ebook img

2014-iossifov.pdf (PDFy mirror) PDF

0.92 MB·
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview 2014-iossifov.pdf (PDFy mirror)

ARTICLE doi:10.1038/nature13908 The contribution of de novo coding mutations to autism spectrum disorder IvanIossifov1*,BrianJ.O’Roak2,3*,StephanJ.Sanders4,5*,MichaelRonemus1*,NiklasKrumm2,DanLevy1,HollyA.Stessman2, KaliT.Witherspoon2,LauraVives2,KarynneE.Patterson2,JoshuaD.Smith2,BryanPaeper2,DeborahA.Nickerson2, JeanselleDea4,ShanDong5,6,LuisE.Gonzalez7,JeffreyD.Mandell4,ShrikantM.Mane8,MichaelT.Murtha7, CatherineA.Sullivan7,MichaelF.Walker4,ZainulabedinWaqar7,LipingWei6,9,A.JeremyWillsey4,5,BorisYamrom1, Yoon-haLee1,EwaGrabowska1,10,ErtugrulDalkic1,11,ZihuaWang1,StevenMarks1,PeterAndrews1,AnthonyLeotta1, JudeKendall1,InessaHakker1,JulieRosenbaum1,BeicongMa1,LindaRodgers1,JenniferTroge1,GiuseppeNarzisi1,10, SeungtaiYoon1,MichaelC.Schatz1,KennyYe12,W.RichardMcCombie1,JayShendure2,EvanE.Eichler2,13, MatthewW.State4,5,7,14&MichaelWigler1 Wholeexomesequencinghasproventobeapowerfultoolforunderstandingthegeneticarchitectureofhumandisease. Hereweapplyittomorethan2,500simplexfamilies,eachhavingachildwithanautisticspectrumdisorder.Bycom- paringaffectedtounaffectedsiblings,weshowthat13%ofdenovomissensemutationsand43%ofdenovolikelygene- disrupting(LGD)mutationscontributeto12%and9%ofdiagnoses,respectively.Includingcopynumbervariants,coding denovomutationscontributetoabout30%ofallsimplexand45%offemalediagnoses.AlmostallLGDmutationsoccur oppositewild-typealleles.LGDtargetsinaffectedfemalessignificantlyoverlapthetargetsinmalesoflowerintelligence quotient(IQ),butneitheroverlapssignificantlywithtargetsinmalesofhigherIQ.WeestimatethatLGDmutationinabout 400genescancontributetothejointclassofaffectedfemalesandmalesoflowerIQ,withanoverlappingandsimilar numberofgenesvulnerable tocontributorymissensemutation. LGDtargetsinthejointclassoverlap with published targetsforintellectualdisabilityandschizophrenia,andareenrichedforchromatinmodifiers,FMRP-associatedgenes andembryonicallyexpressedgenes.Mostofthesignificanceforthelattercomesfromaffectedfemales. Autismspectrumdisorder(ASD)ischaracterizedbyimpairedsocial unaffectedsiblingsandtheparentsofeachfamily.WithintheSSC,the interactionandcommunication,repetitivebehaviourandrestrictedinter- overallgenderbiasinaffectedindividuals,7malesto1female,isnearly ests.Ithasastrongmalebias,especiallyinhigh-functioningaffected twicethattypicallyreported.ExomeswereanalysedatColdSpringHar- individuals.Thecontributionfromtransmissionhaslongbeensuspected borLaboratory(CSHL),YaleSchoolofMedicine,andUniversityof fromincreasedsiblingrisk1,butmorerecentlytheroleofgermlinede Washington(ExtendedDataFigs1and2andSupplementaryTable1). novo(DN)mutationhasbeenestablished,firstfromlarge-scalecopy Pipelineswereblindwithrespecttoaffectedstatus.Foruniformity,all numbervariationinsimplexfamilies2–5,andsubsequentlyfromexome datawerereanalysedwiththeCSHLpipeline,allowingcomparisonof sequencing.ThesmallerDNvariantsobservedbyDNAsequencingpin- analysistools.Allcallswerevalidatedorstronglysupported,aslisted pointcandidategenetargets6–8.Thesedevelopmentshavepromoteda (SupplementaryTable2)anddescribed(Methods). newmodelforcausation,andre-evaluationofsiblingrisk9,10. HerewereportwholeexomesequencingoftheSimonsSimplexCol- RatesandtargetsofDNmutation lection(SSC)11andanextensivelistofDNmutatedtargets,including ForgreatestprecisionwemeasuredDNratesinquadfamilies(oneaffec- 27recurrentLGD(nonsense,frameshiftandsplicesite)targets.Thesize tedandoneunaffectedchild)overgenomicpositionsatwhichallfamily anduniformityofthisstudyallowanunprecedentedevaluationofgen- membershad$403sequencecoverage(MethodsandSupplementary eticvulnerabilitytoASD.Wesubdividetargetsetsbymutationtype Table3).This‘joint403region’intheSSCwas32gigabases(Gb)intotal, (missenseandLGD)andaffectedchildstatus(genderandnon-verbal or48%ofthetargetedexome,from1,867quads.DNeventswereshared IQ,towhichwereferthroughoutas‘IQ’),andexploretheoverlapbe- bysiblings1%ofthetime(SupplementaryTable2);and1%ofmutations tweentargetsetsandtheirenrichmentforcertaingenecategories.We hadnearbynucleotidepositionsaltered,presumablybysinglemutagenic makeestimatesofthenumberofgenesvulnerabletoagivenmutation events12–14(SupplementaryTable4).Theoverallrateofbasesubstitu- typeandtheproportionofsimplexautismresultingfromDNmutation tionis1.831028(61029)perbasepair(SupplementaryTable5). foreachaffectedsubpopulation. RatesofDNsynonymousmutationinaffected(0.34perchild)and unaffected(0.33perchild)siblingsdonotdiffersignificantly(Fig.1). SSCsequencingandvalidation Bycontrast,LGDmutationsoccuratsignificantlyhigherratesinaffec- Wereporton2,517of,2,800SSCfamiliesincluding,800thatwere tedversusunaffectedsiblings(Fig.1andExtendedDataFig.3).The previouslypublished6–8.Wesequenced2,508affectedchildren,1,911 rateofLGDmutationsis0.12inunaffectedsiblingsand0.21inaffected 1ColdSpringHarborLaboratory,ColdSpringHarbor,NewYork11724,USA.2DepartmentofGenomeSciences,UniversityofWashingtonSchoolofMedicine,Seattle,Washington98195,USA.3Molecular& MedicalGenetics,OregonHealth&ScienceUniversity,Portland,Oregon97208,USA.4DepartmentofPsychiatry,UniversityofCalifornia,SanFrancisco,SanFrancisco,California94158,USA.5Department ofGenetics,YaleUniversitySchoolofMedicine,NewHaven,Connecticut06520,USA.6CenterforBioinformatics,StateKeyLaboratoryofProteinandPlantGeneResearch,SchoolofLifeSciences,Peking University,Beijing100871,China.7ChildStudyCenter,YaleUniversitySchoolofMedicine,NewHaven,Connecticut06520,USA.8YaleCenterforGenomicAnalysis,YaleUniversitySchoolofMedicine,New Haven,Connecticut06520,USA.9NationalInstituteofBiologicalSciences,Beijing102206,China.10NewYorkGenomeCenter,NewYork,NewYork10013,USA.11DepartmentofMedicalBiology,Bulent EcevitUniversitySchoolofMedicine,67600Zonguldak,Turkey.12DepartmentofEpidemiologyandPopulationHealth,AlbertEinsteinCollegeofMedicine,Bronx,NewYork10461,USA.13HowardHughes MedicalInstitute,Seattle,Washington98195,USA.14DepartmentofPsychiatry,YaleUniversitySchoolofMedicine,NewHaven,Connecticut06520,USA. *Theseauthorscontributedequallytothiswork. 00 MONTH 2014 | VOL 000 | NATURE | 1 ©2014Macmillan Publishers Limited. All rights reserved RESEARCH ARTICLE 1.5 overlapofDNLGDtargetsinaffectedprobandswithFMRPtargets(55 d hil 0.10 observedversus34.1expected;P5431024)andchromatinmodifiers er c 1.0 (26observedversus11.8expected;P5331024).Wealsoobservedsig- ents p 0.5 0.05 nobalsefrrovmedmveurtsautsio4n5i.0negxepneecsteexdp;rPes5se2d3in1e0m2b3r)y.oTnhiecldaettveerlospigmnaelncto23m(6e5s v E 0.0 0.00 mainlyfromthesmallnumberoffemaleaffectedindividuals(23ob- SubstitutionsSynonymous Missense Nonsense Splice site servedversus8.5expectedfrom67LGDtargets;P5531026).The27 P = 1 × 10–3 P = 0.56 P = 0.01 P = 9 × 10–3 P = 0.03 geneswithrecurrentLGDsshowstrongenrichmentforFMRPtargets 0.2 0.3 (14observedversus2.6expected;P5431028)andchromatinmodi- child ASD fiers(6observedversus0.9expected;P5231024).Bycontrast,no er 0.2 Sib significantenrichmentforthesegenesetsisseenfortheDNLGDtar- ents p 0.1 0.1 getTshineu1,n5a0f0feDctNedmsiibslsienngsse. targetsinprobandsarealsoenrichedfor v E FMRP targets and embryonically expressed genes. We observe 171 0.0 0.0 Indels No frameshift Frameshift LGDs FMRPtargets(144.8expected;P50.03),and220embryonicallyex- P = 0.03 P = 0.47 P = 7 × 10–3 P = 2 × 10–5 pressedgenes(191.4expected;P50.03).Asbefore,thesignalforem- Figure1|RatesofdenovoeventsbymutationaltypeintheSSC. Rates bryonicallyexpressedgenescomesalmostentirelyfromthesmallnumber perchildareestimatedfromthe403jointcoveragetargetregion,then offemaleaffectedindividuals(48observed,31.1expectedfrom244tar- extrapolatedfortheentireexome.Mutationtypesaredisplayedbyclass, gets;P50.002).Withtheexceptionofchromatinmodifiers,contrib- andthecombinedrateforallLGDsisshownatthebottomright.Foreachevent utoryDNmissenseandLGDmutationstendtostrikesimilarfunctional type,thesignificancebetweenprobandsandunaffectedsiblingsisgiven. classesofgenes. Sib,unaffectedsiblings.Theerrorsbarrepresent95%confidenceintervalfor themeanrates. DenovomutationandIQ HigherIQprobandsareheavilyskewedtowardsmales24.Forfurther probands, an ‘ascertainment differential’ of 0.2120.1250.09 (P5 analyses,wechosetodividetheaffectedmalepopulationroughlyin 231025).Thus,weestimate,43%(0.09outof0.21)ofLGDevents halfintohigherandlowerIQsets.WeinvestigatedwhetherhigherIQ inprobandscontributetoASDdiagnoses.ForDNmissense,therateis (.90)malescompriseapopulationwithadistinguishablegeneticsig- 0.82forunaffectedsiblingsand0.94foraffectedprobands,anascer- nature.ThereisadecreasedascertainmentdifferentialforDNLGD tainmentdifferentialof0.12(P50.01).Weestimateonly,13%(0.12 mutationsinmalechildrenwithhigherIQrelativetootheraffected out of 0.94)of DN missense eventsin probands contribute to ASD individuals(ExtendedDataFig.3andSupplementaryTable6).Thisis diagnoses.Thereisawideconfidenceintervalforthemissenseascer- notstatisticallysignificantoverthejoint403region.However,over tainmentdifferential(SupplementaryTable6);forthisreason,wecon- theentiredataset,thedropinIQis5pointsformaleswithDNLGD siderprimarilytheLGDeventsforouranalysisandlookonmissense mutationcomparedtothosewithoutmutation(P50.01;Fig.2).The dataassupporting. meanIQofaffectedmaleswithrecurrentDNLGDsdrops20points ToidentifygenetargetsforDNmutation,weexaminedallfamily (P50.00001,Fig.2).Significanceisalsoevidentasweexaminetargets dataincludingtrios.Weprovideacompletelistofallmutations(Sup- byfunctionalclass.MaleswithLGDmutationsinFMRPtargetshave plementaryTable2)alongwiththenumberofmutationsofeachtype anaverage14-pointdrop(P50.001).ThistrendcontinueswithLGD ineachgene(SupplementaryTable7).Atotalof391DNLGDmuta- targetsintheotherfunctionalclasses—chromatinmodifiersandembry- tionsin353targetgeneswereidentifiedandvalidatedinautismpro- onicallyexpressedgenes—butwithreducedsignificance.Weobserve bands.Ofthese,27targetgeneswererecurrent(Fig.2).Among1,500 littlesignalfromDNmissensemutation,eveninrecurrenttargets,either missensetargetsinprobands,145wererecurrent. becausetheseeventsarelesslikelytocontributeorbecausetheyareless WeexaminedallallelestransmittedoppositeaDNLGDtarget.We severe.Femaleprobandsshowthesametrendsasmales,butasthey sawnoinstancein391observationsinwhichthealleleoppositean compriseasmallerpopulation,thesignificanceisweak(Fig.2). LGDtargetcarriedararetransmittedLGDvariant(in,1%ofparental Furtherevidenceforadistinguishablesignatureamongthehigher exomes),andonlyfourinwhichsuchanallelecarriedararemissense IQcomesfromthefunctionalenrichmentwithinDNtargetgenesets. variant.Thus,theDNmutationsdonotgenerallycausehomozygous LGDtargetsinfemalesareenrichedforallthreefunctionalgeneclasses. loss-of-functionoftheirtarget(SupplementaryTable8). LGDtargetsinlowerIQaffectedmalesaresignificantlyenrichedfor Confirmingpreviousresults7,8,15,observedDNmutationsarisethree theFMRP-associatedandchromatin-modifiergeneclasses(Supplemen- timesasofteninthepaternalbackground,andmutationratesrisewith taryTable6).However,forLGDtargetsinhigherIQmalesweseeno ageofeitherparent(ExtendedDataFig.4andMethods).Thelattermay statisticallysignificantenrichmentforanyofthegenecategories. provideapartialexplanationforincreasedautismratesinchildrenborn ofolderparents. Targetoverlapsinchildrenandmutation-typegroups Wepartitionedchildrenintofourprimarygroups:unaffectedsiblings, Functionalclusteringintargetgenes affected females, affected males with higher IQ, and affected males Previousstudiespresentedevidenceoffunctionalclusteringintargets withlowerIQ.Weanalysedtheseandvariouscombinationsforthree ofDNLGDmutationinaffectedindividuals6–8,16.Ourlargerdataset typesofDNmutations:LGDs,missenseandsynonymous(Supplemen- wasexaminedwithanimprovednull‘lengthmodel’formutationin tary Table6).Targets ofsynonymousmutationsinallchildrenand whichtheprobabilityofDNmutationinageneisproportionaltoits targetsofLGDandmissensemutationsinunaffectedsiblingshaveno length(MethodsandExtendedDataFig.5).Wetestedforenrichment significantoverlapwithtargetsfromanyothergroup.Weseenosigni- withinDNLGDandmissensetargetsinprobandsandsiblingsforthe ficantoverlapbetweentargetsinhigherIQmaleswithtargetsfromother followingsixclasses:(1)FMRPtargetgenes,withtranscriptsboundby groups.Instrongcontrast,the67LGDtargetsfromaffectedfemales thefragileXmentalretardationprotein8,17;(2)genesencodingchromatin overlapsignificantlywiththe166LGDtargetsfromlowerIQaffected modifiers;(3)genesexpressedpreferentiallyinembryos18,19;(4)genes males(10observed,1.3expected,P5731027).Wethereforereferto encodingpostsynapticdensityproteins20;(5)essentialgenes21;and(6) thegroupoflowerIQmalesandaffectedfemalesasa‘joint’class.Inthis genesidentifiedasMendeliandiseasegenes22(Table1,Supplementary class,the874missenseand223LGDtargetsalsooverlapsignificantly(39 Table6andMethods).Thesedataprovidethestrongestevidenceyetfor observed,22.1expected,P50.0008).Thus,notonlydomissenseand 2 | NATURE | VOL 000 | 00 MONTH 2014 ©2014Macmillan Publishers Limited. All rights reserved ARTICLE RESEARCH Frameshift Male F FMRP targets Nonsense Female C Chromatin modifiers Splice site E Embryonically expressed P Postsynaptic density proteins 20 90 100 160 Proband Unaffected Non-verbal IQ Gene Categories LGD MS LGD MS CHD8 FC 7 DYRK1A E 4 ANK2 F P 3 1 GRIN2B F P 3 1 DSCAM F 3 1 CHD2 C 3 ARID1B FC 2 1 KDM6B FC 2 ADNP F E 2 MED13L F E 2 1 NCKAP1 F P 2 ANKRD11 F 2 DIP2A F 2 SCN2A F 2 4 TNRC6B F 2 WDFY3 F 2 1 PHF2 CE 2 WAC C 2 KDM5B E 2 2 2 2 POGZ E 2 2 1 RIMS1 P 2 FOXP1 2 GIGYF1 2 KATNAL2 2 KMT2E 2 1 TBR1 2 1 TCF7L2 2 100 LGDs LGDs LGDs LGDs LGDs Missense Missense Synonymous 90 all recurrent in FXG in CHM in EMB all recurrent all 1.0 al IQ80 0.01 0.01 0.2 0.4 n-verb70 0.5 0.001 0.2 0.5 0.9 0.9 0.4 No60 0.00001 0.4 0.06 0.10 Male with de novo type 50 MFeamlea wlei twhoituht d dee n noovvoo t tyyppee Female without de novo type 40 Figure2|Recurrentlyhitgenesandnon-verbalIQ. Affectedfemales DNmutationsareconsidered:allLGDs,recurrentLGDs,LGDsinFMRP accountfor13.5%oftheSSCwithameanIQof78,whereasaffectedmaleshave targets(FXG),LGDsinchromatinmodifiers(CHM),LGDsinembryonically ameanIQof86(top,P51027byStudent’st-test).Verticaldashedline expressedgenes(EMB),allmissensemutations,recurrentmissensemutations indicatesanIQof90.Middle(left)showsIQforaffectedchildrenwithLGD andsynonymousmutations.ProbandsaredividedbythepresenceofDN mutationsingeneshitrecurrently(right).Recurrentlymutatedgenesare mutationsandgender.Means,95%confidenceintervalsandPvalues clusteredintofourcategoriesasshown.Thelastfourcolumnsgiveoverall (Student’st-test)areshown. numbersofDNLGDandmissense(MS)mutations.Bottom,eightclassesof LGDmutationtargetgeneswithsharedfunctionality,thesamegenes setsofvulnerablegenes.Wenextsoughtevidenceforexcessrecurrence aresometimestargeted. oftargets.Wefirstexaminedsynonymousmutationsandmutationsin unaffectedchildren.Amongthe647synonymouseventsinprobands, Numberofvulnerablegenes thereare25genetargetsfoundinmorethanonechild,closetothenull Ouranalysisoffunctionalclusteringandoverlapswithintargetclasses expectationof19.9(P50.13).RecurrentLGD(n53outof179events) suggeststhatthemutationsascertainedinprobandstargetrestricted ormissensetargets(70outof1,143events)inunaffectedsiblingsare Table1|EnrichmentofDNmutationsinsixgeneclasses rDNLGD(ASD) DNLGD(ASD) DNmiss(ASD) DNLGD(sib) DNmiss(sib) No.ofgenes Overlap(27) Overlap(353) Overlap(1,513) Overlap(176) Overlap(1,066) Geneclass Obs Exp P Obs Exp P Obs Exp P Obs Exp P Obs Exp P FMRP 842 14 2.6 431028 55 34.1 431024 171 144.8 0.03 14 17.0 0.52 117 102.9 0.15 Chromatin 428 6 0.9 231024 26 11.8 331024 57 50.0 0.31 5 5.9 1.00 37 35.6 0.80 Embryonic 1,912 6 3.4 0.15 65 45.0 231023 220 191.4 0.03 20 22.5 0.65 142 136.0 0.58 PSD 1,445 4 2.5 0.31 34 32.5 0.78 159 138.1 0.07 22 16.2 0.15 113 98.1 0.12 Essential 1,750 7 3.2 0.04 50 42.4 0.22 201 180.3 0.10 20 21.2 0.91 127 128.1 0.96 Mendelian 256 0 0.6 1.00 3 8.0 0.07 31 34.0 0.66 5 4.0 0.61 20 24.1 0.47 DNLGD(Scz) 93 2 0.3 0.03 9 3.7 0.01 16 15.7 0.90 2 1.8 0.71 8 11.2 0.45 DNLGD(ID) 30 3 0.1 131024 8 1.2 331025 10 4.9 0.04 0 0.6 1.00 5 3.5 0.41 Wetestedeightclasses(Methods)forenrichmentagainstfivelistsoftargetsofDNmutations.Theseincludegeneswith(1)recurrentDNLGDmutationsinprobands(rDNLGD(ASD));(2)DNLGDmutationsin probands(DNLGD(ASD));(3)DNmissensemutationsinprobands(DNmiss(ASD));(4)DNLGDsinsiblings(DNLGD(sib));and(5)DNmissensemutationsinsiblings(DNmiss(sib)).Observed(obs)and expected(exp)numbersareshownwithPvaluesobtainedfromtwo-sidedbinomialtests.ExpectednumbersandPvaluesarebasedonalengthmodelinwhichDNmutationsoccurrandomlyinallgenes, proportionaltolength. 00 MONTH 2014 | VOL 000 | NATURE | 3 ©2014Macmillan Publishers Limited. All rights reserved RESEARCH ARTICLE alsoclosetonullexpectations(P50.2and0.04,respectively).Inaffected Weusetheascertainmentdifferentialasanestimateofcontribution. maleswithhigherIQtherearenoexcessrecurrenttargetsamong137 Thesumoftheascertainmentdifferentialsformissense,nonsense,con- LGDs mutations (2 observed, 1.0 expected, P5 0.3) or among 728 sensussplicesitedisruptionandframeshiftDNmutationsis0.21per missensemutations(26observed,24.7expected,P50.4).Bycontrast, affectedchild.Adding0.06,theascertainmentdifferentialfromlarge among probands the number of recurrent LGD (n527 out of 391 DNcopynumbervariants2,3,bringsthetotalto0.27(Fig.4).Excluding events)andmissensetargets(145outof1,675events)arenotcompat- higherIQmales,thevalueis0.33.Inaffectedfemalesitis0.45.Thisisa iblewiththenullexpectationof7.6(P,0.0001)and115.0(P50.001), conservativeestimatefortheroleofDNmutationintheSSCfamilies respectively.Giventhesefindings,aswellasthelackofoverlapbetween becausewehavenotyetascertainedintermediate-sizeDNcopynumber targetsofhigherandlowerIQmales,wefocusedonthejointclassof variants(CNVs),copy-neutralrearrangements,regulatorymutations femaleprobandsandaffectedmalesoflowerIQ.Forthejointclass,there ormutationsofnon-codinggenes. were22recurrentLGDtargetsamong254eventswith3.3expected AlthoughtheSSCisasimplexcollection,itisprobablyonlymar- (P,0.0001).Forthe944missenseevents,60recurrenttargetsareobserved ginallydepletedforhigh-riskfamiliesbecausesmallbroodsizepre- with40.2expected(P50.0005). ventsthebirthofseveralaffectedchildren,especiallyiftheunaffected Wenextusedrecurrenceanalysisandthelengthmodeltoestimate siblingisfemale.Weestimate10andconfirm9bygenderbiasinunaffected thenumberofvulnerablegenes(Fig.3)andtheprobabilitythatarecur- siblings(1,400femalesand1,264males,P50.0089)that,40%ofthe rentmutationofagiventypeiscontributory(Methods).Themostlikely SSCfamiliesarehigh-risk.Inasimplegeneticmodel,DNmutationhas numberofgenesvulnerabletoDNmutationsinthejointclassisesti- noroleinhigh-riskfamiliesbutisobligatoryforlow-riskfamilies10,so matedtobe387forLGDtargetswitha95%confidenceintervalof149– DNmutationwouldcontributeto,60%oftheSSC.Thesumofthe 915,and404forDNmissensetargets(confidenceinterval71–3,050). ascertainmentdifferentialforallobservableDNtypesinallthepro- Fromthelengthmodelandourestimatethat43%ofLGDmutationsare bandsisabout30%,abouthalfofthat.Ifthenumberofunobservedand contributory,wehave90%confidencethatagivenLGDmutationcontri- consequentialDNmutationsissimilartothenumberofobservedand butestoautisminagenerecurrentlyhitbyanLGDmutation(Methods). consequentialDNexomemutations,theactualcontributionisnotfar Bythesamemethods,wecompute35%confidenceincontributionfrom fromthatpredictedbythissimplemodel. missensemutationsinrecurrenttargets.Usingexistingmodelsforpri- oritizingtargets7,welistalltargetsofrecurrentDNcodingmutation Targetsandcognitivedefects accordingtotheirrank(SupplementaryTable9). We examined the incidence and targets of DN LGD mutations for childrenwithlowerandhigherIQs.AffectedchildrenwithhigherIQs Discussion haveagreaterincidenceofLGDmutationsthanunaffectedsiblings, TheSSCwasassembledwiththeexplicithypothesisthatfindingtargets butalowerincidencethanaffectedfemalesormaleswithlowerIQ. ofDNmutationwouldbeapathtogenediscovery.Wenowhave353 Moreover, there are few recurrently hit genes among the DN LGD candidateLGDgenetargets,27genesrecurrentlyhitbyLGDevents, targetsofaffectedmaleswithhigherIQ,andlittleoverlapwiththeDN and145recurrentmissensetargets,eachwithabout40%,90%and35% LGDtargetsofaffectedmaleswithlowerIQorfemales.LGDtargetsin chanceofbeingcontributory,respectively. higherIQmalesarenotenrichedfortheFMRP-associatedgenes.These LGD in all probands 80 LGD in female and low-nvIQ male probands Observed nsity Missense in female and low-nvIQ male probands 70 Model e d y bilit 60 a b o Pr 50 n o 0 500 1,000 1,500 2,000 2,500 3,000 3,500 4,000 buti40 Number of vulnerable genes ntri o C LGD in affected females 30 LGD in affected males with low nvIQ sity Missense in affected males with low nvIQ 20 n e d bility 10 a b o Pr 0 CNVs LGDs Missense Total Total Total Total Total Model all all all all female male low-IQ high-IQ male male 0.0 0.2 0.4 0.6 0.8 1.0 Figure4|EstimatedcontributionsofCNVs,LGDsandmissenseDN Class vulnerability mutationstosimplexASD. AscertainmentdifferentialsforthreetypesofDN Figure3|Numberofvulnerablegenesandclassvulnerability. Weassume mutation(CNVs,LGDsandmissense)areinterpretedasameasureof thepropertyofbeingvulnerableisindependentofgenelength,butthe ‘contribution,’thepercentageofprobandsinwhomthemutationcontributed probabilityofbeinghitbymutationisproportionaltogenelength.Weusethe todiagnosis.Wecombinethethreemutationtypesin‘total’ontheassumption observedratesofmutationofagiventypeinspecifiedpopulationsandnumber ofadditivity.Wepresentthismeasurefor‘all’probandsandselected ofrecurrentmutationstoestimatethenumberofgenesvulnerabletothose subpopulationsasindicated.WealsoshowtheexpectedcontributionofallDN mutations(top).Thedegreesofvulnerabilityinthoseclassesarethe mutationinasimplexcollectioncomputedfromasimplegeneticmodel9 distributionsshowninthebottompanel(Methods).nvIQ,non-verbalIQ. (‘model’).Errorbarsrepresent95%confidenceintervals. 4 | NATURE | VOL 000 | 00 MONTH 2014 ©2014Macmillan Publishers Limited. All rights reserved ARTICLE RESEARCH observationssuggest a differentdistribution ofgenetic mechanisms IQautism(Fig.3).ThemodeforLGDvulnerabilityinfemalesisfour- underlyingASDinhigherIQmales. foldlowerthanforlowerIQmales,mainlybecausetheprevalenceis WecanexamineoverlapbetweenLGDtargetsforautism,withpub- fourfoldlower.Reducedpenetranceinfemalesisnotwellunderstood, lishedtargetsforintellectualdisabilityandschizophrenia25–29.Weapplied butmaybeconsequenttosexuallydimorphicdevelopment.Supportfor ourlengthmodelformutationincidenceandfoundsignificantoverlap thisisseenintherelativeenrichmentofembryonicallyexpressedgenes ofintellectualdisabilityandschizophreniatargetswithASDtargets astargetsinfemales. (Table1),butonlyinthejointclassofaffectedmaleswithlowerIQand Partial genevulnerabilitycanbeexplainedinseveral ways:some females(SupplementaryTable6).Theoverlapcanhavemanyexplana- LGDmutationsresultinautism,somehavelittleeffect,andsomepro- tions:diagnosticconflation;pleiotropyforthesamemutation;differ- duceotherdiagnosesorevenlethality.Regardless,manyLGDmuta- entconsequencesfordifferentmutationsinthesamegene;andvarying tionswillstronglypredisposetoASD.Weexpectthistobereflectedin genetic or environmental background. The DN targets of affected decreased functional variation in the human gene pool, as we have maleswithhigherIQdonotoverlapthesesets,againsuggestingdis- previouslyshownforFMRP-associatedgenes8. tinctmechanisms. Givenouranalysisofgenevulnerabilityandthelackofevidencefor compound heterozygosity, damage to a single allele will often have Propertiesoftargetclasses severeconsequencesfordevelopment.Whatunderliesthevulnerabil- Thisstudyissufficientlylargeanduniformtoenableinferencesabout itytohaploinsufficiencyisunclear.Halfthenormalgenedosagecan targets,distinguishedbymutationtypes,propertiesofaffectedchildren resultinhalfthelevelofgeneproducts,andtherearemanyexamples andtargetfunctions.Weobserveasignificantcontributionfrommis- inwhichphysiologyrequiresproperdosage32–37.Also,havingtwocopies sensemutations,withanoverallmagnitudecomparabletothatfromLGD ofagenewillreducevariabilityofexpression38.Withonlyonefunctional mutations.BothLGDandmissensemutationtargetsareenrichedin allele,therecouldbeincreasedvariationinlevelsofexpression,includ- thesamefunctionalgenesets,especiallyamonglowerIQmales(Sup- ingdangerouslylowlevelsatcrucialmomentsinlineagedevelopment, plementaryTable6).ExcludinghigherIQmales,weestimatethemost alteringthecompositionoftissues.Monoallelicexpressionalsoneeds likelynumberofgenesvulnerabletoLGDsisabout400,withasimilar tobeconsidered39.Finally,sometruncationeventsmightleadtodom- numberofgenesvulnerabletomissense.Thetwosetsoverlapsubstantially. inantnegativealleles. Targetsinautismareenrichedincertainfunctionalcategories,pro- vidingdeepersupportforpreviouslypublishedobservations6–8.FMRP- Presentandfutureimplications associatedgenesandchromatinmodifiersareprominenttargetsinall Fromtheclinicalperspective,earlydiagnosisandfamilycounsellingare groupsexcepthigherIQmales.Theformerarethoughttofunctionin complicatediftherearehundredsofgenetictargets,especiallyiffeware neuroplasticity.Embryonicallyexpressedgenesaresignificantlyenriched knownwithcertainty.Sequencingofmorecohortsisthusclearlywar- asLGDormissensetargets,butonlyinfemales.Enrichmentinthese ranted.Fromthetherapeuticperspective,thegoodnewsisthatinalmost genesmayreflectthatthesecontributorymutationscausealterations allcasesDNmutationsoccurinprobandsinwhomanormalalleleisalso beforeafemaleprotectiveeffecttakesplace. present.Itistheoreticallypossiblethatenhancingactivityoftheremain- RecurrentLGDtargetsencodereceptors,ionchannelsandsynaptic ing alleles might alleviate symptoms. So in our view, the long-term proteinslikelytofunctiondirectlyinneuro-circuitry(forexample,SCN2A, prognosisfortreatingASDispositive.Moreover,ASDtargetsoverlap GRIN2BandRIMS1),butalsoproteinsfunctioningincytoskeletalremod- withtargetsforintellectualdisabilityandschizophrenia,somechanism- elling(forexample,ANK2andMED13L)andtranscriptionalregulation. basedtreatmentsmightworkfordifferentdiagnosticcategories.Inthe Chromodomainhelicasegenefamilymemberscarrymanyrecurrent intermediateterm,functionalclusteringsuggeststhattreatmentsmight LGDs.ThemostfrequentlyhitgeneisCHD8(ref.30),followedbyCHD2 betailoredtoasmallernumberofconvergentpathways. (threeLGDs)andfourothermembers(oneLGDeach)ofthatfamily. CHD8isatranscriptionalregulatorthoughttobeimportantforsup- OnlineContentMethods,alongwithanyadditionalExtendedDatadisplayitems pressionoftheWnt–b-cateninsignallingpathwaythroughhistoneH1 andSourceData,areavailableintheonlineversionofthepaper;referencesunique tothesesectionsappearonlyintheonlinepaper. recruitment31.AnotherintriguingtargetistheproteinkinaseDYRK1A, hitfourtimesandlocatedintheDown’ssyndromecriticalregion7. Received4July;accepted3October2014. Publishedonline29October2014. Genevulnerabilityandmolecularmechanisms Wecannotdeterminethepenetranceofspecificmutationsobserved 1. Jeste,S.S.&Geschwind,D.H.Disentanglingtheheterogeneityofautismspectrum disorderthroughgeneticfindings.NatureRev.Neurol.10,74–81(2014). here,aswedonotseethemoftenenoughinanunselectedpopulation. 2. Sanders,S.J.etal.MultiplerecurrentdenovoCNVs,includingduplicationsofthe Nevertheless,weintroducetheterm‘genevulnerability’astheprobabil- 7q11.23Williamssyndromeregion,arestronglyassociatedwithautism.Neuron itythatagiventypeofmutationinagivengenecontributestoagiven 70,863–885(2011). 3. Levy,D.etal.Raredenovoandtransmittedcopy-numbervariationinautistic condition.Geneswithnon-zerovulnerabilitydefinethevulnerableclass. spectrumdisorders.Neuron70,886–897(2011). Wecanextendthisconceptto‘classvulnerability’,definedasthemean 4. Marshall,C.R.etal.Structuralvariationofchromosomesinautismspectrum genevulnerabilityoveraclassofgenes.Mathematically,classvulner- disorder.Am.J.Hum.Genet.82,477–488(2008). ability,V,iscomputedbysolvingthefollowingequationforV:F3A 5. Sebat,J.etal.Strongassociationofdenovocopynumbermutationswithautism. Science316,445–449(2007). 5P3H3V,inwhichFistheprevalenceofthecondition,Aisthe 6. Sanders,S.J.etal.Denovomutationsrevealedbywhole-exomesequencingare ascertainmentdifferentialforDNmutationsofagiventypeinthegene stronglyassociatedwithautism.Nature485,237–241(2012). class,PistheexpectedproportionofthepopulationwithDNmuta- 7. O’Roak,B.J.etal.Sporadicautismexomesrevealahighlyinterconnectedprotein tionsofthatgiventype,andHistheprobabilitythatsuchmutationshit networkofdenovomutations.Nature485,246–250(2012). 8. Iossifov,I.etal.Denovogenedisruptionsinchildrenontheautisticspectrum. thegeneclass. Neuron74,285–299(2012). Wecancomputeadistributionofclassvulnerabilityforallvulner- 9. Ronemus,M.,Iossifov,I.,Levy,D.&Wigler,M.Theroleofdenovomutationsinthe ablegenestargetedbyagivenmutationaltype(Methods)becauseF,A geneticsofautismspectrumdisorders.NatureRev.Genet.15,133–141(2014). 10. Zhao,X.etal.Aunifiedgenetictheoryforsporadicandinheritedautism.Proc.Natl andPhaveempiricallysampleddistributionsandHhasadistribution Acad.Sci.USA104,12831–12836(2007). inferredfromthetotallengthofthegeneclass.Thedistributionofclass 11. Fischbach,G.D.&Lord,C.TheSimonsSimplexCollection:aresourcefor vulnerabilityforDNLGDsinmaleswithlowerIQhasamodearound identificationofautismgeneticriskfactors.Neuron68,192–195(2010). 0.4(Fig.3).Inotherwords,,40%ofDNLGDsinvulnerablegenesin 12. Campbell,C.D.etal.Estimatingthehumanmutationrateusingautozygosityina founderpopulation.NatureGenet.44,1277–1281(2012). amalecontributetodiagnosesoflowerIQASD.Similarly,,10%of 13. Michaelson,J.J.etal.Whole-genomesequencinginautismidentifieshotspotsfor missensemutationsinvulnerablegenescontributetodiagnosesoflower denovogermlinemutation.Cell151,1431–1442(2012). 00 MONTH 2014 | VOL 000 | NATURE | 5 ©2014Macmillan Publishers Limited. All rights reserved RESEARCH ARTICLE 14. Schrider,D.R.,Hourmozdi,J.N.&Hahn,M.W.Pervasivemultinucleotide 37. Zhang,F.,Gu,W.,Hurles,M.E.&Lupski,J.R.Copynumbervariationinhuman mutationaleventsineukaryotes.Curr.Biol.21,1051–1054(2011). health,disease,andevolution.Annu.Rev.GenomicsHum.Genet.10,451–481 15. Kong,A.etal.Rateofdenovomutationsandtheimportanceoffather’sageto (2009). diseaserisk.Nature488,471–475(2012). 38. Eckersley-Maslin,M.A.&Spector,D.L.Randommonoallelicexpression: 16. Neale,B.M.etal.Patternsandratesofexonicdenovomutationsinautism regulatinggeneexpressiononealleleatatime.TrendsGenet.30,237–244 spectrumdisorders.Nature485,242–245(2012). (2014). 17. Darnell,J.C.etal.FMRPstallsribosomaltranslocationonmRNAslinkedto 39. Jeffries,A.R.etal.Randomorstochasticmonoallelicexpressedgenesareenriched synapticfunctionandautism.Cell146,247–261(2011). forneurodevelopmentaldisordercandidategenes.PLoSONE8,e85093(2013). 18. Kang,H.J.etal.Spatio-temporaltranscriptomeofthehumanbrain.Nature478, 483–489(2011). SupplementaryInformationisavailableintheonlineversionofthepaper. 19. Voineagu,I.etal.Transcriptomicanalysisofautisticbrainrevealsconvergent molecularpathology.Nature474,380–384(2011). AcknowledgementsSimonsFoundationAutismResearchInitiativegrantstoE.E.E. 20. Baye´s,A.etal.Characterizationoftheproteome,diseasesandevolutionofthe (SF191889),M.W.S.(M144095R11154)andM.W.(SF235988)supportedthiswork. humanpostsynapticdensity.NatureNeurosci.14,19–21(2011). AdditionalsupportwasprovidedbytheHowardHughesMedicalInstitute 21. Blake,J.A.,Bult,C.J.,Kadin,J.A.,Richardson,J.E.&Eppig,J.T.TheMouseGenome (InternationalStudentResearchFellowshiptoS.J.S.)andtheCanadianInstitutesof Database(MGD):premiermodelorganismresourceformammaliangenomics HealthResearch(DoctoralForeignStudyAwardtoA.J.W.).E.E.E.isanInvestigatorofthe andgenetics.NucleicAcidsRes.39,D842–D848(2011). HowardHughesMedicalInstitute.WethankallthefamiliesattheparticipatingSSC 22. Feldman,I.,Rzhetsky,A.&Vitkup,D.Networkpropertiesofgenesharboring sites,aswellastheprincipalinvestigators(A.L.Beaudet,R.Bernier,J.Constantino, inheriteddiseasemutations.Proc.NatlAcad.Sci.USA105,4323–4328(2008). E.H.CookJr,E.Fombonne,D.Geschwind,D.E.Grice,A.Klin,D.H.Ledbetter,C.Lord, 23. Willsey,A.J.etal.Coexpressionnetworksimplicatehumanmidfetaldeepcortical C.L.Martin,D.M.Martin,R.Maxim,J.Miles,O.Ousley,B.Peterson,J.Piggot,C.Saulnier, projectionneuronsinthepathogenesisofautism.Cell155,997–1007(2013). M.W.State,W.Stone,J.S.Sutcliffe,C.A.WalshandE.Wijsman)andthecoordinators 24. Newschaffer,C.J.etal.Theepidemiologyofautismspectrumdisorders.Annu.Rev. andstaffattheSSCsitesfortherecruitmentandcomprehensiveassessmentof PublicHealth28,235–258(2007). simplexfamilies;theSFARIstaffforfacilitatingaccesstotheSSC;andtheRutgers 25. deLigt,J.etal.Diagnosticexomesequencinginpersonswithsevereintellectual UniversityCellandDNARepository(RUCDR)foraccessingbiomaterials.Wewouldalso disability.N.Engl.J.Med.367,1921–1929(2012). liketothanktheCSHLWoodburySequencingCenter,theGenomeInstituteatthe 26. Fromer,M.etal.Denovomutationsinschizophreniaimplicatesynapticnetworks. WashingtonUniversitySchoolofMedicine,andYaleCenterforGenomicAnalysis(in Nature506,179–184(2014). particularJ.Overton)forgeneratingsequencingdata;E.AntoniouandE.Ghibanfor 27. Lee,S.H.etal.Geneticrelationshipbetweenfivepsychiatricdisordersestimated theirassistanceindataproductionatCSHL;andT.Brooks-Boone,N.Wright-Davisand fromgenome-wideSNPs.NatureGenet.45,984–994(2013). M.WojciechowskifortheirhelpinadministeringtheprojectatYale.TheNHLBIGO 28. McCarthy,S.E.etal.Denovomutationsinschizophreniaimplicatechromatin ExomeSequencingProjectanditsongoingstudiesproducedandprovidedexome remodelingandsupportageneticoverlapwithautismandintellectualdisability. variantcallsforcomparison:theLungGOSequencingProject(HL-102923),theWHI Mol.Psychiatry19,652–658(2014). SequencingProject(HL-102924),theBroadGOSequencingProject(HL-102925),the 29. Rauch,A.etal.Rangeofgeneticmutationsassociatedwithseverenon-syndromic SeattleGOSequencingProject(HL-102926)andtheHeartGOSequencingProject sporadicintellectualdisability:anexomesequencingstudy.Lancet380, (HL-103010). 1674–1682(2012). 30. O’Roak,B.J.etal.Multiplextargetedsequencingidentifiesrecurrentlymutated AuthorContributionsCSHL:I.I.,M.R.andM.W.designedthestudy;I.I.,D.L.,B.Y.,Y.L., genesinautismspectrumdisorders.Science338,1619–1622(2012). E.G.,E.D.,P.A.,A.L.,J.K.,G.N.,S.Y.,M.C.S.,K.Y.andM.W.analysedthedata;M.R.,I.H.,J.R., 31. Nishiyama,M.,Skoultchi,A.I.&Nakayama,K.I.HistoneH1recruitmentbyCHD8is B.M.,L.R.,J.T.andW.R.M.generatedtheexomedataatColdSpringHarborLaboratory; essentialforsuppressionoftheWnt-b-cateninsignalingpathway.Mol.Cell.Biol. I.I.,Z.W.,S.M.andJ.T.confirmedthevariants;I.I.,M.R.andM.W.wrotethepaper.UCSF/ 32,501–512(2012). Yale:S.J.S.andM.W.S.designedthestudy;S.J.S.,S.D.,L.W.andA.J.W.analysedthe 32. Birchler,J.A.&Veitia,R.A.Genebalancehypothesis:connectingissuesofdosage data;S.J.S.,J.D.,L.E.G.,J.D.M.,C.A.S.,M.F.W.andZ.W.confirmedthevariants;S.M.M.and sensitivityacrossbiologicaldisciplines.Proc.NatlAcad.Sci.USA109, M.T.M.generatedtheexomedataatYaleMedicalCenter.UW:B.J.O.,J.S.andE.E.E. 14746–14753(2012). designedthestudy;B.J.O.andN.K.analysedthedata;B.J.O.,H.A.S.,K.T.W.andL.V. 33. Cooper,D.N.,Krawczak,M.,Polychronakos,C.,Tyler-Smith,C.&Kehrer-Sawatzki, confirmedthevariants;E.E.E.andJ.S.revisedthemanuscript;K.E.P,J.D.S.,B.P.and H.Wheregenotypeisnotpredictiveofphenotype:towardsanunderstandingof D.A.N.generatedtheexomedataattheUniversityofWashington. themolecularbasisofreducedpenetranceinhumaninheriteddisease.Hum. Genet.132,1077–1130(2013). AuthorInformationSequencedatausedintheseworkareavailablefromtheNational 34. Darnell,J.C.Defectsintranslationalregulationcontributingtohumancognitive DatabaseforAutismResearch(http://ndar.nih.gov/),understudyDOI:10.15154/ andbehavioraldisease.Curr.Opin.Genet.Dev.21,465–473(2011). 1149697.Reprintsandpermissionsinformationisavailableatwww.nature.com/ 35. Veitia,R.A.,Bottani,S.&Birchler,J.A.Genedosageeffects:nonlinearities,genetic reprints.Theauthorsdeclarecompetingfinancialinterests:detailsareavailable interactions,anddosagecompensation.TrendsGenet.29,385–393(2013). intheonlineversionofthepaper.Readersarewelcometocommentontheonline 36. Weischenfeldt,J.,Symmons,O.,Spitz,F.&Korbel,J.O.Phenotypicimpactof versionofthepaper.Correspondenceandrequestsformaterialsshouldbe genomicstructuralvariation:insightsfromandforhumandisease.NatureRev. addressedtoJ.S.([email protected]),E.E.E.([email protected]), Genet.14,125–138(2013). M.W.S.([email protected]),orM.W([email protected]). 6 | NATURE | VOL 000 | 00 MONTH 2014 ©2014Macmillan Publishers Limited. All rights reserved ARTICLE RESEARCH METHODS Wherepossible,allfourfamilymembersweresequencedonthesamelaneto minimizebatcheffects.AllstrongandweakLGDcandidatevariantsfromtheCSHL Samplecollection.Mostfamilies(2,517)camefromcurrentorformermembers pipeline,alongwithanadditionalsetofLGDcandidatesfromtheYalepipeline, oftheSSC.TheSSCwasassembledat13clinicalcentres,accompaniedbydetailed andstandardizedphenotypicanalysisasreportedpreviously11.SeveralIQmea- weresubjectedtoexperimentalvalidationasfollows:variant-specificprimerswere designedforPCRamplificationofcandidateSNVsandindelsfromallfamily sures(verbal,non-verbalandfullspectrum)wererecorded;inthiswork,westrati- members,andampliconsweresentforSangersequencing. fiedprobandsbynon-verbalIQ,whichwerefertoassimply‘IQ’throughoutthe text.Familieswithsingleprobandsandunaffectedsiblingswerepreferentially Sequenceanalysispipelines.Sequencedatawereinterpretedasfamilygenotypes recruited,whereasfamilieswithtwoprobandswerespecificallyexcluded11.Families usingpipelinetoolsateachrespectivedatacentre.Almostallofthedatawere fromtwoassociatedcollectionswerealsosequenced:theSimonsAncillaryCollec- reanalysedwiththeCSHLpipeline.Weshowthecoverage(ExtendedDataFig.6) tion(SAC,n5123),andtheSimonsTwinCollection(STC,n513).TheSACincludes andyields(ExtendedDataFig.7)fordenovocallsfromeachcentre.The24fam- familiesthatfailedinclusioncriteriafortheSSC,typicallybecauseaparent,sibling iliessequencedatallthreecentresdemonstratedgoodagreementbetweenpipe- orsecond-orthird-degreerelativeoftheaffectedparticipanthasbeendiagnosed linesandplatforms(SupplementaryTables11and12). withASD,orforcasesinwhichtheproband’sASDdiagnosiswasquestionable. Theanalysispipelinesgeneratedcandidatedenovoevents,definedasvariants TheSTCconsistsoffamiliesofmonozygotictwinsinwhichatleastoneco-twinis presentinthechildandabsentinbothparents.Wefilteredoutvariantsseen affectedbyASD.TheinstitutionalreviewboardsofColdSpringHarborLaboratory, frequentlyintheparentsofthecollection(allelefrequency.0.3%),reasoning YaleMedicalCenterandUniversityofWashington,Seattleapprovedthisstudy. thatmostofthesewouldbefalsepositivesowingtounevencoverageinaparent. WritteninformedconsentfromallsubjectswasobtainedbySFARI.Bloodsamples CandidatesgeneratedbylocalpipelinesorbythecommonCSHLpipelinewere weredrawnfromparentsandchildren(affectedandunaffected)andsenttothe validatedattherespectivecentreswithre-sequencingand2,504wereverified.In RutgersUniversityCellandDNARepository(RUCDR)forDNApreparation.DNAs ourfinalcallset,weincludeallverifiedcallsfromeachcentre,andomitanycall from2,517families(of,2,800totalintheSSC)wereusedinthisstudy.Results thatwasrejected.Inaddition,becausealmostall(1,640of1,644)strongpoint from774oftheSSCfamiliesincludedherewerepublishedinearlierwork6–8.The mutationsgeneratedbythecommonCSHLpipelinewereverifiedwhensuccess- samplesweresplitacrossthethreecentres:ColdSpringHarborLaboratory(CSHL), fullytested(SupplementaryTable11),suchstrongcandidatesareincludedinour theDepartmentofGeneticsattheYaleSchoolofMedicine(YALE),andDepartment callsetevenifthevalidationtestfailedorifthecandidateeventwasnottested.All ofGenomeSciencesattheUniversityofWashington(UW).Thesplitwasnot frameshiftmutationswerevalidated,andweexcludeallthatwererejected.Allde uniformwithrespecttonumberoffamiliesortheproportionsoffemaleprobands novocallsusedinthesubsequentanalysis,alongwiththeirvalidationstatus,are andprobandswithlowerIQ(ExtendedDataFig.2andSupplementaryTable1). listedinSupplementaryTable2.Pipelinesforanalysisandvalidationwereblind Severalfamiliesweresequencedatmultiplecentres,with24familiessequencedin withrespecttoaffectedandunaffectedstatus. allthreecentres(ExtendedDataFig.1andSupplementaryTable1). CSHL(uniform)pipeline.Sequencedatafromthethreecentreswereanalysed Exomecapture,sequencingandvalidation.Thethreecentresdifferedinthe withthecomputationalpipelinedescribedpreviously8.Inbrief,theIlluminaanal- preciseexomecaptureplatform,readlengthandvalidationprotocols. ysispipeline(CASAVA1.8)wasusedforbasecalls,andcustomsoftwarewasused CSHL.Theprotocolsdescribedpreviously8wereappliedtothefamiliesnewlysequenced tode-multiplexreadsandtrimbarcodesfromCSHLderiveddata.DatafromYale atCSHL.Inbrief,SeqCapEZHumanExomeLibraryv2.0(RocheNimbleGen) andUWwerede-multiplexedattherespectivecentresbeforeanalysisthroughthe reagentswereusedwithacustombarcodingprotocolthatenabledsimultaneous CSHLpipeline.BWA42wasusedtoalignsequencereadstothehg19referencegenome, exomeenrichmentof#4genomesandthesequencingof#8individualsperIllumina andbothPicard(http://broadinstitute.github.io/picard/)andGATK43wereused HiSeq2000lane.Allexomesequencingwasperformedusingpaired-end100-base formarkingPCRduplicates,family-basedsequencerealignmentandqualityscore pair(bp)reads.AllstrongandweakLGDcandidatevariantsaswellasadditional recalibration.Asdescribedpreviously,amultinomialmodel-basedfamilygenotyper variantsfromfamiliessequencedatCSHLweresubjectedtoexperimentalvalid- wasusedtogeneratecandidateSNVandindel‘Mendelviolators,’eachannotated ation.Gene-specificprimersweredesignedforPCRamplificationofcandidatesingle with:(1)aconfidencescore(denovoScr)thatreflectstheposteriorprobabilityof nucleotidevariables(SNVs)andindels,andampliconswerepooledandsequenced Mendelviolationatthelocus;(2)agoodness-of-fitscore(chi2Score)showingthe onanIlluminaMiSeq.Approximately100variantswerevalidatedperlanewithpaired- degreetowhichtheassumptionsofthemultinomialmodelareapplicabletothe end150-bpreads.Wherepossible,theparentaloriginwasdeterminedbyphasing observeddata;(3)countsofreadsperalleleandperfamilymember;and(4)allele oflinkedtransmittedSNVs. frequencyandnoiseratesforthecandidatepositionbasedonthewholecollection. UW.Sampleswerecapturedandsequencedbyoneofthreemethods.Inthepilot CandidatesSNVswithdenovoScr$60andchi2Score.0.0001werelabelled‘strong’ set(19quads),sampleswerecapturedusingSeqCapEZHumanExomeLibrary providedthatthepositionwasnotpolymorphicornoisyinthepopulation,andthat v1.0(RocheNimbleGen)reagents(UW-M1)7,40.Theremainingsampleswerecap- theparentswerehomozygousforthereferenceallele. turedusingSeqCapEZHumanExomeLibraryv2.0(RocheNimbleGen)reagents7. ForSNVs,acut-offdenovoScrvalueof60wasdictatedbythedesiretokeep Newlysequencedsampleswereeitherprocessedasdescribedpreviously7(UW-M2) falsepositivestoaminimum,andwaschosenaftercomputingtheproportionof orwithamodified(UW-M3)protocol(SupplementaryTable10).ForUW-M2, denovocandidatesthatappearatpolymorphicloci(asurrogateforfalsepositives) single-plexcapturesandsingle-plexsequencingruns(non-pooled)wereperformed asafunctionofthescore(seetheSupplementofref.8).Thelowfalsepositiverate asdescribedpreviously7.ForUW-M3,single-plexcapturewasperformedasin (,5%)wasalsoconfirmedthroughexperimentalvalidation(SupplementaryTable11). UW-M2;however,inthepost-capturePCR,an8-bpindexbarcodewasadded. Inaddition,weobservethatonly1%ofDNmutationsaresharedbetweentwo Post-PCRlibrarieswerequantifiedandpooledinsetsof,96.Thesepoolswere siblings(SupplementaryTable2),puttinga3%caponfalsepositivesowingto thensequencedontheIlluminaMiSeqplatformtoevaluatelibrarycomplexityand failuretoobserveparentscorrectly.Atstringentthresholdsthefalsenegativerateis sampledistribution.Poolswererebalancedonthebasisofperformance,thense- generallyhigh,butthroughsimulationswedeterminedthat,evenwithstringent quencedacrossmultipleHiSeq2000lanesusingpaired-end50-bpreads.Additional thresholds,regionswithdeepcoverage(403orhigherjointcoverage)hadlowfalse laneswereaddeduntilsamplesreachedtargetcoverage(203:,80%;83:,90%). negativerates(,5%). Ifadditionalcoveragewasrequiredforsomesamples,subpoolswerealsogener- IndelsweretreateddifferentlythanSNVs.Themultinomialmodelassumesa ated.ForsamplesprocessedwithUW-M1andUW-M2,predicteddenovocallswere smallallelebias,appropriatewhencallingSNVs,butnotfordenovoindels— validatedusingstandardPCRandSangersequencing7.ForUW-M3processed particularlyforlongevents(.10bp).Toaddressthis,cut-offsfor‘strong’indels samples,customMolecularInversionProbe(MIP)captureprobesweredesigned werelowered(denovoScr.30andchi2Score.1029).Toreducenoise,weadded withtargetingarmsflankingregionsofinterest.Probesweredesignedwithoutor requirementsfor‘clean’readcounts:parentswerenotallowedtohaveanyreads withdegeneratetags,andpoolsof,50–100probesweregenerated30,41.Asdescribed containingthecandidateindel,andwererequiredtohaveatleast15readssup- earlier41,setsoffamilies(,96samples)werecapturedusingthesepoolswith50– portingthereferenceallele.Atleastoneofthechildrenhadtohave$6readswith 100ngofgenomicDNAastemplate.Captureproductswerethenpooledandse- thecandidatevariant,andthosereadshadtocomprise$5%ofreads.Experimental quencedonanIlluminaMiSeq.CandidatesitesfailingMIPQCorcapture,or validationdemonstratedthatthefalsepositiverateinthestrongindelsis,10%, showingevidenceofsignificantshiftsinallelebalance,werevalidatedusingthe andsimulationsforindelswithoutextremeallelebias(mostofthose,10bp) standardPCR/Sangermethod.Ifsitesrepeatedlyfailedtheassay,theyweredis- revealthatthefalsenegativerateinwell-coveredregions(403)is,5%. carded.NovelsitescalledbytheCSHLpipelinewerevalidatedusingthesame All‘strong’SNVsandindelsarereportedhereunlessrejectedbyvalidation.To methodsasUW-M3. addressthehighfalsenegativerates,wedefinedaclassof‘weak’SNVandindels YALE.Wholeblood-derivedgenomicDNAwasenrichedforexonicsequences drawnfromthresholdslowerthanstrongcandidates.AllweakLGDcandidates usingSeqCapEZHumanExomeLibraryv2.0(RocheNimbleGen)reagents.All weresubjectedtovalidation,andonlythosesuccessfullyvalidatedarereported.In familymemberswerebarcodedandeachpooloffoursampleswassequencedusing addition,duringmethoddevelopment(forexample,throughmanualinspection 75-bppaired-endreadsonsinglelanesoftheIlluminaHiSeq2000instrument. orseeref.44),wevalidatedalargenumberofcandidatesthatdidnotmeeteven ©2014Macmillan Publishers Limited. All rights reserved RESEARCH ARTICLE theweakdefinition.Candidatevariantsfoundasvalidunderthesecircumstances Testforexcessiverecurrence.IfwehaveRrecurrentgenesinKeventsina arereportedhereandlabelledas‘notcalled’.Thislabelisalsousedwhenthe mutation-child-typeclass,wetestforexcessrecurrencebycomparingRtothe CSHLuniformpipelinemissedacallfromtheUWandYALEdatathatwas numberofrecurrentgenesexpectedunderthegenelength-basednullmodel.We successfullyvalidated. buildtheexpectationbyperforming10,000simulations.Ineachsimulation,we UWpipeline.AllsamplesusingUW-M1andUW-M2protocolswereprocessed sampleKgeneswithreplacementwheretheprobabilityofsamplingageneis asdescribedearlier7.ForUW-M3,updatedversionsofBWA(0.5.9-r16),Picard- proportionaltoitslength.Wethencountthenumberofrecurrences. tools(1.48)andGATK(1.0-6125)wereused.TheGATKUnifiedGenotyperwas Estimationofthenumberofvulnerablegenes.Toestimatethenumberofvul- usedinsinglesamplemodewithfilterflags(AB.0.75,lowquality,QD,5.0, nerablegenesforagivenmutation-child-type,westartwiththeobservednumber QUAL#50.0) andin parallelwith theSAMtoolspipelineas describedprev- ofevents(K),theobservednumberofrecurrentevents(R),theestimatedposterior iously40(seetheGATKUnifiedGenotyperfordefinitionsofthesescores).Only distributionsfortheratesofmutationsofthegiventypeintheascertained(Mdist) positionswith$8-foldcoveragewereconsidered.Childgenotypecallswerecom- andfortheunaffected(Pdist)population.Wethenexplorepossiblenumberofvul- paredtotheparentalgenotypestoidentifypossibledenovoevents.PredictedDN nerablegenes(T)from1to4,000.ForeachT,weestimate(throughasimulation SNVswereanalysedagainstasetof946exomestoremoverecurrentartefactsand describedinthenextparagraph)thelikelihoodL(T)5P(RjT,Mdist,Pdist,K).As- likelyundercalledsites.IndelswerealsocalledwiththeGATKUnifiedGenotyper sumingallnumbersofvulnerablegenesfrom1to4,000areequallylikely,wecom- andSAMtools45,andincludedonlythosewith$25%ofreadsshowingavariantat puteaposteriordistributionofthenumberofgenesp(T)proportionaltoL(T)and aminimumdepthof83.Thesewerethenfilteredagainstalargersetof1,779 determinethemaximumvalueand95%confidenceintervals. exomes(aswithSNVs).Thosesitespassing(thatis,notpresent)intheexome Toestimatethelikelihood,L(T)5P(RjT,Mdist,Pdist,K),weperform10,000 screenandalsonotpresentinmultipleUW-M3processedfamiliesweremanually simulationsforeveryT.Ineachsimulation: evaluatedbyinspectingalignmentsintheIntegrativeGenomicsViewer(http:// (1)WerandomlyselectTdistinctvulnerablegenesfromallgenes,withoutrespect www.broadinstitute.org/igv/home).Siteswithobviousmisalignments(forexample, tolength.Unlikemutation,whichstrikesageneaccordingtoitslength,weassume non-gappedindelsorsoft-clippedonlyreads)wereremoved.Moreover,ifreads thatthechanceagenecancauseautismifmutatedisindependentofitslength. supportingthepredictedDNmutationwerepresentin$5%of20(ormore)reads (2)WeselectthenumberNofcontributoryeventsbysamplingfromabino- inoneoftheparents,thesitewasexcluded.Forsiteswithlowercoverage,avariant mialdistributionBinom(K,A/M),whereParandomlyselectedratefromPdist,M wasexcludedifpresentin$10%(forexample,1in10,or2in20)ofparentreadsor isarandomlyselectedfromMdist,A5M2Pisasampledascertainmentdif- (forquads)ifatleastonevariantreadwaspresentinoneparentandtheotherchild. ferential,andA/Misanestimateoftheproportionofcontributoryevents. Yalepipeline.TheYaledatawereanalysedasdescribedpreviously6.Inbrief, (3)WesimulateNcontributorymutationeventsbyselectingNeventswith CASAVA1.8wasusedfordemultiplexingandbasecalling,readswerealignedto replacementfromtheTvulnerablegenesproportionaltotheirlength. hg19withBWA42,andSAMtools45wasusedformarkingPCRduplicatesandgeno- (4)Tosimulaterandomevents,weselectK2Ngenesfromallwell-covered typing.In-housescriptswereusedforfamily-basedassessmentofdenovomutations geneswithreplacementproportionaltotheirlength. andannotationagainstgenesandtheexomevariantserver(http://varianttools. (5)WerecordthenumberofrecurrenteventsintheKselectedeventsfromabove. sourceforge.net/Annotation/EVS). WesetL(T)5P(RjT,Mdist,Pdist,K)to betheproportionofsimulationsin Nullmodelsfortargetoverlapsandrecurrence.Weintroducethetermmuta- whichthenumberofrecurrenteventsisexactlyR.P(T)isobtainedbynormal- tion-child-typetorefertoasetofeventsofacertainmutationaltype(forexample, izing L(T). For every simulation in which the number of recurrent events is missenseorLGD)inchildrenofacertaintype(forexample,maleaffectedindivi- exactlyR,wealsorecordtheproportionofcontributoryeventsamongtherecur- dualswithhigherIQorunaffectedsiblings).Weobservetargetenrichmentingene rentevents,andthevulnerabilitypointestimateasdiscussedinthenextsection. classes,anddocumentoverlapsandrecurrencebetweenandwithinmutation-child- Vulnerability.Weusetheequationdescribedinthetext:F3A5P3H3V,in types.Tomeasuresignificance,weuseanullmodelinwhichtheprobabilitythata whichFistheprevalenceofthegivenconditioninthepopulation,Aistheascer- geneishitbymutationisproportionaltoitslength,amodelsupportedbyobser- tainmentdifferentialforDNmutationsofagiventypeinpersonsascertainedfor vation(ExtendedDataFig.5).Weexaminethedistributionsoflengthsofgene thatcondition,PistheexpectedproportionofthepopulationwithsuchDNmu- targetsofdenovosynonymous,missenseandLGDmutationinaffectedchildren tations,Histheprobabilitythatsuchamutationhitsthetarget,andVisthemean andsiblings.Thesedistributionsarecomparedtosimulationsofgenespickedat classvulnerability.Thesevariablesareinfactrandomvariableswithempirically randomorinproportiontotheirlength.Thedatafitwellwiththemodelthat deriveddistributions. mutationfrequencyislinearlydependentongenelength.Thegroupwiththe largestdeviationfromthisruleisthesetofDNtargetsinaffectedchildren,both Wefirstdemonstratethemethodforcomputingtheclassvulnerabilitypoint for missense (P50.001) and for LGDs (P50.001, Supplementary Table 13). estimateforgenesvulnerabletoLGDmutationsfortheASDmalesoflowerIQ, ThesePvaluesaredefinedastheprobabilitythatthemedianlengthofthetarget assumingthatthevariablesarefixed.Onein75malesisdiagnosedwithautism, classcanariseunderthenullmodel,andarecomputedbysimulationsofequal andweestimate(fromempiricallyderivedgenderbiases)thatthree-quartersof numberofgenesweightedbylength.Althoughthedeviationisstatisticallysignifi- thesemalesareoflowerIQ,yieldingaprevalenceF51/100.Fromourstudy,0.23 cant,itisofsuchaminoramountthatweignoreitforthenullmodel. ofthesehaveanLGD.BecausetheexpectedproportionofpeoplewithaDNLGD Measuringoverlaps.Wetestforoverlapsbetweentargetsofagivenmutation- mutationis P50.11, only A50.12of this subpopulationhave an LGDin a child-typeandothersetsofgenes(forexample,overlapofDNLGDtargetsin vulnerablegenethatcontributestoascertainment.ThusF3A51.231023is affectedgirlswithFMRP-associatedgenes)aswellasoverlapsbetweentargetsof theproportionofmalesthathavelowerIQandautismresultingatleastpartially twodifferentmutation-child-types(forexample,overlapbetweenthetargetsof fromaDNLGD.ThisproportionisalsogivenbyP3H3V,inwhichHisthe DNmissenseinallprobandsandthetargetsofDNLGDsinallprobands).Inboth probabilitythattheLGDhitswithinthegenesvulnerabletoLGDmutations,and cases,observedoverlapsarecomparedtothoseexpectedunderthelength-based Visthemeanclassvulnerabilityforthesegenes.P,asalreadystated,is0.11.We nullmodeldiscussedabove. havecomputedthenumberofgenesvulnerabletoLGDmutations,N,forthe LetTbethetargetsofmutationofagiventypeinachildofagiventype,Sa affectedmaleswithlowerIQtobeabout400genes(SupplementaryTable6). predefinedgeneset,andOtheintersectionofTandS.WeaskforanygeneGthat Assumingmembershipinthetargetclassisindependentofgenelength,and carriesasinglemutation,whattheprobabilityp(S)isthatthemutation(and about20,000genes,wecalculateH5400/20,00050.02,andsolveVtobe0.55. henceG)fallsinS.Weestimatep(S)bycollapsingallrecurrenthitstoone,and Weassumethefollowingprevalence:F51/75forASDinmales,F51/100for applyingthelength-basednullmodeltoS.Thusp(S)istheratioof(1),thesumof ASDwithlowerIQinmales,F51/300forASDwithhigherIQinmales,and exome-capturedlengthsofthegenesofS,dividedby(2),thesumoftheexome- F51/300forASDingirls.AandPareempiricallyderivedgammadistributions capturedlengthsofallgenes.SupplementaryTable7showsthelengthofthe fromthesampledPoissonratesofDNLGDmutationsinaffectedandunaffected capturedportionofallgenesintheexomeweanalyse.Using‘jj’todesignatethe siblings.BykeepingtheobservednumberofLGDeventsandtheobservedpro- numberofmembersinaset,wethenperformatwo-sidedbinomialtestofjOj portionofLGDeventsconstant,wesamplefromthedistributionoftargetnum- outcomesinjTjopportunitiesgiventheprobabilityofsuccessp(S). berNandthedistributionsonAandPasdescribedintheprevioussection.Weset Whenwetestoverlapsbetweentargetsoftwodifferentmutation-child-types, Htobetheratioofthetotallengthofuniformlysampledvulnerablegenestothe wetakeoneofthetargetsasTandcomparetheothertargetsasS.However,before totallengthoftheanalysedcapturedexome,andcomputeavulnerabilitypoint constructingTandS,wecleanuptargetssharedbyTandSthatresultfrom estimateasdescribedjustabove.ThesesampledvaluesaredisplayedinFig.3, mutationssharedbetweensiblingsinthesamefamily,orfrommultiplemutations bottom.ThemodeforVis0.4formalesoflowerIQ. ofdifferenttypesaffectingasinglegeneinonechild.Wethenapplythemethodof ParentalageandphasingofDNmutations.Weusedtwodifferentstrategiesfor theparagraphabove.Finally,wereversetheprocedureforcreatingofSandT,and modellingtherelationshipbetweenratesofDNsubstitutionsandtheagesofthe reportbothresults(SupplementaryTable6). parents. ©2014Macmillan Publishers Limited. All rights reserved ARTICLE RESEARCH ThefirststrategydoesnotdependonknowledgeoftheparentoforiginforDN download.html).Thisdatasetprovidesnormalizedexpressionlevelsfor,17,000 substitutions,whichwedonotknowforthevastmajorityofDNsubstitutions. genesacrossbrainregionsfrom36individuals,18ofwhichwerefromembryos. Becausetheagesofthemotherandthefatherarestronglycorrelated,wecan Eachbrainwasfurthersubdividedinto14anatomicalregionsforatotalof508 effectivelyusethisstrategyonlytoexploretherelationshipbetweenthefather’s regions.Wecomputedcorrelationvaluesforthe17,000genes,andgenerateda ageandtheratesofDNsubstitutions.Overprobandsandsiblingsinthe403 graphbyconnectinggenesthathadcorrelations.0.85,thenidentifiedconnected -jointfamilytarget,wemodelthenumberofmutationsperchildassampledfrom componentsandaveragedtheexpressionofgeneswithinthesecomponentsasa aPoissondistributionwithrateRc5Tc3(A3Fc1B),inwhichRcistherateof functionoftheannotatedageofthebrainandbyregion.Eachregionissortedfirst DNsubstitutionsperchild,Fcistheageofthefatheratthebirthofthechild,Tcis byage,thenbytype(ExtendedDataFig.8).Theaveragednormalizedexpressionof theratioofthelengthofthe403-targetinthatchildtothetotalexomelength,and the1,912genesinthefirstcomponentdecreasesafterbirth,andhencewecallthis AandBarewholepopulationparameters,estimatedbymaximizingthelike- setembryonic. lihoodoverallchildren. SupplementaryTable7showsthegenesintheeightfunctionalclassesthatare ThesecondstrategyisapplicableonlytoDNmutationsforwhichwehave withinthecapturedexomeregionsandwereusedinallanalyses. successfully‘phased’theparentoforiginbyproximitytoalinkedpolymorphism. Foreachparentalgender,weseparatelyperformatwo-sidedone-samplet-testto 40. O’Roak,B.J.etal.Exomesequencinginsporadicautismspectrum comparetheparentalagesofeachphasedDNmutationtothemeanofparental disordersidentifiesseveredenovomutations.NatureGenet.43,585–589 (2011). agesinourpopulation. 41. Boyle,E.A.,O’Roak,B.J.,Martin,B.K.,Kumar,A.&Shendure,J.MIPgen:optimized DNsubstitutionsincrease,0.4perpaternaldecade(ExtendedDataFig.4), modelinganddesignofmolecularinversionprobesfortargetedresequencing. consistentwithpreviousstudies15andtheincreaseinautismasafunctionof Bioinformatics30,2670–2672(2014). paternalage46,47.Wherewecoulddetermineparentalphase,DNsubstitutionsarose 42. Li,H.&Durbin,R.FastandaccurateshortreadalignmentwithBurrows–Wheeler morefrequentlyinthepaternal(287)thaninthematernal(80)background.Among transform.Bioinformatics25,1754–1760(2009). phasedDNevents,themeanageatbirthwas34.6forthefatherand32.0yearsfor 43. McKenna,A.etal.TheGenomeAnalysisToolkit:aMapReduceframeworkfor analyzingnext-generationDNAsequencingdata.GenomeRes.20,1297–1303 themother,whereastherespectivemeanageswere33.2and31.1yearsforfathers (2010). andmothersinthewholepopulation(P50.0001and0.047,respectively,thatthese 44. Narzisi,G.etal.Accuratedenovoandtransmittedindeldetectionin differencesarisebychance). exome-capturedatausingmicroassembly.NatureMethods11,1033–1036 Geneclassdefinition.Fordeterminingoverlapwithdenovomutations,func- (2014). tionalgeneclassesweredefinedasfollows.‘FMRP’aregenesencodingtranscripts 45. Li,H.etal.TheSequenceAlignment/MapformatandSAMtools.Bioinformatics25, thatbindtoFMRP17.‘Chromatin’indicateschromatinmodifiersasdefinedby 2078–2079(2009). 46. Reichenberg,A.etal.Advancingpaternalageandautism.Arch.Gen.Psychiatry63, GeneOntology(GO;http://www.geneontology.org/).‘PSD’isasetofgenesencod- 1026–1032(2006). ing proteins that have been identified in postsynaptic densities20. ‘Mendelian’ 47. Croen,L.A.,Najjar,D.V.,Fireman,B.&Grether,J.K.Maternalandpaternalageand representpositionallyidentifiedhumandiseasegenes22,and‘essential’genesare riskofautismspectrumdisorders.Arch.Pediatr.Adolesc.Med.161,334–340 humanorthologuesofmousegenesassociatedwithlethalityintheMouseGenome (2007). Database21.‘dnLGD(Scz)’aredenovoLGDsinschizophrenia26,48,49and‘dnLGD 48. Gulsuner,S.etal.Spatialandtemporalmappingofdenovomutationsin schizophreniatoafetalprefrontalcorticalnetwork.Cell154,518–529 (ID)’aredenovoLGDsinintellectualdisability25,29. (2013). ‘Embryonic’genesarethoseexpressedinpost-mortemhumanembryonicbrains19, 49. Xu,B.etal.Exomesequencingsupportsadenovomutationalparadigmfor derived from downloaded expression data18 (http://www.brainspan.org/static/ schizophrenia.NatureGenet.43,864–868(2011). ©2014Macmillan Publishers Limited. All rights reserved RESEARCH ARTICLE ExtendedDataFigure1|Numberoffamiliessequencedbycentre. The numbersoffamiliessequencedatthethreecentresareplottedasaVenn diagram.Familiessequencedatmorethanonecentreareindicatedbythe overlappingregionsbetweencircles.CSHL,ColdSpringHarborLaboratory; UW,UniversityofWashington,Seattle;YALE,YaleMedicalCenter. ©2014Macmillan Publishers Limited. All rights reserved

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.