Clin.Microbiol.Infect.Dis.24,44–46. Barouch, D.H., Chen, B., 2012. HIV-1 envelope trimer elicits more potent Combredet, C., Labrousse, V., Mollet, L., Lorin, C., Delebecque, F., Hurtrel, B., neutralizingantibodyresponsesthanmonomericgp120.Proc.Natl.Acad.Sci. McClure,H.,Feinberg,M.B.,Brahic,M.,Tangy,F.,2003.Amolecularlycloned USA109,12111–12116. Schwarzstrainofmeaslesvirusvaccineinducesstrongimmuneresponsesin Ksiazek,T.G.,Erdman,D.,Goldsmith,C.S.,Zaki,S.R.,Peret,T.,Emery,S.,Tong,S., macaquesandtransgenicmice.J.Virol.77,11546–11554. Urbani,C.,Comer,J.A.,Lim,W.,Rollin,P.E.,Dowell,S.F.,Ling,A.E.,Humphrey,C. Cottrell,S.,Roberts,R.J.,2011.MeaslesoutbreakinEurope.BMJ–Br.Med.J.342, D.,Shieh,W.J.,Guarner,J.,Paddock,C.D.,Rota,P.,Fields,B.,DeRisi,J.,Yang,J.Y., d3724. Cox, N., Hughes, J.M.,LeDuc, J.W., Bellini, W.J., Anderson, L.J., 2003. A novel Davenport,T.M.,Friend,D.,Ellingson,K.,Xu,H.,Caldwell,Z.,Sellhorn,G.,Kraft,Z., coronavirusassociatedwithsevereacuterespiratorysyndrome.N.Engl.J.Med. Strong, R.K., Stamatatos, L., 2011. Binding interactions between soluble HIV 348,1953–1966. envelopeglycoproteinsandquaternary-structure-specificmonoclonalantibo- Lamb,R.A.,Kolakofsky,D.,2001.Paramyxoviridae:thevirusesandtheirreplication. diesPG9andPG16.J.Virol.85,7095–7107. In:Knipe,D.M.,Howley,P.M.(Eds.),FieldsVirology,4thed.LippincottWilliams Deming, D., Sheahan, T., Heise, M., Yount, B., Davis, N., Sims, A., Suthar, M., &Wilkins,Philadelphia,PA Harkema, J., Whitmore, A., Pickles, R., West, A., Donaldson, E., Curtis, K., Lamirande,E.W.,DeDiego,M.L.,Roberts,A.,Jackson,J.P.,Alvarez,E.,Sheahan,T., Johnston, R., Baric, R., 2006. Vaccine efficacy in senescent mice challenged Shieh, W.J., Zaki, S.R., Baric, R., Enjuanes, L., Subbarao, K., 2008. A live with recombinant SARS-CoV bearing epidemic and zoonotic spike variants. attenuated severe acute respiratory syndrome coronavirus is immunogenic PLoSMed.3,e525. andefficaciousingoldenSyrianhamsters.J.Virol.82,7721–7724. Despres,P.,Combredet,C.,Frenkiel,M.P.,Lorin,C.,Brahic,M.,Tangy,F.,2005.Live Li,W.,Moore,M.J.,Vasilieva,N.,Sui,J.,Wong,S.K.,Berne,M.A.,Somasundaran,M., measlesvaccineexpressingthesecretedformoftheWestNilevirusenvelope Sullivan, J.L., Luzuriaga, K., Greenough, T.C., Choe, H., Farzan, M., 2003. glycoproteinprotectsagainstWestNilevirusencephalitis.J.Infect.Dis.191, Angiotensin-converting enzyme 2 is a functional receptor for the SARS 207–214. coronavirus.Nature426,450–454. N.Escriouetal./Virology452-453(2014)32–41 41 Li,W.,Shi,Z.,Yu,M.,Ren,W.,Smith,C.,Epstein,J.H.,Wang,H.,Crameri,G.,Hu,Z., Simmons,G.,Gosalia,D.N.,Rennekamp,A.J.,Reeves,J.D.,Diamond,S.L.,Bates,P., Zhang,H.,Zhang,J.,McEachern,J.,Field,H.,Daszak,P.,Eaton,B.T.,Zhang,S., 2005. Inhibitors of cathepsin L prevent severe acute respiratory syndrome Wang,L.F.,2005.BatsarenaturalreservoirsofSARS-likecoronaviruses.Science coronavirusentry.Proc.Natl.Acad.Sci.USA102,11876–11881. 310,676–679. Simon,J.K.,Ramirez,K.,Cuberos,L.,Campbell,J.D.,Viret,J.F.,Munoz,A.,Lagos,R., Liniger, M., Zuniga, A., Tamin, A., Azzouz-Morin, T.N., Knuchel, M., Marty, R.R., Levine, M.M., Pasetti, M.F., 2011. Mucosal IgA responses in healthy adult Wiegand,M.,Weibel,S.,Kelvin,D.,Rota,P.A.,Naim,H.Y.,2008.Inductionof volunteers following intranasal spray delivery of a live attenuated measles neutralisingantibodiesandcellularimmuneresponsesagainstSARScorona- vaccine.Clin.VaccineImmunol.:CVI18,355–361. virusbyrecombinantmeaslesviruses.Vaccine26,2164–2174. Song,H.C.,Seo,M.Y.,Stadler,K.,Yoo,B.J.,Choo,Q.L.,Coates,S.R.,Uematsu,Y.,Harada,T., Lorin,C.,Mollet,L.,Delebecque,F.,Combredet,C.,Hurtrel,B.,Charneau,P.,Brahic,M., Greer,C.E.,Polo,J.M.,Pileri,P.,Eickmann,M.,Rappuoli,R.,Abrignani,S.,Houghton, Tangy,F.,2004.Asingleinjectionofrecombinantmeaslesvirusvaccinesexpres- M.,Han,J.H.,2004.Synthesisandcharacterizationofanative,oligomericformof singhumanimmunodeficiencyvirus(HIV)type1cladeBenvelopeglycoproteins recombinantsevereacuterespiratorysyndromecoronavirusspikeglycoprotein.J. inducesneutralizingantibodiesandcellularimmuneresponsestoHIV.J.Virol.78, Virol.78,10328–10335. 146–157. Song,H.D.,Tu,C.C.,Zhang,G.W.,Wang,S.Y.,Zheng,K.,Lei,L.C.,Chen,Q.X.,Gao,Y.W., Lorin, C., Segal, L., Mols, J., Morelle, D., Bourguignon, P., Rovira, O., Mettens, P., Zhou,H.Q.,Xiang,H.,Zheng,H.J.,Chern,S.W.,Cheng,F.,Pan,C.M.,Xuan,H., Silvano, J., Dumey, N., Le Goff, F., Koutsoukos, M., Voss, G., Tangy, F., 2012. Chen,S.J.,Luo,H.M.,Zhou,D.H.,Liu,Y.F.,He,J.F.,Qin,P.Z.,Li,L.H.,Ren,Y.Q., Toxicology, biodistribution and shedding profile of a recombinant measles Liang,W.J.,Yu,Y.D.,Anderson,L.,Wang,M.,Xu,R.H.,Wu,X.W.,Zheng,H.Y., vaccinevectorexpressingHIV-1antigens,incynomolgusmacaques.Naunyn- Chen,J.D.,Liang,G.,Gao,Y.,Liao,M.,Fang,L.,Jiang,L.Y.,Li,H.,Chen,F.,Di,B.,He, Schmiedeberg0sArch.Pharmacol.385,1211–1225. L.J.,Lin,J.Y.,Tong,S.,Kong,X.,Du,L.,Hao,P.,Tang,H.,Bernini,A.,Yu,X.J.,Spiga, Matsuyama,S.,Nagata,N.,Shirato,K.,Kawase,M.,Takeda,M.,Taguchi,F.,2010. O.,Guo,Z.M.,Pan,H.Y.,He,W.Z.,Manuguerra,J.C.,Fontanet,A.,Danchin,A., Efficientactivationofthesevereacuterespiratorysyndromecoronavirusspike Niccolai,N.,Li,Y.X.,Wu,C.I.,Zhao,G.P.,2005.Cross-hostevolutionofsevere proteinbythetransmembraneproteaseTMPRSS2.J.Virol.84,12658–12664. acuterespiratorysyndromecoronavirusinpalmcivetandhuman.Proc.Natl. Miyoshi-Akiyama,T.,Ishida,I.,Fukushi,M.,Yamaguchi,K.,Matsuoka,Y.,Ishihara,T., Acad.Sci.USA102,2430–2435. Tsukahara,M.,Hatakeyama,S.,Itoh,N.,Morisawa,A.,Yoshinaka,Y.,Yamamoto,N., Stadler,K.,Roberts,A.,Becker,S.,Vogel,L.,Eickmann,M.,Kolesnikova,L.,Klenk,H. Lianfeng, Z., Chuan, Q., Kirikae,T., Sasazuki, T., 2011. Fully human monoclonal D., Murphy, B., Rappuoli, R., Abrignani, S., Subbarao, K., 2005. SARS vaccine antibodydirectedtoproteolyticcleavagesiteinsevereacuterespiratorysyndrome protectiveinmice.Emerg.Infect.Dis.11,1312–1314. (SARS) coronavirus S protein neutralizes the virus in a rhesus macaque SARS Stebbings,R.,Fevrier,M.,Li,B.,Lorin,C.,Koutsoukos,M.,Mee,E.,Rose,N.,Hall,J., model.J.Infect.Dis.203,1574–1581. Page,M.,Almond,N.,Voss,G.,Tangy,F.,2012.Immunogenicityofarecombi- Mrkic,B.,Pavlovic,J.,Rulicke,T.,Volpe,P.,Buchholz,C.J.,Hourcade,D.,Atkinson,J.P., nantmeasles-HIV-1cladeBcandidatevaccine.PloSOne7,e50397. Aguzzi, A., Cattaneo, R., 1998. Measles virus spread and pathogenesis in Sullivan, N.J., Geisbert, T.W., Geisbert, J.B., Shedlock, D.J., Xu, L., Lamoreaux, L., geneticallymodifiedmice.J.Virol.72,7420–7427. Custers, J.H.,Popernack,P.M., Yang,Z.Y.,Pau,M.G.,Roederer,M., Koup,R.A., Neuman,B.W.,Adair,B.D.,Yoshioka,C.,Quispe,J.D.,Orca,G.,Kuhn,P.,Milligan,R.A., Goudsmit,J.,Jahrling,P.B.,Nabel,G.J.,2006.Immuneprotectionofnonhuman Yeager,M.,Buchmeier,M.J.,2006.Supramoleculararchitectureofsevereacute primatesagainstEbolaviruswithsinglelow-doseadenovirusvectorsencoding respiratorysyndromecoronavirusrevealedbyelectroncryomicroscopy.J.Virol. modifiedGPs.PLoSMed.3,e177. 80,7918–7928. Tangy,F.,Naim,H.Y.,2005.Liveattenuatedmeaslesvaccineasapotentialmulti- Nie,Y.,Wang,G.,Shi,X.,Zhang,H.,Qiu,Y.,He,Z.,Wang,W.,Lian,G.,Yin,X.,Du,L., valentpediatricvaccinationvector.ViralImmunol.18,317–326. Ren,L.,Wang,J.,He,X.,Li,T.,Deng,H.,Ding,M.,2004.Neutralizingantibodies ter Meulen, J., Bakker, A.B., van den Brink, E.N., Weverling, G.J., Martina, B.E., in patients with severe acute respiratory syndrome-associated coronavirus infection.J.Infect.Dis.190,1119–1126. Haagmans,B.L.,Kuiken,T.,deKruif,J.,Preiser,W.,Spaan,W.,Gelderblom,H.R., Perlman,S.,2013.ThemiddleEastrespiratorysyndrome–howworriedshouldwe GlaoxuisdfsomriSt,AJR.,SOcsotreornhaavuisr,uAs.iDn.f,e2ct0i0o4n.iHnufemrraentsm.Loannoccelton3a6l3,a2n1ti3b9o–d2y14a1s.prophy- be?mBio4,e00531-13. Tripp,R.A.,Haynes,L.M.,Moore,D.,Anderson,B.,Tamin,A.,Harcourt,B.H.,Jones,L. Petit,C.M.,Melancon,J.M.,Chouljenko,V.N.,Colgrove,R.,Farzan,M.,Knipe,D.M., P.,Yilla,M.,Babcock,G.J.,Greenough,T.,Ambrosino,D.M.,Alvarez,R.,Callaway, Kousoulas,K.G.,2005.GeneticanalysisoftheSARS-coronavirusspikeglyco- J.,Cavitt,S.,Kamrud,K.,Alterson,H.,Smith,J.,Harcourt,J.L.,Miao,C.,Razdan,R., proteinfunctionaldomainsinvolvedincell-surfaceexpressionandcell-to-cell fusion.Virology341,215–230. Comer, J.A., Rollin, P.E., Ksiazek, T.G., Sanchez, A., Rota, P.A., Bellini, W.J., Anderson, L.J., 2005. Monoclonal antibodies to SARS-associated coronavirus Rager-Zisman,B.,Bazarsky,E.,Skibin,A.,Chamney,S.,Belmaker,I.,Shai,I.,Kordysh, E.,Griffin,D.E.,2003.Theeffectofmeasles–mumps–rubella(MMR)immuniza- (SARS-CoV):identificationofneutralizingandantibodiesreactivetoS,N,Mand Eviralproteins.J.Virol.Methods128,21–28. tion on the immune responses of previously immunized primary school children.Vaccine21,2580–2588. Tseng,C.T.,Sbrana,E.,Iwata-Yoshikawa,N.,Newman,P.C.,Garron,T.,Atmar,R.L., Reed,L.J.,Muench,H.,1938.Asimplemethodofestimatingfiftypercentendpoints. Peters,C.J.,Couch, R.B.,2012. ImmunizationwithSARScoronavirusvaccines Am.J.Hyg.27,493–497. leadstopulmonaryimmunopathologyonchallengewiththeSARSvirus.PloS Roberts,A.,Lamirande,E.W.,Vogel,L.,Jackson,J.P.,Paddock,C.D.,Guarner,J.,Zaki,S. One7,e35421. R.,Sheahan,T.,Baric,R.,Subbarao,K.,2008.Animalmodelsandvaccinesfor WHO,2004.SummaryofprobableSARScaseswithonsetofillnessfrom1Novem- SARS-CoVinfection.VirusRes.133,20–32. ber 2002 to 31 July 2003. 〈http://www.who.int/csr/sars/country/table2004_ Roberts,A.,Thomas,W.D.,Guarner,J.,Lamirande,E.W.,Babcock,G.J.,Greenough,T.C., 04_21/en/index.html〉(accessed29.08.2013). Vogel,L.,Hayes,N.,Sullivan,J.L.,Zaki,S.,Subbarao,K.,Ambrosino,D.M.,2006. WHO,2013.MiddleEastrespiratorysyndromecoronavirus(MERS-CoV)summary Therapywithasevereacuterespiratorysyndrome-associatedcoronavirus-neu- andliteratureupdate–asof13August2013.〈http://www.who.int/csr/disease/ tralizinghumanmonoclonalantibodyreducesdiseaseseverityandviralburdenin coronavirus_infections/update_20130813〉(accessed29.08.2013). goldenSyrianhamsters.J.Infect.Dis.193,685–692. Wong, S.K., Li, W., Moore, M.J., Choe, H., Farzan, M., 2004. A 193-amino acid Roper,R.L.,Rehm,K.E.,2009.SARSvaccines:wherearewe?ExpertRev.Vaccines8, fragment of the SARS coronavirus S protein efficiently binds angiotensin- 887–898. convertingenzyme2.J.Biol.Chem.279,3197–3201. Rota, P.A., Oberste, M.S., Monroe, S.S., Nix, W.A., Campagnoli, R., Icenogle, J.P., Yang,Z.Y.,Kong,W.P.,Huang,Y.,Roberts,A.,Murphy,B.R.,Subbarao,K.,Nabel,G.J., Penaranda,S.,Bankamp,B.,Maher,K.,Chen,M.H.,Tong,S.,Tamin,A.,Lowe,L., 2004.ADNAvaccineinducesSARScoronavirusneutralizationandprotective Frace,M.,DeRisi,J.L.,Chen,Q.,Wang,D.,Erdman,D.D.,Peret,T.C.,Burns,C., immunityinmice.Nature428,561–564. Ksiazek,T.G.,Rollin,P.E.,Sanchez,A.,Liffick,S.,Holloway,B.,Limor,J.,McCaust- Yang,Z.Y.,Werner,H.C.,Kong,W.P.,Leung,K.,Traggiai,E.,Lanzavecchia,A.,Nabel,G.J., land, K., Olsen-Rasmussen, M., Fouchier, R., Gunther, S., Osterhaus, A.D., 2005. Evasion of antibody neutralization in emerging severe acute respiratory Drosten,C.,Pallansch,M.A.,Anderson,L.J.,Bellini,W.J.,2003.Characterization syndromecoronaviruses.Proc.Natl.Acad.Sci.USA102,797–801. of a novel coronavirus associated with severe acute respiratory syndrome. Yeh,K.M.,Chiueh,T.S.,Siu,L.K.,Lin,J.C.,Chan,P.K.,Peng,M.Y.,Wan,H.L.,Chen,J.H., Science300,1394–1399. Hu,B.S.,Perng,C.L.,Lu,J.J.,Chang,F.Y.,2005.Experienceofusingconvalescent Schneider,H.,Kaelin,K.,Billeter,M.A.,1997.Recombinantmeaslesvirusesdefective plasmaforsevereacuterespiratorysyndromeamonghealthcareworkersina forRNAeditingandVproteinsynthesisareviableinculturedcells.Virology Taiwanhospital.J.Antimicrob.Chemother.56,919–922. 227,314–322. Zaki,A.M.,vanBoheemen,S.,Bestebroer,T.M.,Osterhaus,A.D.,Fouchier,R.A.,2012. Sepulveda-Amor,J.,Valdespino-Gomez,J.L.,Garcia-GarciaMde,L.,Bennett,J.,Islas- IsolationofanovelcoronavirusfromamanwithpneumoniainSaudiArabia.N. Romero, R., Echaniz-Aviles, G., de Castro, J.F., 2002. A randomized trial Engl.J.Med.367,1814–1820. demonstratingsuccessfulboostingresponsesfollowingsimultaneousaerosols Zhou,J.,Wang,W.,Zhong,Q.,Hou,W.,Yang,Z.,Xiao,S.Y.,Zhu,R.,Tang,Z.,Wang,Y., of measles and rubella (MR) vaccines in school age children. Vaccine 20, Xian,Q.,Tang,H.,Wen,L.,2005.Immunogenicity,safety,andprotectiveefficacy 2790–2795. of an inactivated SARS-associated coronavirus vaccine in rhesus monkeys. Sheahan,T.,Whitmore,A.,Long,K.,Ferris,M.,Rockx,B.,Funkhouser,W.,Donaldson,E., Vaccine23,3202–3209. Gralinski, L., Collier, M., Heise, M., Davis, N., Johnston, R., Baric, R.S., 2011. Zhou,Z.,Post,P.,Chubet,R.,Holtz,K.,McPherson,C.,Petric,M.,Cox,M.,2006.A Successful vaccination strategies that protect aged mice from lethal challenge recombinantbaculovirus-expressedSglycoproteinvaccineelicitshightitersof frominfluenzavirusand heterologoussevere acute respiratorysyndrome cor- SARS-associated coronavirus (SARS-CoV) neutralizing antibodies in mice. onavirus.J.Virol.85,217–230. Vaccine24,3624–3631.

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.