ebook img

2014 One severe acute respiratory syndrome coronavirus protein complex integrates processive RNA polymerase and exonucle PDF

2014·1.23 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview 2014 One severe acute respiratory syndrome coronavirus protein complex integrates processive RNA polymerase and exonucle

One severe acute respiratory syndrome coronavirus protein complex integrates processive RNA polymerase and exonuclease activities LorenzoSubissia,ClaraC.Posthumab,AxelleColleta,JessikaC.Zevenhoven-Dobbeb,AlexanderE.Gorbalenyab,c, EtienneDecrolya,EricJ.Snijderb,Bruno Canarda,1,andIsabelleImberta,1 aArchitectureetFonctiondesMacromoléculesBiologiques,CentreNationaldelaRechercheScientifique,UnitéMixtedeRecherche7257,Aix-Marseille Université,13288Marseille,France;bMolecularVirologyLaboratory,DepartmentofMedicalMicrobiology,LeidenUniversityMedicalCenter,2300RC,Leiden, TheNetherlands;andcFacultyofBioengineeringandBioinformatics,LomonosovMoscowStateUniversity,Moscow119899,Russia EditedbyPaulAhlquist,UniversityofWisconsin,Madison,WI,andapprovedAugust5,2014(receivedforreviewDecember19,2013) Inadditiontomemberscausingmilderhumaninfections,theCoro- respiratory tract infections, SARS-CoV caused a severe form of naviridaefamilyincludespotentiallylethalzoonoticagentscaus- pneumoniawithacasefatalityrateofabout10%.Twoyearsafter ing severe acute respiratory syndrome (SARS) and the recently theoutbreak,batswereidentifiedasthelikelyreservoirfrom emergedMiddleEastrespiratorysyndrome.The∼30-kbpositive- which SARS-CoV had jumped to humans, probably using other stranded RNA genome of coronaviruses encodes a replication/ animals as intermediate hosts (8, 9). Since April 2012, history seems to repeat itself with the emergence of another zoonotic transcriptionmachinerythatisunusuallycomplexandcomposed CoV, Middle East respiratory syndrome coronavirus (MERS- of16nonstructuralproteins(nsps).SARS-CoVnsp12,thecanonical CoV)(10,11),whichhasthusfarinfectedover800peoplewith RNA-dependent RNA polymerase (RdRp), exhibits poorly proces- acasefatalityrateofabout35%.MERS-CoVismostcloselyrelated siveRNAsynthesisinvitro,atoddswiththeefficientreplication to several bat CoVs (12) and to a newly discovered coronavirus ofaverylargeRNAgenomeinvivo.Here,wereportthatSARS- (EriCoV)foundinhedgehogs(13).Thisnewepisodeemphasizes CoV nsp7 and nsp8 activate and confer processivity to the RNA- the ability of CoVs to cross species barriers and threaten public synthesizing activity of nsp12. Using biochemical assays and re- healthworldwide. verse genetics, the importance of conserved nsp7 and nsp8 resi- TheCoVRNAgenomecanbeupto32kblong(14),carries dueswasprobed. Whereasseveralnsp7mutationsaffected virus a 5′-terminal cap structure, and is polyadenylated at its 3′ end replicationtoalimitedextent,thereplacementoftwonsp8resi- (15).Thegenomeispolycistronicwiththe5′-proximaltwo-thirds dues (P183 and R190) essential for interaction with nsp12 and being occupied by two large overlapping open reading frames athird(K58)criticalfortheinteractionofthepolymerasecomplex (ORFs) (ORFs 1a and 1b) (16). These are translated to yield withRNAwerealllethaltothevirus.Withoutalossofprocessivity, replicase polyproteins pp1a and pp1ab, with synthesis of the thensp7/nsp8/nsp12complexcanassociatewithnsp14,abifunc- latter requiring −1 ribosomal frameshifting near the 3′ end of tionalenzymebearing3′-5′exoribonucleaseandRNAcapN7-gua- ORF1a. Subsequently, the two polyproteins are cleaved by two nine methyltransferase activities involved in replication fidelity or three ORF1a-encoded proteases to release a total of 16 and5′-RNAcapping,respectively.Theidentificationofthistripar- nonstructural proteins (nsp1 to nsp16). Next, these nsps assem- tite polymerase complex that in turn associates with the nsp14 ble into a replication and transcription complex (RTC) that is proofreadingenzymeshedslightonhowcoronavirusesassemble associated with modified intracellular membranes (17) and anRNA-synthesizingmachinerytoreplicatethelargestknown directs a complex mechanism of viral RNA synthesis. This not RNA genomes. This protein complex is a fascinating example of thefunctionalintegrationofRNApolymerase,capping,andproof- Significance readingactivities. | The 2003 severe acute respiratory syndrome (SARS) epidemic replicativecomplexreconstitution processivityfactor and recent emergence of Middle East respiratory syndrome highlightthepotentiallethalityofzoonoticcoronavirusinfec- A virus-encoded RNA-dependent RNA polymerase (RdRp) tions in humans. No specific antiviral treatment options are isthecentralenzymeinthereplicativecycleofRNAviruses available.CoronavirusespossessthelargestknownRNAvirus (1). In the case of mammalian positive-strand RNA (+RNA) genomesandencodeacomplexreplicationmachineryconsist- viruses, the enzyme is generated by the translation of the in- ingof16viralnonstructuralproteins(nsps).Ourstudyreveals comingviralgenome,whichyieldsapolyproteinprecursorfrom that the SARS-coronavirus RNA polymerase (nsp12) needs to which the RdRp-containing subunit is released by proteolytic associatewithnsp7andnsp8toactivateitscapabilitytorepli- cleavage.Subsequently,theRdRpisintegratedintoamembrane- catelongRNA.Moreover,thiscomplexassociateswithnsp14, associatedviralenzymecomplexthatdrivestheproductionofneg- the proofreading subunit required to safeguard coronavirus ative-strandRNA(−RNA),newgenomemolecules,andinmany replicationfidelity.OurstudythusdefinesthecoreofanRNA- virus groups also subgenomic (sg) messenger RNAs (mRNAs) synthesizingmachinerythatisuniqueintheRNAvirusworld (2–4). Compared with the replication of either viral or cellular andincludesseveralkeytargetsforantiviraldrugdevelopment. DNAsequences,RNAvirusgenomesarecopiedwithrelativelylow fidelity,becausetheproductsofreplicationarebelievedtobenei- Authorcontributions:L.S.,C.C.P.,A.E.G.,E.D.,E.J.S.,B.C.,andI.I.designedresearch;L.S., therproofreadnoredited(5).Thispropertyisamajorfactorinthe C.C.P.,A.C.,J.C.Z.-D.,E.J.S.,B.C.,andI.I.performedresearch;A.E.G.contributednew evolution,adaptation,andepidemiologyofRNAviruses. reagents/analytictools;L.S.,C.C.P.,A.E.G.,E.D.,E.J.S.,B.C.,andI.I.analyzeddata;and Among+RNAviruses,coronaviruses(CoVs)(orderNidovirales) L.S.,C.C.P.,E.D.,E.J.S.,B.C.,andI.I.wrotethepaper. stand out for having the largest single-stranded RNA genomes Theauthorsdeclarenoconflictofinterest. knowntodate(6,7).Researchintothemolecularandstructural ThisarticleisaPNASDirectSubmission. biology of CoVs was boosted significantly by the emergence, in 1Towhomcorrespondencemaybeaddressed.Email:[email protected] 2003, of a previously undiscovered CoV that caused the severe [email protected]. acuterespiratorysyndrome(SARS)epidemic(6).Whereasestab- Thisarticlecontainssupportinginformationonlineatwww.pnas.org/lookup/suppl/doi:10. lished human CoVs are commonly associated with mild upper 1073/pnas.1323705111/-/DCSupplemental. E3900–E3909 | PNAS | PublishedonlineSeptember2,2014 www.pnas.org/cgi/doi/10.1073/pnas.1323705111 S U L P S A N only entails the synthesis of new genomes from a full-length RNApolymerization,proofreading,andcappingactivitiesneeded P negative-stranded template, but also a process of discontinuous toreplicatetheunusuallylongCoVRNAgenome. RNA synthesis to produce subgenome-length negative-stranded RNAs(18,19).Thelatterserveastemplatetoproduceanested Results set of sg mRNAs required to express the viral structural and Nsp7andNsp8CooperateinActivatingthePrimer-DependentActivity accessoryproteinsfromgenesnotaccessibletoribosomestrans- oftheNsp12RdRp.Thensp12subunitistheessentialRdRpofthe latingtheviralgenomeRNA. coronavirusreplicativemachinery.Purifiedrecombinantnsp12is The CoV replicase harbors awide variety ofenzymatic activ- able to extend a homopolymeric primer-template substrate by ities(7,16,20).Severalnspshavealreadybeencharacterizedas a few dozen nucleotides in vitro, but in a nonprocessive (dis- multifunctionalsubunits.WhereastheRdRpandhelicaseenzymes tributive)manner(21).Moreover,nsp12waspreviouslyreported formtheC-terminaldomainsofnsp12andnsp13,respectively,and tointeractwithnsp8inGSTpull-downexperiments(39),which aretypicallyfoundin+RNAviruses(21,22),lesscommonoreven displayedaprimase-likeRdRpactivity(30–32).Becauseoneof uniqueRNA-processingactivitiesareassociatedwithothernsps. thetwodescribedstructuresofthensp7/nsp8complexresembles For example, the N-terminal domain of the bifunctional nsp14 that of DNA processivity factors such as proliferating cell nu- includesa3′to5′exoribonuclease(ExoN)(23)thathasbeenim- clear antigen (PCNA), it was hypothesized also that nsp7/nsp8 plicatedinauniquebutpoorlycharacterizedformofRNAviral maymodulatensp12RdRpactivity (29,40). proofreading(24–26)andnsp15carriesanendoribonucleaseac- Recombinant SARS-CoV proteins carrying affinity tags were tivity(NendoU)ofunknownfunction(27,28).Inaddition,SARS- expressed in Escherichia coli using a T7 RNA polymerase-free CoVnsp8wascocrystallizedwithanotherviralprotein[nsp7(29)] systemandwerepurifiedbyaffinitychromatography(Fig.S1A). asauniquehexadecamericringstructure,whichwasreportedto Pull-downexperimentsconfirmedtheinteractionbetweennsp12 exhibita“noncanonical,”denovo-initiatingRdRpactivity(30–32). andnsp8(Fig.S1B),ofwhichthelatterinturninteractswithnsp7 Moreover, evidence from genetics studies previously implicated (Fig. S1C), suggesting that a tripartite complex may be formed. nsp8inaspecificinteractionwithRNAstructuresnearthe3′end However,such adirectinteractionbetweenthesethreeproteins of the CoV genome (33). The nsp7/nsp8 protein complex was remainedundetected(Fig.S1D). therefore proposed to act as a cofactor for the canonical nsp12 Nsp12alonewasunabletoextendtheprimerstrandofahet- Y G RdRp.Indeed,bioinformaticsanalysesofthensp12RdRpdomain eropolymeric primer/template (P/T), of which the template O identifiedtheso-called“Gmotif,”whichhasbeenimplicatedinthe mimicked the 3′-terminal 40 nt of the SARS-CoV genome [ex- BIOL recognitionoftheprimerspredictedtoberequiredfortheinitia- cludingthepoly(A)tail],hereaftercalledLS2/LS1(Fig.1AandB). RO tionofRNAsynthesisbynsp12(34). In the same manner, nsp8 alone was inactive on the LS2/LS1 MIC Insights into how the RTC is assembled and operates are RNA primer/template, as previously described (30). Pairwise criticalfortheadvancementofourbasicunderstandingofCoV combinations of nsp7, nsp8, and nsp12 displayed no significant replication and for the development of efficient means to con- polymerase activity either (Fig. 1B). However, RNA synthesis trolCoVinfections.Overthepast10years,theSARS-CoVRTC activitywasfoundwhennsp7,nsp8,andnsp12weresimultaneously has been studied by using different approaches including bio- presentinthereactionmixture(Fig.1B).Toevaluatetherequire- informatics,(reverse)genetics,aswellasbiochemicalandstruc- mentsforRdRpactivityinmoredetail,wepreincubatedallpos- turalcharacterizationofrecombinantnsps.Clearly,theremustbe siblepairwisecombinationsofnsp7,nsp8,andnsp12forvarious anetworkofinteractingreplicationproteinsthatcontrolstheCoV periodsoftime,beforeaddingthethirdproteinandassayingRNA replicationcycle.Duringthepastyears,weandothershaveelu- synthesis.ThehighestRdRpactivitywasobtaineduponaddition cidatedhowtheinvitroactivityofvariousCoVenzymescanbe ofanequimolaramountofnsp12toapreincubated1:1mixtureof modulated by interactions with other viral nsps (24, 35). More- nsp7andnsp8,suggestingthatthelevelofassociationofnsp7and over, the SARS-CoV RTC was partially purified from infected nsp8 may constitute a limiting factor for obtaining a high RNA cellsandshowntoproducethefullspectrumofviralmRNAs(36). polymeraseactivity. Exogenous RNA templates are, however, not replicated by this To overcome this limitation, we designed a set of gene con- largemembrane-boundcomplex,whosesubunitcompositionwas structstoexpressfusionproteinsinwhichnsp7waseitherdirectly notfullyresolved. fusedtonsp8(imitatingtheuncleavednsp7–nsp8,designated7–8) Severalattemptshavebeenmadetocharacterizensp12RdRp or through a peptide linker of different lengths (7L8). Upon activity in vitro. A weak polymerase activity was described for coexpressionwithnsp12inE.coli,allfiveengineeredfusionpro- recombinantSARS-CoVnsp12expressedinfusionwithaGST- teinsboundtoandcopurifiedwithnsp12(Fig.S2A).Interestingly, tag. The uncharacterized N-terminal domain of nsp12 was con- theproteincomplexconsistingofnsp12andafusion protein,in cludedtoberequiredforactivity(37).Furtherenzymaticstudies whichthensp7Cterminusislinkedtothensp8Nterminusbyan showedthat a full-length, C-terminally His -tagged nsp12 could engineered peptide of 6 (or 12) amino acids residues, is able to 6 initiate homopolymeric RNA synthesis in a primer-dependent efficientlypolymerizeRNA(Fig.S2B).Incontrast,whennsp12is manner(21).However,thepolymeraseactivitydescribedinthese complexedwithanuncleavednsp7–nsp8polyprotein(either7–8/ studies appeared generally weak and nonprocessive. The proc- 12or7–8HC/12),theseproteincomplexesfailtoshowpolymerase essivityofRNAsynthesis,definedasthenumberofnucleotides activity(Fig.S2B).Combined,theseresultsindicatethatinserting polymerized during a single encounter of the RNA polymerase a linker between nsp7 and nsp8 may besufficient toimitate the withitstemplate,bearsimportantbiologicalsignificance:ahighly effect of the nsp7–nsp8 cleavage and associated structural rear- processiveRNApolymerasemaysynthesizeafull-lengthcopyof rangementsonthefunctioningofnsp7andnsp8intheactivationof aviralRNAgenomewithoutfallingoffthetemplate. nsp12RNApolymeraseactivity.Thesedataarealsoinagreement Here,wereportthattheprocessivityoftheSARS-CoVnsp12 withthoseofDemingetal.(41),whoshowedthatmurinehepatitis polymerase in primer extension mode can be dramatically in- viruscouldnotberecoveredwhenthecleavagebetweennsp7–nsp8 creaseduponformationofacomplexwithnsp7andnsp8.Thus, wasprevented.BeingthemostefficientintermsofitsRNAprimer this tripartite complex forms—uniquely among RNA viruses— conversionrate,the7L8/12complex,withthelinkerLconsistingof aholoenzyme,whichisalsocapableofinitiatingRNAsynthesis sixhistidines,wasselectedforfurtherexperiments.Thisaffinity- de novo, i.e., in the absence of an exogenous RNA primer. We purifiedcomplex(Fig.1C)isatleastthreefoldmoreactivethan further established that nsp14, which harbors a N7-guanine cap a preincubated mixture of thethree separately purified subunits methyltransferaseactivity(38)downstreamoftheExoNdomain (7+8+12; Fig. 1D), confirming that, in our experimental con- (23),canjointhensp7/nsp8/nsp12complex,withoutsignificantly ditions, the nsp7/nsp8 association is a limiting factor to obtain affecting either its polymerase activity or its processivity. The ahighlyactiveRNApolymerasecomplex.TheCterminusofnsp7 formation of this multifunctional nsp7/nsp8/nsp12/nsp14 com- andtheNterminusofnsp8arefarapartinthepublishedSARS- plexdemonstratesthephysicalassociationofsubunitspossessing CoVnsp7–nsp8structure,indicatingthatthe7L8fusionproteinis Subissietal. PNAS | PublishedonlineSeptember2,2014 | E3901 Two radiolabeled products are detected (Fig. 2), one with a length similar to that of the RNA template and the other ap- proximately twice as long. The size of the shorter product sug- gestsittocorrespondtothecomplementarystrandof3R,implying thatdenovoinitiationofRNAsynthesishasoccurred.Thelonger productisinterpretedastheresultof“backpriming,”i.e.,thefor- mationofahairpinstructureatthe3′endofthetemplate,which canserveasprimertobeextendedintoaproductofabouttwicethe templatelength(42,43).Noteworthy,nodenovopolymeraseac- tivityisdetectedusingamixtureofthethreeproteinspurifiedin- dependentlyfromE.coli.Previously,nsp8wasproposedtobean RNA primase, possibly mediating the synthesis of small primers (30–32)thatcouldbeelongatedbynsp12.Torevisitthishypothesis, weperformeddenovoRNAsynthesisassaysusingtemplate3Rand aproteincomplexconsistingof7L8copurifiedwiththeactivesite knockoutmutantofnsp12(D760A).Undertheseconditions,nsp8- mediatedsynthesisofshortprimersisnotdetected(Fig.S3). To exclude that the products detected in the de novo assay weredueto3′-terminalnucleotidetransferaseactivityof7L8/12, the3′endoftemplate3Rwasblockedusingperiodateoxidation. This chemical modification results in cleavage of the 2′C—3′C bondintheriboseofthe3′-terminalnucleotide,thuspreventing anyfurthernucleotideadditiontothe3′endoftheRNAtemplate. WhenusingthismodifiedRNAtemplate,theputativebackpriming productisnolongerobserved,whereasafull-lengthproductcom- plementarytothetemplateisstillproduced,albeitwithloweref- ficiency(Fig.S4A,lane1).ThisreductioninRNAsynthesislikely reflects reduced binding of the polymerase complex to the peri- odate-treated 3′ end of the template, as previously described for Fig.1. SARS-CoVnsp12polymeraseactivityisactivatedbynsp7andnsp8. denguevirusRdRp(44). (A)SequenceoftheRNAprimer/templateusedinthisstudy;the20-ntprimer Tobettermimictheinvivocontextfordenovoinitiation,we LS2was5′-radiolabeled(markedby*)andannealedtothe40-nttemplateLS1. alsotestedavariantofthe3Rtemplatecarryinga3′-terminal (B) Primer extension polymerase assays were performed using LS2*/LS1 as 20-residue poly(A) tail (named3RA). The efficiency of 7L8/12- substrateanddifferentcombinationsofseparatelypurifiednsp12,nsp8,and mediatedRNAsynthesisisunchangedonthistemplatecompared nsp7.RNAproductswereseparatedbydenaturinggelelectrophoresis(20% withthatofthetemplatewithoutpoly(A)tail(Fig.S4B).Taken polyacrylamide/7Murea)andanalyzedbyautoradiography.Thepositionsof together,theseresultsshowthatthe7L8/12polymerasecomplex the primer (20-mer) and the full-length extension product(40-mer) are in- iscapable ofdenovoinitiationofRNAsynthesisona template dicated.(C)WTormutant(D760A)nsp12werecoexpressedinE.coliwiththe with the same sequence as the 3′-proximal domain of the viral nsp7-L-nsp8fusionprotein(7L8).Afterpurificationofthe7L8/nsp12complex RNA genome, and of subsequent elongation of RNA products on a Strep-Tactin column, analysis by 12% SDS/PAGE and Coomassie blue to>300nt. stainingoftheproteinsconstitutingthecomplex(nsp12WTorD760Amutant) wasdone.#indicatesthepositionofE.coliproteincontaminants(definedby The Nsp7/Nsp8 Complex Confers Processivity to Nsp12 RdRp. The MALDI-TOFanalysis).(D)Comparisonofprimerextensionpolymeraseactivities activation of nsp12 RdRp activity in the presence of nsp7 and ofWTandmutant(D760A)nsp12inthepresenceofnsp7andnsp8.Nsp7,nsp8, andnsp12wereeitherpurifiedandaddedseparately(laneslabeled7+8+12)or nsp8 suggests that the nsp7/nsp8 complex enhances processivity copurifiedfromE.coliasdescribedabove(laneslabeled7L8/12).Thereactions of nsp12-mediated RNA synthesis. We next analyzed the proc- wereperformedonRNAtemplateLS2*/LS1(seeB).Primerconversionrates essivityof7L8/12onthe3Rtemplate.Toavoidrecyclingofthe (at60min):40%for7+8+12;67%for7L8/12;and0%for7+8+12(D760A)and polymerase once it had terminated a series of nucleotide addi- 7L8/12(D760A). tions, we made use of a 200-fold excess of an exogenous RNA highlyunlikelytoassembleintoasimilarhexadecamericstructure, due to topological constraints. Another assembly type than the SARS-CoVhexadecamerwasreportedforfelinecoronavirus,in which the nsp7/nsp8 complex forms a heterotrimer (32), clearly pointingtotheplasticityofthisCoVproteincomplexthatcouldbe relevantfor7L8. To investigate whether the observed primer extension was indeed catalyzed by the nsp12-RdRp domain, we mutated the conservedmotifCoftheRdRp(SDDtoSAD,orD760A).This nsp12(D760A)mutantisstillabletobindto7L8(Fig.1C)butis incapableofRNAsynthesisinthepresenceofeitherseparately purifiednsp7andnsp8orcopurified7L8(Fig.1D). The 7L8/12 Polymerase Complex Catalyzes de Novo RNA Synthesis. An assay to investigate de novo initiation of RNA synthesis by Fig.2. The7L8/12polymerase complexcatalyzesdenovoRNA synthesis. 7L8/12 was designed using a 339-nt-long heteropolymeric RNA DenovoRNApolymeraseassayswereperformedusing500nM7L8/12with template,correspondingtothe3′-nontranslatedregion(3′-NTR) 500nMRNAtemplate(3R),representingthe3′-terminal339ntoftheSARS-CoV of the SARS-CoV genome (named 3R). The protein complex genome. Reaction products, collected at the indicated time points, were andtemplate3Rwereusedforatimecourseexperimentinthe analyzedbydenaturingagarosegelelectrophoresisandautoradiography. presence of [α-32P]ATP and reaction products were analyzed ReactionproductsareidentifiedontheRightofthegel,andradiolabeled usingdenaturingagarosegelelectrophoresisandautoradiography. RNAsizemarker(M)isshowntotheLeftofthepanel. E3902 | www.pnas.org/cgi/doi/10.1073/pnas.1323705111 Subissietal. S U L P S A N substrate,thepreviouslyusedLS2/LS1primer/template(Fig.1A) LS1trapwereintroducedsimultaneously(setup#2),thesynthesis P thatservedasa“polymerase trap.”Thelatterwasaddedeither of long products derived from template 3R is barely detectable atthesametimeasthe3Rtemplate,orafter7L8/12/3Rtemplate (Fig. 3B, compare #1 and #2) indicating that LS2/LS1 out- complex formation had been allowed to occur (Fig. 3A, setups competes 3R. However, when the same excess of LS2/LS1 was #2and#3,respectively).Inthelattersetup,exogenousLS2/LS1 added after 7L8/12/3R complex formation had occurred (setup shouldtrapallfreepolymerasecomplexesassoonastheywould #3),thetwolongproducts(fromdenovoandbackpriminginiti- falloffthe3Rtemplate.Thus,thislastconditionwouldallowvi- ationmodes)aretheonlyproducts>40ntdetected(Fig.3B,setup sualizationofRNAproductsresultingfromasingledenovo(or #3).Theabsenceofanyshorterproductresultingfromabortive backpriming)initiationevent.Allpolymeraseassayswerestarted RNA synthesis shows that RNA synthesis proceeds with a very bytheadditionoftheNTPmixture,including[α-32P]ATP(NTP*). low dissociation rate once a productive polymerase/3R complex As a control (setup #1), a reaction was performed without the isformed. LS2/LS1 trap. Fig. 3B (left lanes of the gel) shows that it yields TogaininsightintotheassociationkineticsofRNAtemplate somesmaller“abortiveproducts,”presumablyderivingfrompoly- and7L8/12,weperformedtrappingexperimentssimilarlytothose merase complexesfallingoff the 3R template, inaddition to the presentedinFig.3.Theobtainedk value(Fig.S5;7.9·10−3s−1) off two expected full products resulting from de novo initiation and indeedreflectsaverylowdissociationrate.Together,theseresults backpriming.TheproductsfromabortiveRNAsynthesisareonly clearly demonstrate that the 7L8 cofactor activates and confers detectedafterlongerincubationtimes(>5min),inlinewiththe processivitytotheSARS-CoVnsp12RdRp. polymeraserecyclinghypothesis.Whenthe3RtemplateandLS2/ Nsp7andNsp8ConferRNABindingCapacitytoNsp12.Howdoesthe nsp7/nsp8 complex stimulate nsp12 RdRp activity? We first compared the RNA binding properties of nsp12, 7L8, and the 7L8/12 complex. Electrophoretic mobility shift assays (EMSAs) indicate that nsp12 itself does not bind significantly to RNA (LS2/LS1), that 7L8 interacts weakly with it, whereas 7L8/12 strongly binds to RNA (Fig. 4A). Moreover, the 7L8/12 RNA Y G binding affinity is higher in elongation than in initiation mode, O L bshaisfetd(Foing.p4rAo)t.eAinltcoogmetphleerx,tqhueasnetditaietas suusgegdestottohbatse7rLve8manedRiaNteAs OBIO R affinityofthecomplex forRNA. MIC Next, we sought to identify nsp7 and nsp8 residues that may confer RNA template-binding ability to the nsp7/nsp8/nsp12 complex.BasedonsequenceconservationacrossCoronaviridae, theirexposureonthesurfaceofthepublishednsp7/nsp8crystal structures (29, 32), and amino acid properties, 5 nsp7 residues and16nsp8residueswereselectedforsubstitutionwithalanine (Fig.S6).Primerextensionassayswerefirstperformedusingthe five nsp7 mutants in combination with separately purified WT nsp8andWTnsp12.Nsp7residuesK7andN37arefoundtobe essentialforRdRpactivity,whereasreplacementofH36confers a moderate decrease in primer-dependent polymerase activity (38%residualactivity;Table1).Next,toaddresstheimpacton de novo polymerase activity, 7L8 proteins carrying these three mutations were expressed in E. coli and copurified with nsp12. Complexes containing the nsp7 H36A and N37A mutants show strongly reduced de novo polymerase activity (less than 7% of the WT control), whereas the complex containing K7A exhibits 33% oftheactivity oftheWTcontrol.Then, EMSAs were per- formedwithcomplexescontainingthesesamensp7mutants(K7A, H36A,andN37A). Replacementofeach ofthesensp7 residues severelyreducestheRNAbindingcapacityofthensp7/nsp8/nsp12 complexduringelongation,indicatingthatnsp7playsacrucialrole inRNAbinding(Fig.4BandTable1). Thesameapproachwasusedtoanalyzemutantsinwhichone of 16 conserved nsp8 residues had been mutated. Polymerase activities of these nsp8 mutants were assayed either in the con- textofseparatelypurified(nsp7plusnsp8plusnsp12)forprimer extension assaysor aspartofthe copurified 7L8/12polymerase complex for de novo polymerase assays. Of note, primer exten- sion activities of nsp8 WT and a set of nsp8 mutants were also assayedbothinthecontextofseparatelypurifiednsp7,nsp8,and nsp12 and in the copurified 7L8/12 polymerase complex. Com- parable relative values of primer extension activities are ob- Fig.3. The7L8/12polymerasecomplexprocessivelyreplicatesthe3RRNA servedinbothsetups,supportingthebiologicalrelevanceofdata template.(A)Schematicrepresentationofthethreeexperimentalsetupsused, obtained with the 7L8 fusion protein (Table S1). Five nsp8 allincluding500nMof7L8/12polymerasecomplexand100nMofthe339-nt mutations (K58A, D99A, P116A, P183A, and R190A) are asso- template3R;theLS2/LS1template(Fig.1A)wasusedasatrapat20μM.NTPs* representsamixofthefourNTPs(500μMGTP,UTP,CTP,and50μMATP)and ciated with a strong decrease of both primer-dependent and de 0.17μM[α-32P]ATP(0.5μCi/μL).Nucleotideincorporationwasfollowedintime novo polymerase activities (Table 2). The 7L8/12 complex con- taining the nsp8 K58A mutant shows strongly reduced RNA asindicatedinthethreeflowcharts.(B)Reactionswerestartedbytheaddi- tionofNTPs*.RNAproductswereseparatedbydenaturingacrylamide/urea binding(Fig.4B),consistentwiththeobservedlossofpolymerase gels and visualized by autoradiography. RNA products and residual radio- activity, but without providing an explanation for the difference labeledATP*areindicatedontheRightoftheautoradiograph. in activity observed between primer extension and de novo Subissietal. PNAS | PublishedonlineSeptember2,2014 | E3903 The Nsp8/Nsp12 Interaction Is Critical for SARS-CoV RdRp Activity. To further unravel the involvement of nsp8 residues in nsp12 RdRpstimulation,wecharacterizedthefourothernsp8mutants exhibitingadecreaseinbothprimerextensionanddenovopoly- meraseactivities(D99A,P116A,P183A,R190A;Table2).These mutants, in the context of 7L8, were analyzed for their ability tointeractwithnsp12inaprotein–proteininteractionstudyalso including the D50A, K82A, and S85A nsp8 mutants (displaying unchanged primer-dependent polymerase activities) and nsp8 mutant K58A, which wasassociated with a critical decrease of the interaction between polymerase complex and RNA. Using theE.colicoexpressionsystem,WTormutant7L8proteinswere copurified with nsp12. Proteins were separated by SDS/PAGE, and peaks corresponding to nsp12 and 7L8 were quantified. Table2presentsthelevelofcopurificationbetweennsp12and7L8 (mutants)relativeto7L8(WT),whichwastakentodefine100%of nsp12/nsp8 protein interaction. Nsp8 mutants D99A, P116A, P183A,andR190Alosetheirabilitytointeractwithnsp12,likely explainingthelackofpolymeraseactivity,whereastheinteraction betweennsp12andnsp8D50A,K58A,K82A,andS85Amutants isunaffected(Table2). Ourstudythusidentifiesfournsp8residues(D99,P116,P183, andR190)thatarecriticalfortheinteractionofnsp8withnsp12 in vitro, and thereby essential for processive RNA polymeriza- Fig.4. Nsp7 andnsp8 confer RNA-bindingcapacity to the nsp12 RdRp. tiontooccur. EMSAs were performed with 100 nM radiolabeled RNA template (LS2*/ LS1) and increasing concentrations of the indicated proteins. With the exception of 7L8/12 in initiation mode, all of the other reactions were ReverseGeneticsConfirmstheCriticalRoleofNsp7andNsp8inSARS- donewithNTPs(500μMCTP,UTP,GTPand50μM3′-dATP)tofacilitate CoVReplication.Theimportanceofthecoronavirusnsp7andnsp8 formationofastalledRNA/enzymecomplex,andwith3′-dATPpreventing subunits for virus replication in vivo has barely been addressed synthesisoffull-lengthRNAproduct.Reactionswereincubatedfor60min thusfar.Basedonourinvitrostudies,mutationsofnsp7andnsp8 at30°Candproductswereanalyzedbynative6%PAGE.(A)Noprotein residuesthatareimportantforpolymeraseactivity(i.e.,nsp7K7, (np)controlandincreasingconcentrationsofnsp12,7L8,and7L8/12,as H36, and N37; nsp8 K58, D99, P116, P183, and R190; Tables 1 indicated above each panels. (B) No protein (np) control and increasing and2)werereverse-engineeredintotheSARS-CoVgenomeus- concentrations(0.5,0.75,and1μM)of7L8/12polymerasecomplexescon- ingaBAC-basedfull-lengthcDNAclone(45).Also,nsp8residues tainingdifferentnsp7andnsp8mutants,asindicatedaboveeachpanel. S11 (with constrained Ser/Thr variability in coronaviruses) and 7L8/12inelongationmodegave42.5%±7.5%ofshiftedprobe;7L8,9.0%± N43, one of the few invariant nsp8 residues among CoVs (Fig. 3.5%;7L8(K58A)/12, 10.0% ± 6.5%,whereas nsp12 alone andthe other S6),weretargetedinthisreverse-geneticsstudy,aswellasthree mutantspresentedheredidnotshowanyabilitytobindtheprobe(0%). residues previously identified as important for in vitro nsp8 These values are averages from quantification of three independent function (i.e., D52, K82, and S85) (30, 31), which have pheno- experiments. typescomparabletothatoftheWTcontrolinourbiochemical studies (Table 2). Mutant viruses were launched by electroporation of in vitro- initiationassays(70%versus99%lossofactivity,respectively; generated RNA transcripts into BHK-Tet-SARS-N cells, which Table 2). express the viral nucleocapsid (N) protein (46). These cells can Inconclusion,ourstudyidentifiesthreensp7residues(K7,H36, be transfected efficiently and release progeny virus, but do not andN37)andonensp8residue(K58)thatappeartobeimportant support further viral spread because they lack the ACE2 recep- fortheinteractionofthepolymerasecomplexwithRNA,thusalso torusedbySARS-CoV.Forthisreason,transfectedcellswere providingthefirstevidence(toourknowledge)foraroleofnsp7 mixed with (susceptible) Vero-E6 cells and the replication of inCoVRNAsynthesis. mutant viruses was characterized at different time points using Table1. BiochemicalpropertiesofSARS-CoVnsp7mutants Summaryofquantificationfornsp7mutantsinprimerextensionanddenovopolymeraseactivities,aswellas RNAbinding.Quantificationsofpolymerizationactivitiesweredoneafter60minofincubationandbyusing ImageGaugesoftware.ND,notdetermined.WTabsolutevaluescorrespondingto100%activityareasfollows: 42%±4%ofprimerconversion(at60min)forprimer-dependentexperiments;42.5%±7.2%ofshiftedprobe for EMSAs.Forthedenovoassays,polymeraseactivities ofthedifferentmutantswere always analyzed on denaturatinggelinparallelwiththeWTpolymeraseproteincomplex,whosebandintensitiesweresetat100%. SDsarecalculatedfromthreeindependentexperiments. *Nsp7WTplusnsp8WTplusnsp12WTprimerextensionactivitywassetat100%. †7L8/12WTcomplexfordenovopolymeraseactivitywassetat100%. ‡RNAbindingof7L8/12WTcomplexwassetat100%.Mutantshighlightedindarkgrayindicateimportant residuesforinvitropolymeraseactivities. E3904 | www.pnas.org/cgi/doi/10.1073/pnas.1323705111 Subissietal. S U L P S A N Table2. BiochemicalpropertiesofSARS-CoVnsp8mutants P Summaryofquantificationfornsp8mutantsinprimerextensionanddenovopolymeraseactivities,aswellas innsp8/nsp12interactionassays.Quantificationsofpolymerizationactivitiesweredoneafter60minofincuba- tion and by using Image Gauge software. ND, not determined. WT absolute values corresponding to 100% activity are as follows: 42% ± 4% of primer conversion (at 60 min) for primer-dependent experiments and GY 42% ± 8.2% of 7L8 band intensity (compared with nsp12 band intensity) for nsp8/nsp12 interaction assays. LO O Forthedenovoassays,polymeraseactivitiesofthedifferentmutantswerealwaysanalyzedondenaturating BI gelinparallel with theWT polymerase protein complex,whoseband intensities weresetat100%. SDsare RO C calculatedfromthreeindependentexperiments. MI *Nsp7WTplusnsp8WTplusnsp12WTprimerextensionactivitywassetat100%. †7L8/12WTcomplexfordenovopolymeraseactivitywassetat100%. ‡Levelofcopurificationof7L8(WT)relativetonsp12wastakentorepresent100%ofnsp12/nsp8proteinin- teraction.Mutantshighlightedindarkgrayindicateimportantresiduesforinvitropolymeraseactivities. immunofluorescencemicroscopyandprogenyvirustitration(plaque testedbyreversegenetics.MutantD52Adisplayedareducedpla- assays). Each mutant was tested twice, by transfection of RNA quesize,althoughitsgrowthkineticswasquitesimilartowhatwas derived from two independently generated cDNA clones. For foundfortheWTvirus(Fig.5).ForK82A,noevidenceofrepli- mutants producing infectious progeny, the 42-h posttransfection cation was observed at the earliest time point after transfection (p.t.)harvestwasusedtoinfect freshVeroE6,fromwhich RNA analyzed (18 h p.t.; Table S2), but this changed later on. This wasisolatedtoamplifythensp7-,nsp8-,andnsp12-codingregions transition coincided with the discovery of second-site mutations, by RT-PCR. This material was used to confirm the presence of specifically a D78N substitution in one experiment and a mix of the engineered mutation(s) and investigate the presence of pos- E77T andD78N inthesecondexperiment. The results obtained siblesecond-sitereversions.Thepropertiesofthevariousmutants forthesetwomutantsonceagainhighlighthowtheuseofdiverse aresummarizedinTableS2. assaystoanalyzetheeffectofmutationsinviralproteinsisacritical Substitution of the invariant nsp7 residues H36 and N37 by partoftheirfunctionalcharacterization.Interestingly,withregard alanine supportsthe importance of nsp7for virus replication in totheonlythreeinvariantresiduesidentifieduponthecomparative vivo. Although both mutants were viable, their replication was analysis of CoV nsp8 sequences (N43, K58, and P183; Fig. S6), impairedcomparedwiththatoftheWTvirusaswasinitiallyev- replacements of K58 and P183 impair polymerase activity and identfromtheirreducedplaquesize(Fig.5).Similarobservations resulted in a nonviable phenotype in reverse genetics, whereas were madefor mutant nsp7K7A.The phenotype ofthese three mutantN43AsurprisinglydisplayedaWT-likephenotypebothin nsp7mutantswasfurthercomparedbydeterminingtheirgrowth- vitroandinvivo. curves, for which fresh Vero-E6 cells were infected [multiplicity Althoughthe lethal effectofan nsp8 full-lengthdeletion pre- ofinfection(M.O.I.)of5]withsupernatantharvestedat42hp.t. viouslysuggestedtheoverallimportanceofnsp8(41),thisstudyis from cells transfected with mutant RNA (Fig. 5). This more de- thefirst(toourknowledge)toestablishthedirectfunctionalim- tailedcomparisonconfirmsthatallthreensp7mutantsare(about portance of specific nsp8 residues (K58, P183, and R190) for equally) crippled compared with the WT control, reaching final virusreplication. progeny titers[24 h postinfection(p.i.)] that are about 0.5–1 log reduced(Fig.5). TheNsp7/Nsp8/Nsp12PolymeraseComplexIsAbletoAssociatewith The10nsp8mutantstesteddisplayedavarietyofphenotypes anActiveBifunctionalNsp14.Inagreementwiththeproposedrole (TableS2),rangingfromnonviable(K58A,P183A,andR190A), of the nsp14 ExoN domain in coronavirus proofreading during viacrippled (D52A,K82A,D99A,andP116A),toquite similar replication (24, 25, 47), the nsp14 replicase subunit binds to totheWTcontrol(S11A,N43A,andS85A).Forthemutantsin nsp12(Fig.S1Bandref.39). Wetherefore addressed theques- thefirstandthirdgroups,theinvivophenotypesareingeneral tionwhethernsp14isstillabletobindtonsp12inthecontextof agreementwiththeresultsfromthebiochemicalassays(Table2). the 7L8/12complex andif such an interaction could potentially This is less clearcut for the second group, which for example affect any of the three-enzymatic activities (RdRp, 3′-5′ ExoN, containsnsp8mutants(D99A,P116A)withmajordefectsinthe andN7-MTase). biochemicalassaysbutaviable,althoughcrippledinvivopheno- Pull-down experiments were performed as described in the type,asreflectedintheirreducedplaquesizeandsomewhatlower legendofFig.S1.Interactionof7L8,nsp12,andnsp14isreadily progenytiters(Fig.5).Conversely,twomutants(D52A,K82A)not detected(Fig.6A),andtheproteincomplex(hereafter7L8/12/14) showingmajordefectsinbiochemicalassayswereimpairedwhen can be purified (Fig. S7). The polymerase activities of the Subissietal. PNAS | PublishedonlineSeptember2,2014 | E3905 number of nucleotides polymerized during a single encounter with its template, is considered critical for efficient virus repli- cation(54–58). CoronavirusescarryRNAgenomesatleasttwicelarger(∼30kb) thanthatofthemajorityofanimalRNAviruses(∼3to∼15kb). Our present results suggest that to ensure processivity of their nsp12-polymerase, coronaviruses have evolved a mechanism of RNA synthesis that is unique among RNA viruses. Based on in vitroassays,SARS-CoVnsp12RdRpwaspreviouslyreportedtobe anonprocessiveprimer-dependentRNApolymerase(21,37).We nowdemonstratethatthesimultaneousadditionofnsp7andnsp8 activatesandconfersprocessivitytothensp12RdRp.Bydisplaying averylowdissociationratefromRNA,thensp7/nsp8/nsp12com- plexcansynthesizeanRNAof,atleast,359ntwhensynthesisis startedwithoutaprimer(denovo).Clearly,associationwithother nspsmayberequiredtocopythe30-kbfull-lengthgenome. Thethreeaminoacidsinnsp7(K7,H36,andN37)thatconfer RNA-binding properties to the polymerase complex (Fig. 4B) arealsoimportantforvirusreplicationinvivo(Fig.5).Indeed,in A nsp12 bound to B Fig.5. Reverse-geneticsanalysisoftheimpactofselectedSARS-CoVnsp7 StrepTactin StrepTactin andnsp8mutations.Plaquephenotypesofviablebutcrippledmutantswith beads + beads + ewnegrienepeerrefodrnmsepd7awnidthnespa8rlympurtoagtieonnysavrireuisl,luhsatrravteesdteodnftrhoemLceeftll.sPalatq1u8ehaspsaoysts nsp14 + 7L8 7L8 nsp14 nsp14 + 7L8 nsp14 + 7L8 7L8/12 7L8/12/14 full-lengthRNAtransfection(MaterialsandMethods).OntheRight,growth curvesareshownforcripplednsp7andnsp8mutantsandtheWTparental 40-mer virus.Fortheseexperiments,mutantviruswasharvestedfromtransfected nsp14 cellsat42hp.t.Aftertitrationofthesevirusstocks,freshVero-E6cellswere infected(M.O.I.,5),andvirusproductionatthegiventimepointswasmea- suredbyplaqueassay.GraphsdisplaymeantitersandSDsderivedfromthree independentexperiments.Nonviablemutantsandmutantswithaphenotype LS2*/LS1 similartoWTvirusarelistedattheBottom. 7L8 0 15 60 0 15 60 time (min) 7L8/12 and 7L8/12/14 complexes are comparable (Fig. 6B). In C D thesepolymeraseassays,RNAdegradationisnotdetectedinthe presence of nsp14, indicating that nsp14 ExoN activity is either 7000 very weak due to the stimulating-factor absence (24) or sup- LS3*/LS1 pressedwhenthe7L8/12/14complexisin“polymerizationmode.” 6000 The3′-5′ExoNactivityofthe7L8/12/14complexwasthenassayed 5000 using the optimal experimental conditions previously described for ExoN (24). Under these conditions, ExoN activity is barely m4000 p detected(Fig.6C).Whennsp10isaddedtothe7L8/12/14com- c 3000 plex,theRNAexonucleaseactivityissignificantlyenhanced(Fig. 6C),indicatingthatnsp10isabletoeitherenhancensp14-ExoN 2000 activityinsituaspreviouslyreported(24),ortopartiallydisplace 1000 nsp14 from 7L8/12/14 and activate nsp14-ExoN activity sepa- 0 rately.Moreover,nsp14N7-MTaseactivityisalsofoundasso- 0 10 30 0 10 30 0 10 30 time (min) nsp14 7L8/12/14 7L8/12 ciated with the 7L8/12/14 complex (Fig. 6D). We therefore concludethatthensp7/nsp8/nsp12/nsp14complexrepresents Fig. 6. The SARS-CoV 7L8/12/14 complex possesses RdRp, ExoN, and N7- a unique coronavirus nsp assembly that incorporates RdRp, MTase activities. (A) Strep-tagged SARS-CoV nsp12 was bound to Strep- Tactinbeadsandincubatedwith7L8,nsp14,orbothsimultaneously.After exoribonuclease,andN7-MTaseactivities. SDS/PAGEandWesternblotting,his-taggedproteins(7L8andnsp14)were Discussion revealedusingananti-His5-HRPantibody.(B)Timecourseprimerextension polymeraseassayswereperformedusingeitherthe7L8/12(500nM)orthe In the infected cell, viral RNA replication is challenged at sev- 7L8/12/14(500nM)complexeswithLS2*/LS1asprimer*/templatewhereLS2 erallevels. RNAsynthesismustberegulatedtominimizeexpo- was 5′-radiolabeled (markedby *).RNAproductswere separatedina de- suretothehostcell’sdefensemechanisms.Moreover,compared naturingpolyacrylamide/ureagelandvisualizedbyautoradiography.(C)Time withDNA-basedorganisms,RNAvirusesaregenerallybelieved courseexoribonucleaseassayswereperformedusingthe7L8/12/14(500nM) toreplicatetheirgeneticmaterialwithlowaccuracy,astheyare complexintheabsenceorpresenceof100nMnsp10,andascontrolwith7L8/ believedtolackproofreadingandcorrectionmechanisms(48,49). 12(500nM)plusnsp10(100nM).TheRNAsubstratewasa40-ntRNA(LS1) Hence, RNA replication has evolved toward an equilibrium at annealedwith5′-radiolabeledLS3primercarryingonenoncomplementary whichaheterogeneouspopulationofviralRNAs,commonlyre- baseatits3′end(LS3*)andnamedLS3*/LS1.Digestionproductsweresepa- ratedbydenaturingpolyacrylamide/ureagelelectrophoresisandvisualizedby ferredtoasaquasispecies,isreproducedwithhighefficiency(50, autoradiography(Fuji).The“α”symbolindicatesRNAcleavageproducts.(D) 51). The viral RdRp, fine-tuned during evolution, is the central AdoMet-dependentN7-MTaseactivityofthe7L8/12/14complex.Thedifferent enzymeinthisprocess.Itisthoughttopossesstheoptimumcom- purifiedproteinsorproteincomplexes(nsp14,300nM;7L8/12/14,300nM;and binationofRNAsynthesisefficiencyandnucleotideincorporation 7L8/12,300nM)wereincubatedwithsubstrateGpppAC4RNAoligonucleotide fidelity(52,53).Attheenzymelevel,speedandaccuracycanbe inthepresenceof[3H]AdoMet.ThemethyltransfertothecappedRNAsub- measured and evaluated using a number of parameters. Among stratewasdeterminedbyusingafilter-bindingassay(asdescribedinref.73). them, the processivity of the RNA polymerase, reflected in the Allexperimentsweredoneintriplicate(SDsarepresented). E3906 | www.pnas.org/cgi/doi/10.1073/pnas.1323705111 Subissietal. S U L P S A N reverse-genetics studies, these mutations delayed virus growth fromanRNAduplex(24).Thensp7/nsp8/nsp12complexbindsto P comparedwiththeWTcontrol,althoughtheirimpact islessse- thebifunctionalexoribonuclease/N7-guaninecapmethyltransfer- verethanonemighthaveanticipatedgiventheirphenotypeinthe ase nsp14, with no apparent modulation of polymerase, ExoN, invitroassays.Thelackofcorrelationforsomemutantsbetween orN7-MTaseactivities.Thereconstitutionofannsp7/nsp8/nsp12/ invitroandinvivostudiessuggeststhattheinvitrobiochemical nsp14complexmakesitnowpossibletodissectinvitrothecoro- assays reflect only a part of the complexity of coronavirusRNA navirus proofreading mechanism discovered through prior re- synthesisinvivo.Itisconceivablethattheeffectsofsingle-point search(25,26,47). mutationsonpropertieslikeRNAbindingaremoredramaticin Inanycase,thiscomplexprovidesafascinatingexampleofthe thecontextofthetrimericcomplexinvitrothaninthecontextofa integrationofRNApolymerization,proofreading,andcap-mod- 16-nsp complex in vivo, where, e.g., the presence of other repli- ifying activities into a multifunctional protein assembly. This case subunits may provide some form of compensation. None- macromolecularassembly,possiblyincombinationwiththeheli- theless,thesedataconstitutethefirstevidence(toourknowledge) case/RNAtriphosphatase nsp13and the 2′O-MTase nsp16 may fora role ofnsp7incoronavirusreplication.Moreover, our bio- constitute the core of the coronavirus replication/transcription chemical(Tables1and2)andreverse-genetics(Fig.5andTable machinery,whichisabletoengageincoordinatedRNAsynthesis S2) data strengthen the case for a role for nsp8 in viral RNA andprocessingactivities. synthesis, with three nsp8 residues(K58, P183, and R190) being identified as critical for SARS-CoV genome replication. Our MaterialsandMethods biochemical assays further indicate that nsp8 residues P183 and Cloning, Expression, and Purification of SARS-CoV Proteins. All SARS-CoV R190areinvolvedinnsp8/nsp12interaction,whereasresidueK58 proteins used in this study were expressed in a bacteriophage T7 RNA modulatestheinteractionofthepolymerasecomplexwithRNA. polymerase-freesystem,withtheexceptionofnsp10andnsp14.Allplasmids Nsp8 was previously suggested to be a second, noncanonical wereexpressedinE.coliC2523cells(NEBiolabs),whereasE.coliC41(DE3; coronavirus RdRp, which would be able to synthesize small pLysS)(Novagen)wasusedfornsp10andnsp14expressions.SARS-CoVnsp7 oligomers(<6nt)alone(30)orincomplexwithnsp7(31,32).In fusedtoaC-terminalhexahistidinetag(namednsp7)wasclonedintothe anefforttounderstandhowdenovoRNAsynthesisisachieved vectorpASK3-Kana,amodifiedpASK3vector(IBA)inwhichtheampicillin resistancecassetteisreplacedbythatforkanamycin.Nsp7expressionwas and possibly demonstrate the role of nsp8 as primase in this done overnight at 17 °C after induction with 200 μg/L anydrotetracyclin. GY complex, we tested nsp12 catalytic mutant in de novo assays, in O the presence of the nsp7/nsp8 complex. Full-length products PSAroRtSe-iCnopVunrisfpic8atwioitnhwaaCs-tpeerrmfoinrmalehdeaxashdisetsicdriinbeedtapgre(nvaiomuesldynfospr8n)swp9as(6p9u)-. BIOL wereabsentasexpected.However,wewerealsounabletodetect O the nsp8-driven formation of short RNAs (Fig.S3), even inthe rinifsieerdtiansgdaeshcerxibaehdistpidreinvieoutasglyl(in31k)e.rTbheetwfueseionnnpspro7t-eainnd7Ln8spw8a-csogdeinngersaetqeudebny- MICR presence of Mn2+, an element described as essential for nsp8- ces.ThisgenewasclonedintothepASK3-Kanabackboneandproteinpuri- RdRpactivity(30).Onepossibleexplanationofthisdiscrepancy ficationwasperformedasdescribedfornsp7.SARS-CoVnsp12wasexpressed maybethatnsp8incomplexwithnsp12andnsp7adoptsastruc- fromasyntheticgeneoptimizedforexpressioninE.coliandequippedwith turalconformationthatpreventsthesynthesisofshortRNAs.The aC-terminalStrep-Tag,whichwasclonedintoplasmidpJ404(purchasedfrom abilityofthensp7/nsp8complextoadaptdifferentconformations DNA2.0).Nsp12expressionwasinducedbyadditionof500μMisopropylβ-D-1- (refs.29and32;seebelow)mayreflectitsinvolvementindistinct thiogalactopyranosidewhentheOD600nmvalueoftheculturereached0.5, functions, including primer synthesis. It is thus plausible that andwasallowedtoproceedfor16hat17°C.Lysisbuffer[50mMHepes aparticularfunctionofcoronavirusnsp7andnsp8mayinfact (pH7.5);150mMKCl;5mMMgCl2;5%(vol/vol)glycerol]supplementedwith be triggered by the nature of their partnership and/or quater- 10 μg/mL DNase I, 1 mM PMSF, and 0.25 mg/mL lysozyme were used to narystructure. resuspendpellets.AStrep-Tactin(IBA)purificationstepwasperformedand Nsp7 and nsp8 are shown to interact with each other, and nsp12 wasrecoveredusing lysis buffer supplemented with 2.5 mMD-des- thiobiotin. A second chromatography step was then performed. The salt nsp7/nsp8 complexes were crystallized and solved for different concentrationofnsp12proteinsolutionwasloweredto25mMKCl,andnsp12 coronaviruses. The presence of nsp7 seems to be required to wasthenincubatedduring1hwithheparinbeadsandfinallyelutedwith crystallize nsp8. The structure of the SARS-CoV nsp7/nsp8 alineargradientofKCl(25–500mM). complex(29)revealedahexadecamericcomplexwithapositively The 7L8/12 complex was obtained after cotransformation of plasmids charged central tunnel supposedly accommodating RNA. This encoding7L8andnsp12,andwaspurifiedasdescribedabovefornsp12,with structure is reminiscent of processivity-promoting factors such anadditionalsizeexclusionchromatographystepperformedonaKW804 as, e.g., the eukaryotic PCNA sliding clamp (59–61), or the column(Shodex). β-subunitboundtoE.coliDNApolymeraseIII(62).Incontrast, Site-directedmutagenesistogenerateplasmidsexpressingmutantpro- feline coronavirus nsp7 and nsp8were shownto form ahetero- teinswasperformedusingtheQuikChangeSite-DirectedMutagenesisKit trimerbyassociationoftwonsp7moleculeswithonemoleculeof (Stratagene)accordingtothemanufacturer’sinstructions.Forrelevantnsp7 nsp8withouttheformationofahollowstructure(32).Itisthus (K7A,H36A,andN37A)andnsp8(K58A,D99A,P116A,P183A,andR190A) likely that coronavirus nsp7 and nsp8 may in fact be endowed mutantsaswellasfornsp7WTandnsp8WT,correctfoldingwasconfirmed withseveralfunctionstriggeredbythenatureoftheirpartnership bycirculardichroism(CD)analysis.TheCDspectrawererecordedonaJasco and/or quaternary structure. They would thus constitute addi- 810dichrographusing1-mm-thickquartzcells. tional examples of RNA virus proteins that have evolved a re- markableplasticitytoaccommodatemultiplefunctions.Another RNA Templates. Synthetic RNAs (LS1, LS2, and LS3) were purchased from recent example of this kind of functional flexibility is the Ebola Biomers(HPLCgrade).Templates3RAand3RRNAtemplates,corresponding virus matrix protein VP40, which was shown to be subject to tothelast339ntoftheSARS-CoV(strainFrankfurt;GenBankaccessionno. structural rearrangements giving rise to at least three distinct AY291315)genomic3′-NTRwithorwithout20adenines,respectively,were structures, each executing a distinct function during the viral producedusinganinvitroT7transcriptionkit,andpurifiedasdescribedby replication cycle(63). themanufacturer(Ambion).RNAmarker(Promega;catalogno.G3191)was radiolabeledwiththeT4polynucleotidekinase(PNK)(NEB)and[γ-32P]ATP. PolymeraseprocessivityfactorshavebeenidentifiedforDNA viruses such as the gp45 protein of bacteriophage T4 (64), the UL42 protein of herpes simplex virus 1 (65, 66), or E. coli thi- Pull-Down,WesternBlot,andNsp8/Nsp12InteractionAssays.Nsp12wasbound toStrep-Tactinbeadsandincubatedwith1mg/mLBSAfor15minatroom oredoxinforbacteriophageT7(67,68).Toourknowledge,coro- temperature. Then, the Strep-Tactin beads with or without bound nsp12 navirusesnowarethefirstRNAvirusesknowntouseanRdRp wereincubatedfor2hinthepresenceof15μgofhis-taggedpartnerprotein processivity factor, to expedite replication of their ∼30-kb RNA tobetested.Next,unboundproteinswereextensivelywashedawaywith genome.Remarkably,thefunctionofthecoronavirusRNApoly- washingbuffer(50mMTris,pH8;150mMNaCl;0.05%Triton).Thebeads meraseprocessivityfactorappearstobecompatiblewiththeca- weredilutedin2×SDS/PAGEloadingbuffer[100mMTris,pH6.8;200mM pabilityofthensp7/nsp8/nsp12complextoassociatewithanactive DTT;4%(vol/vol)SDS;0.2%bromophenolblue;20%(vol/vol)glycerol]and nsp14-exonuclease that is able to remove terminal mismatches loaded on an SDS/PAGE gel. A Western blot was then performed using Subissietal. PNAS | PublishedonlineSeptember2,2014 | E3907 asingleHRP-conjugateantibody(anti-His5HRPconjugate;Qiagen),and ElectroporationsweredoneusingtheAmaxaCellLineNucleofectorKitTand bandswerevisualizedwithaKodakImageStation400MMPro(CareStream programT-020ofanAmaxaNucleofector(Lonza),accordingtothemanu- Health). facturer’sinstructions.BHK-Tet-SARS-Ncellsweremixedina1:1ratiowith Tostudytheinteractionbetweennsp8andnsp12,WTormutant7L8were Vero-E6cells,andseededoncoverslipsinsix-wellclustersforimmunofluo- coexpressedwithnsp12inE.coli.AfterpurificationonaStrep-Tactincol- rescencemicroscopyanalysisandanalysisofvirusproduction.Eachmutant umn,theelutedproteinswereanalyzedusingSDS/PAGE,andthepeakin- waslaunchedtwicefromtwoindependentlygeneratedBACclones.Allwork tensitiescorrespondingtothe7L8andnsp12proteinswerequantified. withliveSARS-CoVwasperformedinsidebiosafetycabinetsinabiosafety level3facilityatLeidenUniversityMedicalCenter. Polymerase Assays. All radioactive reagents were purchased from Perkin- Elmer.Polymeraseassayswereperformedinpolymeraseassaybuffer(20mM SequenceAnalysisoftheSARS-CoVNsp7-,Nsp8-,andNsp12-CodingRegions. T(5r0is0,pnHM8);,1n0spm7M(1K.5Clμ;M1m),ManDdTnTs;p28m(1M.5MμgMC)l2o)rw5it0h0snepMar7aLt8e/l1y2pucorimfiepdlenxsapn1d2 FreshVero-E6cellswereinfectedwithharveststakenat42hp.t.andSARS- CoVRNAwasisolated18hp.i.asdescribedaboveandamplifiedbyRT-PCR 250nMRNAtemplate,unlessspecifiedotherwise.Primers(LS2orLS3)were radiolabeledattheir5′endsusing[γ-32P]ATPandPNK,andtermedLS2*and using random hexamers for the RT reaction, and primers 5′-CACCTTA- LS3*,respectively.LS2*orLS3*werethenannealedtothecomplementary CAGTGTATCATGC-3′and5′-CTGGAACCACCTTGTAGGTTTG-3′forPCRamplifi- templateLS1byheatingat70°Cfor10minandthencoolingdowntoroom cationofthensp7–8codingregion.Thensp12-codingregionwasamplifiedin temperature(withaprimer/templateratioof1.2:1).Primerextensionassays twooverlappingfragments,byusingthefollowingprimersets:5′-TTGCCTAC- werealwaysperformedwithLS2*/LS1astemplate,andreactionswerestar- TATAACAATTCG-3′togetherwith5′-CAGAACTTCCTTCCTTAAAGAAACCTT-3′; tedbyadding500μMNTPmix.Denovoassays,usingeither3Ror3RAas 5′-GCAGCTTCTGGCAATTTATTGC-3′togetherwith5′-GGAATGGTCTCCTAATA- template,werestartedbyadding500μMGTP,UTP,CTP,50μMATP,and CAGGC-3′.RT-PCRproductsweresequencedtoverifythepresenceofthein- 0.17 μM [α-32P]ATP (0.5 μCi/μL). After incubation at 30 °C, reactions were troducedmutationsandpossiblesecond-sitereversions. quenchedbytheadditionofanequalvolumeofloadingbuffer(form- amidewith10mMEDTA).RNApolymerizationproductsofprimerextension ImmunofluorescenceMicroscopy.Tomonitorthepresenceand/orprogression assayswereanalyzedin20%(wt/vol)polyacrylamide/7Mureagels,whereas ofSARS-CoVinfection,transfectedcellswereseededoncoverslipsandfixed productsfromdenovoassayswereanalyzedin1%agarose-formaldehyde atvarioustimepoints.Immunofluorescenceassaysweredonefollowingapre- gels,unlessspecifiedotherwise.RNAproductswerevisualizedusingphoto- viouslydescribedprotocol(71)usingarabbitantiserumagainstSARS-CoVnsp4 stimulatedplatesandaphosphorimager(Fuji). (36)andamousemonoclonalantibodyagainsttheSARS-CoVNprotein(72). EMSAs.SerialdilutionsofSARS-CoVproteinsinpolymeraseassaybufferwere VirusTitration.Vero-E6cellsseededinsix-wellclusterswereinfectedwith preincubatedwith100nMprimer*/template(LS2*/LS1)for30minat30°C. Unlessotherwisestated,500μMCTP,UTP,GTP,and50μM3′-dATPwere serial 10-fold dilutions in PBS, 0.005% DEAE, and 2% (vol/vol) FCS of addedtofacilitateRNA–enzymecomplexformation.Thereactionmixture supernatantsfromtransfectedcells,incubatedfor1hat37°C,afterwhich theinoculumwasreplacedbyanoverlayof1.2%(wt/vol)Avicel(FMCBio- wasincubatedfor60minat30°C,andsampleswereloadeddirectlyonto 6%(vol/vol)acrylamidegelsandwererunin0.5×TBEat100Vfor60minat Polymer)inDMEMsupplementedwith50mMHepes,2%(vol/vol)FCS,and 4°C.Bandswerevisualizedusingaphosphorimager(Fuji). incubatedat37°C.After3d,theoverlaywasremoved,andcellswerefixed with7.4%(vol/vol)formaldehydeinPBSandstainedwithcrystalvioletto Exonuclease Assay. Nuclease reactions were performed as previously de- visualizeplaques.Titerswereexpressedinplaque-formingunitspermilliliter. scribed (24) with 500 nM radiolabeled LS3*/LS1 substrate. Primer LS3 has thesamesequenceasLS2withtheadditionofanadenosineatits3′end, ACKNOWLEDGMENTS.WethankLaureGluais,FrançoisFerron,AliceBlouet, causinganA:AmismatchwhenannealedwithtemplateLS1. JéromeDeval,BarbaraSelisko,AartjanteVelthuis,AlexanderKravchenko, DmitrySamborskiy,IgorSidorov,IsabelleVarlet,andRenaudVincentellifor helpfuldiscussionsand/ortechnicalassistance.WethankChristianDrosten SARS-CoVReverseGenetics.Verocells(ATCC;CCL-81)wereculturedinEagle’s andSusannePfefferle(UniversityofBonn)forprovidingtheSARS-CoVre- MEM(Lonza)with8%(vol/vol)FCS(PAA)andantibiotics.BHK-Tet-SARS-N versegeneticssystem,andYingFang(KansasStateUniversity)forproviding cells(46) wereculturedinthesame mediumcontaining100μg/mL G418. the anti-N monoclonal antibody. We acknowledge Dr. Deborah Byrne for MutationsintheSARS-CoVnsp7-ornsp8-codingregionwereengineeredin editorialassistance.ThisworkwassupportedbytheFrenchNationalResearch prSCV,apBeloBac11derivativecontainingafull-lengthcDNAcopyofthe Agencyunderreference“ANR-08-MIEN-032”and“ANR-12-BSV3,”theNeth- SARS-CoVFrankfurt-1sequence(45)asdescribedinref.70.Full-lengthBAC erlandsOrganizationforScientificResearch(TOP-GOGrant700.10.352),and by the European Union Seventh Framework Programme (FP7/2007-2013) clones were linearized with NotI, extracted with phenol-chloroform, and throughtheEUVIRNAproject[EuropeanTrainingNetworkon(+)RNAVirus transcribedwithT7RNAPolymerase(mMessage-mMachineT7kit;Ambion) ReplicationandAntiviralDrugDevelopment;GrantAgreement264286],and usinganinputof2μgofBACDNAper20-μLreaction.RNAtranscriptswere theSILVERproject(SmallInhibitorLeadsVersusEmergingandNeglectedRNA precipitated with LiCl according to the manufacturer’s protocol. Sub- Viruses;GrantAgreement260644),andfinallybytheCollaborativeAgree- sequently,6μgofRNAwaselectroporatedinto5×106BHK-Tet-SARS-Ncells, mentinBioinformaticsBetweenLeidenUniversityMedicalCenterandMos- whichexpresstheSARS-CoVNproteinafterinductionwith2μMdoxycyclin. cowStateUniversity(MoBiLe),andLeidenUniversityFund. 1. CameronCE,GötteM(2009)ViralGenomeReplication,edRaneyK(Springer,NewYork). 12.vanBoheemenS,etal.(2012)Genomiccharacterizationofanewlydiscoveredco- 2. KuhnRJ(2007)Fields’Virology(LippincottWilliams&Wilkins,Philadelphia),5thEd, ronavirusassociatedwithacuterespiratorydistresssyndromeinhumans.MBio3(6): pp1001–1022. e00473-12. 3. LaiMMC,PerlmanS,AndersonLJ(2007)Fields’Virology(LippincottWilliams&Wilkins, 13.CormanVM,etal.(2014)Characterizationofanovelbetacoronavirusrelatedto Philadelphia),5thEd,pp1305–1335. middleEastrespiratorysyndromecoronavirusinEuropeanhedgehogs.JVirol88(1): 4. LazarowitzSG(2007)Fields’Virology(LippincottWilliams&Wilkins,Philadelphia), 717–724. 5thEd,pp641–705. 14.WooPCY,etal.(2014)Discoveryofanovelbottlenosedolphincoronavirusreveals 5. DomingoE,etal.(1996)BasicconceptsinRNAvirusevolution.FASEBJ10(8):859–864. adistinctspeciesofmarinemammalcoronavirusinGammacoronavirus.JVirol88(2): 6. StadlerK,etal.(2003)SARS—beginningtounderstandanewvirus.NatRevMicrobiol 1318–1331. 1(3):209–218. 15.Pe’eryT,MathewsMB(2007)Fields’Virology(LippincottWilliams&Wilkins,Phila- 7. GorbalenyaAE,EnjuanesL,ZiebuhrJ,SnijderEJ(2006)Nidovirales:Evolvingthe delphia),5thEd,pp169–207. largestRNAvirusgenome.VirusRes117(1):17–37. 16.SnijderEJ,etal.(2003)Uniqueandconservedfeaturesofgenomeandproteomeof 8. LiW,etal.(2005)BatsarenaturalreservoirsofSARS-likecoronaviruses.Science SARS-coronavirus,anearlysplit-offfromthecoronavirusgroup2lineage.JMolBiol 310(5748):676–679. 331(5):991–1004. 9. GeX-Y,etal.(2013)IsolationandcharacterizationofabatSARS-likecoronavirusthat 17.Knoops K, et al. (2008) SARS-coronavirus replication is supported by a retic- usestheACE2receptor.Nature503(7477):535–538. ulovesicularnetworkofmodifiedendoplasmicreticulum.PLoSBiol6(9):e226. 10.deGrootRJ,etal.(2013)MiddleEastrespiratorysyndromecoronavirus(MERS- 18.SawickiSG,SawickiDL(1995)Coronavirusesusediscontinuousextensionforsynthesis CoV): Announcement of the Coronavirus Study Group. J Virol 87(14): ofsubgenome-lengthnegativestrands.AdvExpMedBiol380:499–506. 7790–7792. 19.PasternakAO,SpaanWJM,SnijderEJ(2006)Nidovirustranscription:Howtomake 11.ZakiAM,vanBoheemenS,BestebroerTM,OsterhausADME,FouchierRAM(2012) sense...?JGenVirol87(Pt6):1403–1421. IsolationofanovelcoronavirusfromamanwithpneumoniainSaudiArabia.NEnglJ 20.NgaPT,etal.(2011)Discoveryofthefirstinsectnidovirus,amissingevolutionarylink Med367(19):1814–1820. intheemergenceofthelargestRNAvirusgenomes.PLoSPathog7(9):e1002215. E3908 | www.pnas.org/cgi/doi/10.1073/pnas.1323705111 Subissietal. S U L P S A N 21.teVelthuisAJW,ArnoldJJ,CameronCE,vandenWormSHE,SnijderEJ(2010)The 47.SmithEC,BlancH,VignuzziM,DenisonMR(2013)Coronaviruseslackingexoribo- P RNApolymeraseactivityofSARS-coronavirusnsp12is primer dependent.Nucleic nucleaseactivityaresusceptibletolethalmutagenesis:Evidenceforproofreadingand AcidsRes38(1):203–214. potentialtherapeutics.PLoSPathog9(8):e1003565. 22.AdedejiAO,etal.(2012)MechanismofnucleicacidunwindingbySARS-CoVhelicase. 48.SteinhauerDA,DomingoE,HollandJJ(1992)Lackofevidenceforproofreading PLoSOne7(5):e36521. mechanismsassociatedwithanRNAviruspolymerase.Gene122(2):281–288. 23.MinskaiaE,etal.(2006)DiscoveryofanRNAvirus3′→5′exoribonucleasethatis 49.HolmesEC(2011)Whatdoesvirusevolutiontellusaboutvirusorigins?JVirol85(11): critically involved in coronavirus RNA synthesis. Proc Natl Acad Sci USA 103(13): 5247–5251. 5108–5113. 50.HollandJJ,DeLaTorreJC,SteinhauerDA(1992)RNAviruspopulationsasquasis- 24.BouvetM,etal.(2012)RNA3′-endmismatchexcisionbythesevereacuterespiratory pecies.CurrTopMicrobiolImmunol176:1–20. syndromecoronavirusnonstructuralproteinnsp10/nsp14exoribonucleasecomplex. 51.DomingoE,SheldonJ,PeralesC(2012)Viralquasispeciesevolution.MicrobiolMol ProcNatlAcadSciUSA109(24):9372–9377. BiolRev76(2):159–216. 25.EckerleLD,etal.(2010)InfidelityofSARS-CoVNsp14-exonucleasemutantvirusrep- 52.SteinhauerDA,HollandJJ(1987)RapidevolutionofRNAviruses.AnnuRevMicrobiol licationisrevealedbycompletegenomesequencing.PLoSPathog6(5):e1000896. 41:409–433. 26.EckerleLD,LuX,SperrySM,ChoiL,DenisonMR(2007)Highfidelityofmurine 53.HollandJ,etal.(1982)RapidevolutionofRNAgenomes.Science215(4540):1577–1585. hepatitis virus replicationis decreased innsp14 exoribonucleasemutants. J Virol 54.WerneburgBG,etal.(1996)DNApolymerasebeta:Pre-steady-statekineticanalysis 81(22):12135–12144. androlesofarginine-283incatalysisandfidelity.Biochemistry35(22):7041–7050. 27.KangH,etal.(2007)BiochemicalandgeneticanalysesofmurinehepatitisvirusNsp15 55.PatelSS,WongI,JohnsonKA(1991)Pre-steady-statekineticanalysisofprocessive endoribonuclease.JVirol81(24):13587–13597. DNA replication including complete characterization of an exonuclease-deficient 28.RicagnoS,etal.(2006)CrystalstructureandmechanisticdeterminantsofSARSco- mutant.Biochemistry30(2):511–525. ronavirusnonstructuralprotein15defineanendoribonucleasefamily.ProcNatlAcad SciUSA103(32):11892–11897. 56.MaceDC,AlbertsBM(1984)T4DNApolymerase.Ratesandprocessivityonsingle- strandedDNAtemplates.JMolBiol177(2):295–311. 29.ZhaiY,etal.(2005)InsightsintoSARS-CoVtranscriptionandreplicationfromthe structureofthensp7-nsp8hexadecamer.NatStructMolBiol12(11):980–986. 57.CapsonTL,etal.(1992)Kineticcharacterizationofthepolymeraseandexonuclease 30.ImbertI,etal.(2006)Asecond,non-canonicalRNA-dependentRNApolymerasein activitiesofthegene43proteinofbacteriophageT4.Biochemistry31(45):10984–10994. SARScoronavirus.EMBOJ25(20):4933–4942. 58.KuchtaRD,MizrahiV,BenkovicPA,JohnsonKA,BenkovicSJ(1987)Kineticmecha- 31.teVelthuisAJW,vandenWormSHE,SnijderEJ(2012)TheSARS-coronavirusnsp7+ nismofDNApolymeraseI(Klenow).Biochemistry26(25):8410–8417. nsp8complexisauniquemultimericRNApolymerasecapableofbothdenovoini- 59.Takasaki Y, Deng JS, Tan EM (1981) A nuclear antigenassociated with cell pro- tiationandprimerextension.NucleicAcidsRes40(4):1737–1747. liferationandblasttransformation.JExpMed154(6):1899–1909. 32.XiaoY,etal.(2012)Nonstructuralproteins7and8offelinecoronavirusforma2:1 60.PrelichG,etal.(1987)Functionalidentityofproliferatingcellnuclearantigenand heterotrimerthatexhibitsprimer-independentRNApolymeraseactivity.JVirol86(8): aDNApolymerase-deltaauxiliaryprotein.Nature326(6112):517–520. Y 4444–4454. 61.McConnellM,etal.(1996)ThemammalianDNApolymerasedelta—proliferatingcell OG 33.ZüstR,MillerTB,GoebelSJ,ThielV,MastersPS(2008)Geneticinteractionsbetween nuclear antigen—template-primer complex: Molecular characterization by direct OL anessential3′cis-actingRNApseudoknot,replicasegeneproducts,andtheextreme binding.Biochemistry35(25):8268–8274. OBI 3′endofthemousecoronavirusgenome.JVirol82(3):1214–1228. 62.KongXP,OnrustR,O’DonnellM,KuriyanJ(1992)Three-dimensionalstructureofthe CR 34.GorbalenyaAE,etal.(2002)Thepalmsubdomain-basedactivesiteisinternallyper- betasubunitofE.coliDNApolymeraseIIIholoenzyme:AslidingDNAclamp.Cell MI mutedinviralRNA-dependentRNApolymerasesofanancientlineage.JMolBiol 69(3):425–437. 324(1):47–62. 63.BornholdtZA,etal.(2013)StructuralrearrangementofEbolavirusVP40begets 35.BouvetM,etal.(2010)InvitroreconstitutionofSARS-coronavirusmRNAcapmeth- multiplefunctionsintheviruslifecycle.Cell154(4):763–774. ylation.PLoSPathog6(4):e1000863. 64.ReddyMK,WeitzelSE,vonHippelPH(1993)Assemblyofafunctionalreplication 36.vanHemertMJ,etal.(2008)SARS-coronavirusreplication/transcriptioncomplexesare complexwithoutATPhydrolysis:AdirectinteractionofbacteriophageT4gp45with membrane-protectedandneedahostfactorforactivityinvitro.PLoSPathog4(5): T4DNApolymerase.ProcNatlAcadSciUSA90(8):3211–3215. e1000054. 65.GalloML,DorskyDI,CrumpackerCS,ParrisDS(1989)Theessential65-kilodaltonDNA- 37.ChengA,etal.(2005)Expression,purification,andcharacterizationofSARScoro- binding protein of herpes simplex virus stimulates the virus-encoded DNA poly- navirusRNApolymerase.Virology335(2):165–176. merase.JVirol63(12):5023–5029. 38.ChenY,etal.(2009)FunctionalscreenrevealsSARScoronavirusnonstructuralprotein 66.GottliebJ,MarcyAI,CoenDM,ChallbergMD(1990)Theherpessimplexvirustype1 nsp14asanovelcapN7methyltransferase.ProcNatlAcadSciUSA106(9):3484–3489. UL42geneproduct:AsubunitofDNApolymerasethatfunctionstoincreaseproc- 39.ImbertI,etal.(2008)TheSARS-CoronavirusPLncdomainofnsp3asareplication/ essivity.JVirol64(12):5976–5987. transcriptionscaffoldingprotein.VirusRes133(2):136–148. 67.MarkDF,RichardsonCC(1976)Escherichiacolithioredoxin:Asubunitofbacterio- 40.SmithEC,DenisonMR(2013)CoronavirusesasDNAwannabes:Anewmodelforthe phageT7DNApolymerase.ProcNatlAcadSciUSA73(3):780–784. regulationofRNAvirusreplicationfidelity.PLoSPathog9(12):e1003760. 68.ModrichP,RichardsonCC(1975)BacteriophageT7deoxyribonucleicacidreplication 41.DemingDJ,GrahamRL,DenisonMR,BaricRS(2007)Processingofopenreading invitro.BacteriophageT7DNApolymerase:Anenzymecomposedofphage-and frame1areplicaseproteinsnsp7tonsp10inmurinehepatitisvirusstrainA59repli- cation.JVirol81(19):10280–10291. host-specificsubunits.JBiolChem250(14):5515–5522. 69.CampanacciV,etal.(2003)StructuralgenomicsoftheSARScoronavirus:Cloning, 42.NomaguchiM,AckermannM,YonC,YouS,PadmanabhanR(2003)Denovosynthesis expression,crystallizationandpreliminarycrystallographicstudyoftheNsp9protein. ofnegative-strandRNAbydenguevirusRNA-dependentRNApolymeraseinvitro: Nucleotide,primer,andtemplateparameters.JVirol77(16):8831–8842. ActaCrystallogrDBiolCrystallogr59(Pt9):1628–1631. 43.vanDijkAA,MakeyevEV,BamfordDH(2004)InitiationofviralRNA-dependentRNA 70.Tischer BK, Smith GA, Osterrieder N (2010) En passant mutagenesis: A two step polymerization.JGenVirol85(Pt5):1077–1093. markerlessredrecombinationsystem.MethodsMolBiol634:421–430. 44.AckermannM,PadmanabhanR(2001)DenovosynthesisofRNAbythedenguevirus 71.vanderMeerY,etal.(1999)Localizationofmousehepatitisvirusnonstructural RNA-dependentRNApolymeraseexhibitstemperaturedependenceattheinitiation proteinsandRNAsynthesisindicatesaroleforlateendosomesinviralreplication. butnotelongationphase.JBiolChem276(43):39926–39937. JVirol73(9):7641–7657. 45.PfefferleS,etal.(2009)Reversegeneticcharacterizationofthenaturalgenomic 72.FangY,PekoszA,HaynesL,NelsonEA,RowlandRRR(2006)Productionandchar- deletioninSARS-CoronavirusstrainFrankfurt-1openreadingframe7brevealsan acterizationofmonoclonalantibodiesagainstthenucleocapsidproteinofSARS-CoV. attenuatingfunctionofthe7bproteinin-vitroandin-vivo.VirolJ6:131. AdvExpMedBiol581:153–156. 46.ChangG-H,etal.(2010)Establishmentoftheeukaryoticcelllinesforinduciblecontrol 73.DecrolyE,etal.(2008)Coronavirusnonstructuralprotein16isacap-0bindingen- ofSARS-CoVnucleocapsidgeneexpression.VirolSin25(5):361–368. zymepossessing(nucleoside-2′O)-methyltransferaseactivity.JVirol82(16):8071–8084. Subissietal. PNAS | PublishedonlineSeptember2,2014 | E3909

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.