ebook img

2009 Phylogenetic perspectives on the epidemiology and origins of SARS and SARS-like coronaviruses PDF

2009·0.65 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview 2009 Phylogenetic perspectives on the epidemiology and origins of SARS and SARS-like coronaviruses

Infection,GeneticsandEvolution9(2009)1185–1196 ContentslistsavailableatScienceDirect Infection, Genetics and Evolution journal homepage: www.elsevier.com/locate/meegid Review Phylogenetic perspectives on the epidemiology and origins of SARS and SARS-like coronaviruses Chi Wai Yip, Chung Chau Hon, Mang Shi, Tommy Tsan-Yuk Lam, Ken Yan-Ching Chow, Fanya Zeng, Frederick Chi-Ching Leung* TheSchoolofBiologicalSciences,TheUniversityofHongKong,PokfulamRoad,HongKong,China AR TI CLE I NFO ABS TRA CT Articlehistory: SevereAcuteRespiratorySyndrome(SARS)isarespiratorydiseasecausedbyazoonoticcoronavirus(CoV) Received3May2009 namedSARS-CoV(SCoV),whichrapidlyswepttheglobeafteritsemergenceinruralChinaduringlate2002. Receivedinrevisedform9August2009 TheoriginsofSCoVhavebeenmysteriousandcontroversial,untiltherecentdiscoveryofSARS-likeCoV Accepted24September2009 (SLCoV)inbatsandtheproposalofbatsasthenaturalreservioroftheCoronaviridaefamily.Inthisarticle, Availableonline30September2009 wefocusedondiscussinghowphylogeneticscontributedtoourunderstandingtowardstheemergenceand transmissionofSCoV.WefirstreviewedtheepidemiologyofSCoVfromaphylogeneticperspectiveand Keywords: discussedthecontroversiesoveritsphylogeneticorigins.Then,wesummarizedthephylogeneticfindings SARS inrelationtoitszoonoticoriginsandtheproposedinter-speciesviraltransmissionevents.Finally,wealso SARS-likecoronaviruses discussed how the discoveries of SCoV and SLCoV expanded our knowledge on the evolution of the Inter-speciestransmission Evolution Coronaviridaefamilyaswellasitsimplicationsonthepossiblefuturere-emergenceofSCoV. (cid:2)2009PublishedbyElsevierB.V. Contents 1. Introduction.................................................................................................... 1186 1.1. Thediseaseanditsepidemiology ............................................................................. 1186 1.2. Thephylogeneticandzoonoticorigins ......................................................................... 1186 2. DissectingtheepidemiologyofSARSoutbreaksfromaphylogeneticperspective............................................. 1186 2.1. Super-spreading‘caught-in-the-act’............................................................................ 1186 2.2. Tracingthesourceoflocaloutbreaksinthelatephaseepidemic.................................................... 1186 2.3. Estimatingthetheoreticalonsetoftheepidemic................................................................. 1188 2.4. Sporadicre-emergenceinDecember2003 ...................................................................... 1188 3. ControversiesoverthephylogeneticoriginsofSCoV.................................................................... 1188 3.1. TheancienthistoryofanovelCoV ............................................................................ 1188 3.2. SCoVasanearly-splitofffromGroup2CoV:argumentsandcontentions............................................. 1188 3.3. Phylogeneticincongruenceandancientrecombination:factsandcautions ............................................ 1189 4. ZoonoticoriginsofSCoV.......................................................................................... 1189 4.1. CivetsastheimmediatesourceofSARSepidemics ............................................................... 1189 4.2. HorseshoebatsasthenaturalreservoirofSCoVandSLCoV ........................................................ 1191 4.3. ThemissinglinkbetweenSCoVsincivetsandcurrentlysampledSLCoVsinbats....................................... 1191 4.4. Estimatedtimeoftheinter-speciestransmissioneventsandtheirimplications ........................................ 1191 4.5. Adaptivemutationspotentiallyrelevanttointer-speciestransmission................................................ 1192 5. ThecontinuingstoryofCoVdiversity ............................................................................... 1192 5.1. Theexpandingdiversityandwideninghostrange................................................................ 1192 5.2. HowmuchdidrecombinationcontributetothediversityofCoV?................................................... 1193 6. Thelessonlearntandanalarmfornextzoonosis...................................................................... 1193 Acknowledgements.............................................................................................. 1193 References ..................................................................................................... 1193 * Correspondingauthorat:5N-12,KadoorieBiologicalScienceBuilding,TheSchoolofBiologicalSciences,TheUniversityofHongKong,PokfulamRoad,HongKong,China. Tel.:+85222990825;fax:+85228574672. E-mailaddress:[email protected](F.-C.Leung). 1567-1348/$–seefrontmatter(cid:2)2009PublishedbyElsevierB.V. doi:10.1016/j.meegid.2009.09.015 1186 C.W.Yipetal./Infection,GeneticsandEvolution9(2009)1185–1196 1. Introduction aseriesofseeminglyindependentcasesandfollowedbythefirst documented SSE in Hospital HSZ-2 in Guangdong at the end of 1.1. Thediseaseanditsepidemiology January2003(Zhongetal.,2003).Bythen,aninfectednephrologist traveledfromGuangdongtoHongKongandinitiatedanotherSSE Severe acute respiratory syndrome (SARS) is a highly con- inHotelMattheendofFebruary2003,leadingtotheworldwide tagious respiratory disease caused by a previously unknown transmission of SARS and subsequent outbreaks in Hong Kong coronavirus(CoV)namedasSARS-CoV(SCoV)(Ksiazeketal.,2003; (Ruan et al., 2003; Guan et al., 2004). The epidemic has been Peiris et al., 2003). The major outbreak started from November dividedintothreephases(Fig.1)basedontheoccurrenceofthe 2002 as a rapid wave of epidemic from Guangdong Province of abovetwomentionedSSEs(CSMEC,2004).Theearlyphaserefers China and spread through 29 regions around the world (WHO, totheperiodpriortotheSSEinHospitalHSZ-2whilethelatephase 2004a). The epidemic was effectively controlled under vigorous referstotheperiodaftertotheSSEinHotelM.Themiddlephase quarantine measures and no new case was reported after July referstotheperiodbetweenthesetwoSSEs. 2003. Six months after its disappearance, SCoV re-emerged in Phylogenetic analyses enabled researchers to better under- December 2003 as four sporadic cases in Guangdong Province, stand the transmission chains and trace the sources of viral causingnofatalityorsecondarytransmission(WHO,2004b).SCoV epidemics, which provide important information for making is probably one of the very few examples of zoonotic viral public health policy. Broadly speaking, phylogenies of SCoV emergence‘caught-in-the-act’withadequatesequencessampled sequences generally agreed with the documented contact fromdifferentphasesoftheepidemic(CSMEC,2004;Wangetal., histories, and additionally provided evidence to support some 2005a),aswellashighlyrelevantsamplesfromitszoonoticorigins uncorroboratedepidemiologicalspeculations(Zhao,2007).Phy- (Guan et al., 2003; Song et al., 2005; Ren et al., 2006). Taking logenies reconstructed by Neighbor Joining (NJ) (CSMEC, 2004; advantageofthewealthofthesesequencedata,theevolutionary Guanetal.,2004),MaximumLikelihood(ML)(Zhangetal.,2006; behaviors of SCoV during the epidemic have been investigated Tang et al., 2007) and Bayesian methods (Tang et al., 2009) extensively,e.g.chainsoftransmission,theoretictimeofepidemic consistently distinguished the late phase strains as a mono- onset,rateofsubstitutionsandmodeofnaturalselectionactingon phyletic cluster,whichincluded the indexpatient ofthe SSEin theviralgenome,etc.Inthefirsthalfofthisarticle,applicationsof HotelMandtheprimarycasesinVietnam,SingaporeandCanada phylogeneticsforinvestigatingtheemergenceandtransmissionof (Guan et al., 2004), supporting the viewpoint that the SARS SCoVwerereviewed. outbreakslaterinHongKong,aswellasthoseinotherpartsofthe world,werelargely,ifnotcompletely,originatedfromacommon 1.2. Thephylogeneticandzoonoticorigins source. In fact, analyses of the S gene sequences suggested multiplestrainsmighthavebeenindependentlyintroducedinto Prior to the discovery of SCoV, members of the Coronaviridae HongKongfromGuangdongbeforetheSSEinHotelM,although family can be unambiguously classified into three phylogenetic noneofthesestrainscontributedsubstantiallytothesubsequent groups.Althoughinitialphylogeneticanalysesdidnotconfidently outbreaks(Tsuietal.,2003;Guanetal.,2004).Ontheotherhand, classifySCoVasamemberofanyofthethreeexistinggroupsof the strains from early and middle phases are relatively more CoV,futheranalysessuggestedSCoVmightshareanancientand diverse and appeared as multiple distinct clusters on the distant ancestry with Group 2 CoVs (Snijder et al., 2003; phylogenies (CSMEC, 2004; Song et al., 2005; Wang et al., Gorbalenya et al., 2004). SCoVs were also isolated from small 2005b), agreeing with the epidemiological investigations that mammals such as civets in wet markets, suggesting these SCoVshavebeencirculatinginGuangdongandcausedseemingly mammals may have been the direct zoonotic origin of SCoV independentoutbreakspriortotheSSEinHotelM(Zhongetal., (Guan et al., 2003). Excitingly, wider animal surveys revealed 2003).ThisobservationfitsthemodelputforwardbyAntiaetal. unanticipatedhighlevelsofgeneticdiversityofCoVinbats(Cui (2003)andimpliesthepossibleoccurrenceofmultiplezoonotic etal.,2007).AgroupofCoVsnamedasSARS-likeCoVs(SLCoVs) transmissionsofphylogeneticallydistinct,butyetsimilar,SCoVs which shares 88–92% nucleotide identity with SCoV, was also tohumanintheearlyphaseoftheepidemic. identified from bats (Lau et al., 2005; Li et al., 2005b). These findingsleadtothehypothesisthatbatsarethenaturalreservoirof 2.2. Tracingthesourceoflocaloutbreaksinthelatephaseepidemic SCoVandothermembersoftheCoronaviridaefamily(Tangetal., 2006; Vijaykrishna et al., 2007). The biological and evolutionary Theepidemiologyofsomelocaloutbreaksinthelatephasewas aspects related to the conjectured inter-species transmission of also investigated using phylogenetics. Firstly, two major subse- SLCoVfromitsnaturalreservoir(i.e.bats)totheintermediatehost quentoutbreaksinHongKong,theAmoyGardensoutbreak(Ng, (i.e. civets), and finally to human, have been the center of 2003)andtheHospitalPoutbreak(TomlinsonandCockram,2003), discussion(ShiandHu,2008).Inthesecondhalfofthisarticle,the were phylogenetically demonstrated to be directly linked to the phylogeneticoriginsofSCoV,aswellasthediversityofCoVsinits SSE in Hotel M (Chim et al., 2003; Guan et al., 2004). Secondly, zoonotic sources and the phylogenetic aspects of the speculated phylogenies suggested the Taiwan outbreaks were likely to be inter-speciestransmissionevents,werereviewed. derivedfrommultiplesources(Lanetal.,2005b;Shihetal.,2005), includingtheAmoyGardensoutbreak(Chiuetal.,2003;Lanetal., 2. DissectingtheepidemiologyofSARSoutbreaksfroma 2005a) and the SSE in Hotel M (Yeh et al., 2004). Thirdly, the phylogeneticperspective Singapore outbreak was traced back to two separate initial introductions, but both were directly linked to the SSE in Hotel 2.1. Super-spreading‘caught-in-the-act’ M(Ruanetal.,2003;Vegaetal.,2004),whichlaterledtoseveral othersubsequentoutbreakswithinSingapore(Chenetal.,2006) EpidemiologyoftheSARSepidemichasbeenwell-documented andacaseinGermany(Liuetal.,2005a).Lastly,inBeijing,although and one of its most intriguing characteristics is the concept of thefirstcasewasreportedapproximatelyaweekaftertheSSEin ‘‘super-spreading events’’ (SSE)(Lloyd-Smith et al., 2005), which HotelM(Bietal.,2003),phylogeneticanalysessuggestednotall contributedsignificantlytotherapidspreadofthediseaselocally thecasesinBeijingwererelatedtotheSSEinHotelMandsomeof andglobally(Lietal.,2004;Shenetal.,2004;Chenetal.,2006; thecaseswerelikelyoriginatedfromtheGuangdongpriorSSE(Liu Zhongetal.,2003).Inmid-November2002,theepidemicstartedas etal.,2005c;Zhao,2007). C.W.Yipetal./Infection,GeneticsandEvolution9(2009)1185–1196 1187 Fig.1.AphylogenyofspikegenenucleotidesequencesfromSCoVisolatedfromhumans,civetsandraccoondogs.ThisphylogenywasmodifiedandadoptedfromLametal. (2008a).Sequencesfromhumans,civets,raccoondogsandbatswereindicatedwithsymbols&,*,~and^,respectively.ThetreewasconstructedusingMLmethod,with confidencesoftopologysummarizedfrom5000treessampledfromMLandNJbootstrapreplicatesandBMCMCsamples.Onlyconfidencevaluesofmajorclusterswere shown(ML/NJ/BMCMC,intheparenthesis).Thehumanepidemiccluster(2002–2003)wasdividedintolate,earlyandmiddlephasesaccordingtoapreviousstudy(CSMEC, 2004).Accessionnumbersofthesequencesareshownwithinroundbracketsaftertheirstrainnames(inbold).Thedistanceunitwassubstitutions/site.Rp3isolatedfrom bats(^)wasusedasanout-grouptorootthetree,andthegeneticdistanceofitsbranchisnotshown. 1188 C.W.Yipetal./Infection,GeneticsandEvolution9(2009)1185–1196 2.3. Estimatingthetheoreticalonsetoftheepidemic the SCoVs of the 2002–2003 epidemic (Fig. 1), suggesting these sporadic cases werelikely causedby inter-species transmissions Robustestimationsonthetheoreticalonsetofaviralepidemic that were independent from the previous outbreak (Song et al., provide evidence to testify the hypotheses on viral origins, e.g. 2005;Lametal.,2008a).Theseepidemiologicalandphylogenetic AIDS pandemic (Korber et al., 2000; Lemey et al., 2003, 2004; findings provided convincing evidence fordirect transmission of Worobeyetal.,2004).Undertheassumptionofadequatesampling, SCoVfromcivetstohuman(discussedlaterinSection4). thetheoreticalonsetofaviralepidemiccanbeinferredasthetime Insummary,theabovefindingsdemonstratedthevitalrolesof of the most recent common ancestor (tMRCA) of all sampled phylogeneticsinunderstandingtheemergenceandtransmission sequences.tMRCAcanbeestimatedusingarangeofphylogenetic of SCoV in such a short-lasting but sweeping epidemic. The methods(Drummondetal.,2003),butallmethodsareprimarily adequacyofearlyphasesamplingandtherelativelyshortduration basedontheassumptionofmolecularclocksofdifferentextents of the SARS epidemic make it an excellent textbook example on (Pybus,2006).ItisnotedthatthistMRCAshouldtheoreticallybe how phylogenetic analyses can be used as an auxiliary tool in olderthantheearliestdocumentedcase,giventhefactthatthere combinationwithclassicalepidemiologicalinvestigationstostudy mustbeawindowperiodbetweentheemergenceandrecognition theemergenceofaviralepidemic. of the epidemic and the length of this window period is often a significant epidemiological interest (Stumpf and Pybus, 2002; 3. ControversiesoverthephylogeneticoriginsofSCoV Worobeyetal.,2004). InthecaseofSCoV,linearregressionmethodswhichcorrelate 3.1. TheancienthistoryofanovelCoV divergencewithsamplingdateswerecommonlyusedtoestimate thetMRCAintheearlystudies.Basedonsimplelinearregression, WhichoftheexistinggroupsofCoVisphylogeneticallyclosest Zeng et al. (2003a) estimated the tMRCA of all human SCoVs at to SCoV? This question has been under the spotlight of most aroundDecember2002,withthe95%credibleinterval(CI)from discussionsbecausetheanswermighthelptotracethezoonotic September2002toJanuary2003,whichiscomparabletoalater origin of SCoV that is fundamentally important to public health. similarstudy,withthesameestimateataroundNovember2002 Priortotheavailabilityofitscompletegenomesequences,initial (95%CIfromJune2002toDecember2002)(CSMEC,2004).Later, phylogeneticanalysesofafragmentofORF1suggestedthatSCoV Zhao et al. (2004) adopted three strategies to minimize possible mayrepresentanovelgroupthatisindependenttotheotherthree errors and inferred the oldest bound of this tMRCA as early as existinggroups(Drostenetal.,2003;Ksiazeketal.,2003).Similar spring2002.Aleastsquaremethod,evaluatedusingMonteCarlo conclusions were reached based on phylogenetic analyses on simulations, has also been applied to estimate the onset of the multipleviralproteinsafterthecompletegenomesequenceswere epidemicasAugusttoSeptember2002(Luetal.,2004).Whileall available(Marraetal.,2003;Rotaetal.,2003;Zengetal.,2003b). the above studies relied on the assumption of a constant Based on the observation that SCoV appears to be genetically evolutionary rate over all lineages, i.e. a strict molecular clock equidistant to other known CoV groups, Holmes and Enjuanes (Pybus, 2006), enforcing a molecular clock to non-clocklike (2003)concludedthatSCoVisneitherarecenthost-rangemutant datasets could lead to biased estimations (Yoder and Yang, ofaknownCoVnorarecentrecombinantbetweenknownCoVs, 2000). More recently, Salemi et al. (2004) applied a ML method butitprobablyevolvedseparatelyfromanancestoroftheknown totestifytheclocklikebehaviorofadatasetoftentaxaandplaced CoVsinanunidentifiedhostforaremarkablylongperiodoftime thistMRCAbetweenSeptemberandNovemberof2002. beforeitsemergenceinhuman. Despite the differences in methods and datasets, the above Althoughtheaboveargumentwasgenerallywell-received,two studies generally inferred the oldest bound of the onset of the follow-upquestionswerethenraised.Thefirstquestionis:IfSCoV epidemicataroundmid-late2002.Theearliestdocumentedcaseof represents a lineage that anciently diverged from an ancestor of SARSwasidentifiedon16thNovember2002(Zhongetal.,2003), theexistingCoVs,wouldthisancestorbelongtooneoftheexisting whichisremarkablyclosetotheoldestboundsofitstheoretical CoV groups? It later led to the concept of ‘‘early split-off from onset when compared with other well-known viral epidemics Group 2 CoV’’ for describing the phylogenetic origin of SCoV (Stumpf and Pybus, 2002; Worobey et al., 2004). This finding (Snijderetal.,2003).Thesecondquestionis:IsSCoVan‘‘ancient- suggeststheSCoVhasbeenquicklyrecognizedafteritsemergence recombinant’’ (if not a ‘‘recent-recombinant’’) between the inhuman,partiallyreflectingtheexplosivemodeoftransmission ancestors of any existing CoV groups? Due to relatively high inearlyphaseoftheepidemic. divergencebetweenSCoVandotherCoVs(Rotaetal.,2003)aswell AfterthediscoveryofSCoVincivetsandsporadicre-emergence asthelackofarobustout-group(HolmesandRambaut,2004),the of SCoV in December 2003, these SCoV strains have been conclusionsderivedfromvariousrecombinationanalyseswereyet incorporated into datasets for estimation of their tMCRA (Song intricateandinconsistent(Gorbalenyaetal.,2004).Anumberof etal.,2005;Vijaykrishnaetal.,2007;Honetal.,2008).ThistMRCA reasonswerethenproposedtoexplaintheobservedphylogenetic represents the upper limit of the time (i.e. oldest bound) of the incongruence might not truly reflect the recombinant origin of inter-speciestransmissionofSCoVfromcivetstohuman,whichis SCoV (Holmes and Rambaut, 2004). The following sessions phylogenetically different from the tMRCA of all human SCoVs summarized the findings from numerous studies regarding the discussedaboveandshouldtheoreticallybeolder.Theestimated controversialphylogeneticoriginsofSCoV. timeofthisinter-speciestransmissioneventwillbediscussedlater inSection4. 3.2. SCoVasanearly-splitofffromGroup2CoV:argumentsand contentions 2.4. Sporadicre-emergenceinDecember2003 Followingtheinitialanalyses(Marraetal.,2003;Rotaetal.,2003; InDecember2003,fourseeminglyindependentcasesofSCoV Zeng et al., 2003b), the phylogenetic position of SCoV have been infectionwerereported(Liangetal.,2004;WHO,2004b).Allthe vigorouslyreevaluatedwithvariousapproachesthatweremainly patientshavedirectorindirectcontacthistorywithwildanimals differentintheirchoicesofgenomeregions(Eickmannetal.,2003; (Song et al., 2005; Wang et al., 2005a). Phylogenetic analyses of ZhuandChen,2004;Kimetal.,2006)androotingstrategies(Snijder humanSCoVsfromthesesporadiccasesandcivetSCoVscollected etal.,2003;Gibbsetal.,2004;LioandGoldman,2004).Inspiredby fromthesameperiodformedamonophyleticgroupdistinctfrom the positional conservation of cysteine residues between the S1 C.W.Yipetal./Infection,GeneticsandEvolution9(2009)1185–1196 1189 regionofSCoVandGroup2CoVs,Snijderetal.(2003)constructedan 1999), has been widely used as an indicator for homologous unrooted NJphylogenybased onthe aminoacidsequencesofS1 recombinationamongviralgenomes(Posadaetal.,2002).Several region and concluded SCoV is ‘‘closely related’’ to Group 2 CoVs studies demonstrated phylogenetic incongruence within the (Eickmannetal.,2003).Intwolaterstudies,concatenatedamino genome of SCoV based on a wide range of methods (Rest and acidalignmentsofmultipleviralproteinswereusedtoconstruct Mindell, 2003; Stanhope et al., 2004; Stavrinides and Guttman, unrooted phylogenies using various methods and the results 2004;Zhangetal.,2005b).Despitethestatisticalsignificanceofthe consistentlydemonstratedthemonophyleticrelationshipbetween phylogeneticincongruenceobservedinthesestudies,wecouldnot SCoVandGroup2CoVs(ZhuandChen,2004;Kimetal.,2006).In concludeaconsensuspatternofrecombinationsincetheirfindings additiontotheseunrootedphylogenies,rootedphylogeniesbased were generally inconsistent. As an example, the potential on ORF1 alignments reached similar conclusions that SCoV and recombination events within S gene proposed by Zhang et al. Group2CoVsharedthelastcommonancestor(Snijderetal.,2003; (2005b) were different from those proposed by Stavrinides and Gibbsetal.,2004;LioandGoldman,2004).However,dependsonthe Guttman(2004),andwereundetectablefromthestudyofRestand choicesofout-groups,therootingpositionsinthesestudieswere Mindell(2003).Infact,theconsiderabledivergencebetweenSCoV inconsistent,whichmightberelatedtothepossiblycompromised andtheexistingCoVgroupshasalreadyexcludedthepossibility accuracy of alignment if the out-groups are too diverged to be thatSCoVisarecentrecombinantfromtheexistingCoVgroups. aligned(HolmesandRambaut,2004). Alternativelyspeaking,ifrecombinationeventshadoccurred,they Nonetheless,theconsensusofabovefindingsisthatSCoVcould havetobetheancientones(Bosch,2004),i.e.boththeparentsand beclassifiedasa‘‘distant’’memberofGroup2CoVs(Gorbalenya daughter could have been evolved considerably after the etal.,2004).Thisconclusionwasreachedprimarilybasedonthe recombination events. A simulation study demonstrated the robustness of the monophyletic relationship between SCoV and accuracy for detecting these ancient recombination events can Group 2 CoVs. However, considering the actual genetic distance besubstantiallydiminishediftheyweresignificantlyobscuredby betweenSCoVandGroup2CoVs,whichiscomparabletotheinter- the subsequent post-recombination substitutions (Chan et al., group distance among the three CoV groups, the biological 2006).Therefore,theintricacyofthefindingsonthephylogenetic significance of classifying SCoV as a distant member of Group 2 incongruencewithinthegenomeofSCoVmaybeareflectionofthe CoVisrelativelylowatbest.Webelieveclassificationofanovel varying sensitivity of the detection methods on the ancient and CoV should not be merely based on the branching orders of obscuredrecombinationevents,ifany. phylogenies and quantitative measurement of genetic distance Tofurtherinvestigatethereportedphylogeneticincongruence shouldalsobetakenintoaccount. withinthegenomeofSCoV,RambautandHolmesre-evaluatedthe Ontheotherhand,reconstructingtheevolutionaryrelationships study of Stavrinides and Guttman (2004) and suggested the between highly divergent taxa has been proven as a difficult patterns cited as evidence for recombination are more probably phylogenetic task (Philippe and Laurent, 1998). In particular, the causedbyavariationinsubstitutionrateamonglineages(Holmes observedbranchingorderofthedeepnodesinthehighlydivergent andRambaut,2004).Inaddition,theauthoralsostatedtheeffectof CoVphylogeniesmaynotreflecttheirtrueevolutionaryhistory,due the long-branch attraction on the branching order of deep to the possible influences of the long-branch attraction and rate phylogeniesmayalsobeasourceofartifact,althoughunproven. variationamonglineages(GribaldoandPhilippe,2002;Holmesand Moreover, even if recombination did not occurred, given the Rambaut,2004).Infact,HolmesandRambautreevaluatedthetree stochasticnatureofevolution,theauthorswouldexpecttoobserve topologies depicting the three possible phylogenetic positions of phylogenetic incongruence among small genome fragments of a SCoV using Kishino-Hasegawa test, which is not biased by rate set of divergent taxa like SCoV and other CoVs. Therefore, the variations, and that demonstrated the topology with the best observedphylogeneticincongruenceamongthehighlydivergent likelihoodisnotnecessarilysignificantlybetterthantheothertwo genomesofCoVanditspossibleindicationonancientrecombina- topologies, even the deep nodes were well-supported by quartet tioneventsshouldbeinterpretedwithextracautions.Uptothis puzzlingsupportvalues(HolmesandRambaut,2004).Thisfinding point,thecurrentphylogeneticevidencesupportingtherecombi- indicatedcarefulinterpretationsareneededbeforereachingafirm nanthistoryofSCoVisweakatbest(HolmesandRambaut,2004). conclusionfromthebranchingorderofdeepphylogenies. Puttingasidetheintricatephylogeneticevidence,thepresence Until recently, the addition of several newly discovered CoV ofstem-loopIImotif(S2m)inthegenomeofSCoVhavealsobeen lineages to the phylogeny broke up some of those longbranches takenasanindicationforrecombination(Marraetal.,2003).S2m (Holmes and Rambaut, 2004), which tends to distribute the is a conserved RNA motif present in the genomes of several convergent and parallel mutations more evenly across the tree membersofAstroviridae,Coronaviridae,andPicornaviridaefamily and hence reduce the problem of long-branch attraction (Hillis, (Jonassenetal.,1998)whileSCoVandGroup3CoVsaretheonly 1996).InFig.2,thecloserphylogeneticrelationshipbetweenSCoV membersoftheCoronaviridaethatpossethemotif.Assumingthe and Group 2 CoVs suggested from the previous studies is also motifinSCoVandGroup3CoVwerenotacquiredindependently, supportedinthisrelativelywell-sampledphylogeny.Tothisend,the the explanation of the co-presence of S2m should be either, (1) questionofwhetheritisappropriatetoclassifySCoVasadistant SCoVandGroup3CoVssharethesameancestry,or(2)SCoVhave memberofGroup2CoVsseemstobeataxonomicproblemmore acquiredthemotiffromGroup3CoVsthroughrecombination(or thanavirologicalone,sinceSCoVandGroup2CoVsaresodivergent vice versa). Currently, the phylogenetic data does not provide a that they are likely to possess a substantial number of unique bettersupportforanyoftheabovescenariosbutawidersurveyfor biological characteristics, e.g. host ranges and receptor usages thepresenceofS2minotherunknownCoVlineageswillcertainly (Haijemaetal.,2003;Lietal.,2003).Withtherecentdiscoveriesof provide insights to the ancient evolutionary history of the novel CoV lineages, the classification of coronaviruses has to be Coronaviridaefamily. revisedsystematicallyinbothbiologicalandphylogeneticcontext. 4. ZoonoticoriginsofSCoV 3.3. Phylogeneticincongruenceandancientrecombination:factsand cautions 4.1. CivetsastheimmediatesourceofSARSepidemics Phylogeneticincongruence,whichisoftenjustifiedbyincom- SincetheearlySARScasesinGuangdongseemstoberelatedto patibletreetopologiesfordifferentgenomeregions(Holmesetal., restaurant workers handling wild mammals, Guan et al. (2003) 1190 C.W.Yipetal./Infection,GeneticsandEvolution9(2009)1185–1196 Fig.2.AphylogenyofallknownCoVs(n=40).ThephylogenywasconstructedbasedontheaminoacidsequencesoftheRNA-dependentRNAPolymeraseregion (length=163a.a.).ThephylogenywasconstructedusingBEAST(DrummondandRambaut,2007)underauncorrelatedlognormallyrelaxedclockmodel(Drummondetal., 2006).ThenumberatthenodesindicatestheBayesianposteriorprobabilitysupport(aspercentages)summarizedfromtreessampledatevery1000thstepofaBMCMCchain of10,000,000stepswherevalueslowerthan80%werenotshown.Themeansubstitutionratewasfixedat1.0andthebranchlengthwasexpressedinunitsofsubstitutions persite.FIPV,Felineinfectiousperitonitisvirus(AY994055);CFBGDDM9503,ChineseferretbadgerCoV2003(EU769560);PRCV,PorcinerespiratoryCoV(DQ811787);TGEV, Transmissiblegastroenteritisvirus(NC_002306);PEDV,Porcineepidemicdiahrreavirus(NC_003436);BtCoV5122005,BatCoV512-2005(NC_009657);BatCoVHKU6,BatCoV HKU6(DQ249224);BtCoV1A,BatCoV1A(NC_010437);BtCoV1B,BatCoV1B(NC_010436);BatCoVHKU8,BatCoVHKU8(NC_010438);HCoV229E,HumanCoV229E (NC_002645);HCoVNL63,HumanCoVNL63(NC_005831);BatCoVHKU2,BatCoVHKU2(EF203064);HCoVOC43,HumanCoVOC43(NC_005147);BCoV,BovineCoV (NC_003045);AntelopeCoV,SableantelopeCoV(EF424621);GiCoV,GiraffeCoV(EF424622);PHEV,Porcinehemagglutinatingencephalomyelitisvirus(NC_007732);SDAV,Rat sialodacryoadenitisCoV(AF124990);MHV,Mousehepatitisvirus(NC_006852);HCoVHKU1,HumanCoVHKU1(NC_006577);BatCoVHKU9,BatCoVHKU9(NC_009021); SCoV(NC_004718);Rp3,BatSLCoV(NC_009693);BatSCoVHKU3,BatSLCoVHKU3(NC_009694);Rm1,BatSLCoV(NC_009696);Rf1,BatSLCoV(NC_009695);BtCoV1332005, BatCoV-133-2005(NC_008315);BatCoVHKU4,BatCoVHKU4(NC_009019);BatCoVHKU5,BatCoVHKU5(NC_009020);IBV,Infectiousbronchitisvirus(NC_001451); IBVpeafowl,peafowlCoV(AY641576);IBVpartridge,partridgeCoV(AY646283);TCoV,TurkeyCoV(NC_010800);SW1,BelugawhaleCoV(NC_010646);BuCoVHKU11,Bulbul CoV(NC_011548);ThCoVHKU12,ThrushCoV(NC_011549);MuCoVHKU13,MuniaCoV(NC_011550);ALCGXF23006,AsianleopardcatCoV2006(EF584908);CFBGXF24706, ChineseferretbadgerCoV2006(EF584911). surveyedthewildanimalsinalocalmarketandisolatedCoVsfrom periodformedamonophyleticcluster(Songetal.,2005;Lametal., Himalayan palm civets, which share 99.8% genome sequence 2008a). These findings suggested that the emergence of SCoV in identity to the SCoVs in human. Initial phylogenetic analyses humanislikelytoberesultedfromdirecttransmissionsofSCoVs suggested SCoVs from human and civets formed two distinct fromcivets.Inaddition,phylogeneticanalysesdemonstratedthat clades (Guan et al., 2003), but the SCoVs from civets are theSCoVsfromthe2002–2003epidemicandthe2003–2004re- phylogeneticallyclosertotheSCoVsoftheearly-phaseepidemic emergence are phylogenetically distinct, suggesting the inter- thantothoseinthelate-phaseepidemic(Kanetal.,2005).These species transmission events from civets to human in the two findingsstronglysuggestcivetsweretheimmediatesourcesofthe outbreaks might be independent (Song et al., 2005; Wang et al., SCoVsleadingtotheearliestSARScasesinGuangdong.Theroleof 2005a). civetsastheimmediatezoonoticsourceoftheSARSepidemicwas However,alarge-scalesurveyofSCoVsofcivetsinmarketin further revealed during the sporadic re-emergence of SCoV in Chinasuggestedthelackof widespreadinfectionsincivets(Kan December2003(Wangetal.,2005a),basedontheobservationthat etal.,2005).Inaddition,thegeneticdiversityofcivetSCoVswas the SCoVs isolated from civets and those patients of the same relatively limited and was comparable to that of human SCoVs C.W.Yipetal./Infection,GeneticsandEvolution9(2009)1185–1196 1191 (Song et al., 2005; Lam et al., 2008a). These findings suggested 4.3. ThemissinglinkbetweenSCoVsincivetsandcurrentlysampled civets might not be the natural reservoir of SCoV and it only SLCoVsinbats acquiredSCoVsshortlybeforetheemergenceofSCoVinhuman. Based on phylogeneticanalyses using dynamichomology, Janies Although the hypothesis of horseshoe bats as the natural etal.(2008)speculatedthatcivetsmightalsoacquiredSCoVfrom reservoirforSLCoVandSCoVisrelativelysensible,howbatsSLCoV otherspecies,possiblyhuman,evenaftertheemergenceofSCoVin weretransmittedtocivetsisstillunexplained.Ifcivetsacquired 2002.Anexperimentalevidencesuggestingcivetsmaynotbethe SLCoV from bats shortly prior to its emergence in human as natural reservoir of SCoV is the observed symptoms in civets proposed,thisbatSLCoVstrainshouldbegeneticallyverysimilar experimentallyinfectedwithSCoV(Wuetal.,2005),basedonthe totheSCoVssampledfromcivets.However,basedontherelatively factthatthenaturalreservoirhostsusuallydonotdisplaysevere distantphylogeneticrelationshipbetweenSCoVsandSLCoVs,none signs of infection (Hudson et al., 2002). The above observations ofthecurrentlysampledSLCoVsinbatsisthedescendantofthe lead to the speculation of another natural reservoir host, which directancestorofSCoVsinhumanandcivet(Honetal.,2008).In harbors a diverse group of SCoV-related CoVs and transmitted particular,Liand coworkerspointedoutthatsubstantialgenetic SCoVtocivetspriortotheemergenceofSCoVinhuman. changesintheSproteinofthecurrentlysampledSLCoVarelikely to be necessary for the virus to infect civets or human (Li et al., 4.2. HorseshoebatsasthenaturalreservoirofSCoVandSLCoV 2006).Therefore,thedirectancestorofSCoVsinhumanandcivets remainselusive. As a result of extensive searches for the natural reservoir of More recently, Hon et al. (2008) demonstrated significant SCoV, two groups of researchers independently identified a phylogenetic discordances among different genome regions of diverse group of CoVs from various species of horseshoe bats SLCoV strain Rp3 and speculated its potentially recombinant (Rhinolophusspp.).TheseCoVsshared87–92%genomenucleotide origin.PhylogeneticanalysisoftheparentalregionsofRp3genome identitywithSCoVsandformedadistinctmonophyleticcluster suggested the presence of an uncharacterized bat SLCoV lineage withSCoVs,thereforetheywerenamedSARS-likeCoV(Lauetal., (i.e. HB-SLCoV in Fig. 3) that is phylogenetically closer to SCoVs 2005; Li et al., 2005b). The close evolutionary relationship than any of the currently sampled bat SLCoVs. Based on the between SCoV and SLCoV is also supported by the presence of relatively high genetic diversity among the currently sampled theS2mmotifintheir30UTR(Tangetal.,2006;ShiandHu,2008). SLCoVsinbats,theexistenceofaphylogeneticallydistinctlineage Basedonthephylogeneticanalysesofthefourcharacterizedfull of SLCoV not yet sampled is highly possible. Thus, the authors genomesofSLCoVinhorseshoebats,theremarkablyhighgenetic speculatedthatthedirectancestorofSCoVswasasadescendant diversity of SLCoVs strongly suggested horseshoe bats are the derivedfromthisnotyetsampledlineage,whichcrossedfroma natural reservoir of SCoV and SLCoV (Ren et al., 2006). This horseshoebatspeciestocivets(Honetal.,2008). conceptisfurthersupportedbytherelativelyhighprevalenceof SLCoV in R. sinicus (Lau et al., 2005) and the geographically 4.4. Estimatedtimeoftheinter-speciestransmissioneventsandtheir widespreadinfectionsofSLCoVsinbatsfromdistinctlocationsin implications China(Lietal.,2005b).Thecurrenthypothesisisthatcivetsmight have acquired SLCoVs from horseshoe bats and transferred to Determining the time of inter-species transmission events human,whichisconsistentwiththeobservationthatthe29-nt mighthelpustocomprehendtheviralzoonosisofthevirusfrom deletioninORF8areretainedinbatSLCoVs,civetSCoVsandearly anevolutionarystandpoint.Theoldestboundoftheinter-species phasehumanSCoV(Lauetal.,2005). transmission of SCoV from civets to human is theoretically Fig.3.Atime-scaledphylogenyofSCoVandSLCoV.ThisphylogenywasmodifiedandadoptedfromHonetal.(2008).ThephylogenywassummarizedfromallMCMC phylogeniesoftheOrf1datasetanalyzedunderaBayesianrelaxedclockmodel.Heightofthenodeswasrepresentedbythemedianofitsestimates.Thewindowperiod betweenthecross-specieseventandtheonsetofSARSepidemicwasindicatedasadottedline.Inthetaxalabels,H,CandBrepresenthostofhuman,civetsandbats, respectively. 1192 C.W.Yipetal./Infection,GeneticsandEvolution9(2009)1185–1196 correspondenttothetMRCAofallhumanandcivetSCoVs.Firstly, whichiswidelyusedasameasureforselectionpressure(Yangand Songetal.(2005)estimatedthesynonymoussubstitutionrateof Nielsen, 2002), has been employed in several studies to detect SCoVsusinglinearregressionandplacedthistMRCAtobearound positiveselectiononviralgenesofSCoVandSLCoV.Firstly,thev early December 2002 without providing CI. In a later study, valuesofstructuralgeneswerefoundtobehigherthanthatofthe Vijaykrishna et al. (2007) investigated this tMRCA by applying a non-structural region, suggesting the structural proteins might Bayesian relaxed clock model (Drummond et al., 2006) to a havebeenunderastrongerselectionpressure(Zhaoetal.,2004; phylogeny of all representatives from the CoV family and Songetal.,2005).Moreover,thevvalueofSgeneinthestrains estimated it at around 1999 with 95% posterior bounds of 13 from early phase is significantly larger than that of those from years (i.e. 1990–2003). More recently, Hon et al. (2008) recon- middle and late phases (CSMEC, 2004). The above findings sideredthistMRCAusingvariousclockmodelsandestimateditat providedpreliminaryphylogeneticevidenceforthepotentialrole around September 2002 with 95% CIs between January and ofSproteininadaptationofSCoVfromcivetstohuman. Decemberof2002.ThistMRCAisveryclosetotheobservedfirst Additionally,lineage-specificvintheSgenephylogeny(n=11) caseofSARS(16thNovember2002)aswellastheestimatedonset wasestimatedusingacodon-basedgeneticalgorithm(Kosakovsky oftheepidemic(asdiscussedearlier),suggestingSCoVsmighthave Pondetal.,2006),andasignificantlyhighervvaluewasobserved crossed from civets to human just months before the outbreak, alongthelineageleadingtothehumancluster(Vijaykrishnaetal., supportingtheviewthatcivetsaretheimmediatezoonoticsource 2007).Morerecently,Tangetal.(2009)comprehensivelyanalyzed of SCoVs in human. It also implies the civet SCoVs might have a larger dataset (n=59) using a ML branch-site codon model adapted quickly, or alternatively speaking, a ‘by-pass’ host with (Zhangetal.,2005a),aimedatcomparingthevvaluesoflineages onlyminimaladaptationisneeded,toestablishasustainablechain ofvariousepidemicphasesorhosts(i.e.foreground)versustherest oftransmissioninhuman. ofthephylogeny(i.e.background).Theauthorsconcludedthatthe On the other hand, the time of the speculated inter-species 2002 early and middle phase human lineages and the 2003 transmission of SLCoV from bats to civets has also been sporadic-re-emergence human-civet lineages are under positive investigated. In the study described earlier (Vijaykrishna et al., selection.Despitethedifferencesinmethodologiesanddatasets, 2007),theoldestboundofthetimeofthiseventwasfirstestimated both studies demonstrated phylogenetic evidence for positive atameanof1986witha38-yearcredibleinterval(i.e.1964–2002). selection along lineages relevant to the civets-to-human inter- Later, Hon et al. (2008) employed the concept of estimating the speciestransmissionontheSgenephylogeny. periodbetweentimeofdivergence(tDIV)andtMCRAproposedby On the other hand, positively selected residues on S protein Lametal.(2008b),andspeculatedthisinter-speciestransmission havebeenidentifiedinanumberofsimilarstudies,primarilyby event might have happened with a median of 4.08 years before applyingMLcodonmodelstosimilardatasetsbutwithdifferent onset of the epidemic (credible intervals of 1.45–8.84 years) epidemic groupings (Zhang et al., 2005a, 2006; Shi et al., 2006). (Fig.3).Theabovetwoestimatesarenotcontradictorysincethe Although the residues identified from these studies are not later estimate falls within the credible intervals of the former completely overlapping, probably due to the differences in taxa estimatebutwithanimprovedprecision.Basedonthisrelatively groupings, these sites are mainly located in the S1 subunit and short window period between the inter-species transmission residue479isconsistentlydetectedtobeunderpositiveselection, eventandonsetoftheepidemic,Honetal.(2008)speculatedthat supportingitsspeculatedrolesinadaptationfornewhosts(Song civets might have acquired the ancestor of SCoV from the host et al., 2005). It should be noted that positively selectedresidues speciesofSLCoVstrainRp3directlyandtheinvolvementofother werenotidentifiedintheSgenesfromneitherthelateepidemic intermediate species may be unlikely. Therefore, authors sug- phase (Zhang et al., 2006) nor the SLCoV in bats (Zhang et al., gested more focused surveillance on the host species of SLCoV 2005a). The mode of selection relevant to the inter-species strain Rp3 may shed light on the zoonotic origin of the direct transmission from bats to civets has not been investigated ancestorofSCoVincivets. systematically, primarily due to the lack of bat SLCoV S gene sequences that are phylogenetically close enough for robust 4.5. Adaptivemutationspotentiallyrelevanttointer-species analysis. transmission 5. ThecontinuingstoryofCoVdiversity ThehostspecificityofCoVsismainlydeterminedbythebinding betweenthespike(S)proteinanditscellularreceptors(Haijema 5.1. Theexpandingdiversityandwideninghostrange et al., 2003). Angiotensin I-converting enzyme 2 (ACE2) is a functionalreceptorforSCoVsinbothhuman(Lietal.,2003)and Asaresultoftheextensiveeffortsinsearchingforthezoonotic civets(Lietal.,2005c),andwasdemonstratedtointeractwiththe originsofSCoV,ourknowledgeonthehostrangeanddiversityof receptorbindingdomain(RBD)intheS1subunitoftheSprotein CoVshasbeenexpandedrapidly.Forexample,inthelastcoupleof (Wongetal.,2004).Basedontheobservedmutationswithinthe years,thenumberofavianspeciesdetectedtoharborGroup3CoVs RBDinstrainsfromdifferentepidemicphasesandhosts,Lietal. has been doubled (Cavanagh, 2005). Furthermore, in addition to (2005c) demonstrated that binding of S1 subunit to human and thetwonewlydiscoveredhumanCoVsintheexistingGroup1and civet ACE2 can be significantly altered by mutating only two 2,i.e.NL63(Fouchieretal.,2004)andHKU1(Wooetal.,2005a), residuesontheRBD(residue479and487),suggestingthesetwo respectively,anumberofdivergentCoVshavebeenidentifiedfrom residues maycontributeto theadaptation of SCoVfrom civetto AsianLeopardCatsandChineseFerretBadgers(Dongetal.,2007), human.Later,thisviewpointwasfurthersupportedbythelocation wild birds (Woo et al., 2009) and a beluga whale (Mihindukula- of these two residues at the binding interface between RBD and suriya et al., 2008). These findings largely expanded the known ACE2incrystalstructures(Lietal.,2005a;Li,2008). diversity of CoVs and the long-established classification of the Asobservedinotherexamplesofviralhostshifts(Parrishand Coronaviridaefamilyasthreedistinctgroupsneedstoberevised Kawaoka,2005),themoleculardeterminantsforhostspecificity, systematically. On the other hand, a number of diverse CoVs e.g. RBD residues related to adaptation to human in the case of belongingtoGroup1and2havebeenidentifiedfromarangeofbat SCoV, are likely to be subjected to an elevated level of selection species (Woo et al., 2006). The surprisingly high diversity of bat pressure during the acquisition of a new host. The ratio of non- CoVs rationally leads to the hypothesis that bats are the natural synonymous (dN) to synonymous substitution rate (dS), i.e. v, reservoirofallCoVs(Tangetal.,2006).Accordingtoatime-scaled C.W.Yipetal./Infection,GeneticsandEvolution9(2009)1185–1196 1193 phylogeny of representative CoVs from all groups, Vijaykrishna helpthecommunitytobetterprepareforthenextzoonoticviral et al. (2007) concluded that bats are likely to be the host of the epidemic. ancestorforallpresentlyknownCoVlineages.Furthermore,based More importantly, while most of the attentions have been on the results of their Bayesian coalescent analyses, the authors focusedonpreparingfortheknownpotentialpandemicslikeavian speculatedadiversegroupofCoVsmaybeendemicinvariousbat influenza(Fauci,2006),theunanticipatedstrikeofSARSepidemic species, with repeated introduction to other animals and occa- alarmedpublic healthofficials and researchers fortheneglected sionalestablishmentofnewlineagesinotherspecies(Vijaykrishna possibilityofdeadlyviralemergencefromanunexpectedorigin. et al., 2007). In fact, other than the speculated inter-species Formanyyears,CoVshavelongbeenregardedasrelatively‘‘mild’’ transmissionofCoVsfrombatstootheranimalspecies,hostsshifts viruses with broad but yet restricted host ranges. However, ofbatCoVsbetweendifferentRhinolophusspp.werealsoproposed according to our current understanding to the diversity and basedontheincongruencebetweenthephylogeniesofCoVsand evolutionofCoVs(Vijaykrishnaetal.,2007),atleastfivedivergent theirhostRhinolophusspp.(Cuietal.,2007). speciesofCoVareknowntohavezoonotictransmissionintothe Additionally, inter-species transmissions of CoVs between human population and this cross species event will be likely to othernon-batspecieswerealsoproposed.Thefirstanimal-human continue,andthezoonosisofSCoVwasjusttheconsequenceofone zoonotic pair of CoVs being detailedly analyzed was Bovine CoV oftheseinter-speciestransmissionevents.Althoughthepreven- andHumanCoV-OC43(Vijgenetal.,2005).Basedonacombination tion of zoonosis from an unexpected origin seems to be ofmolecularclockanalyses,theauthorsestimatedthetMRCAof impractical,sufficientlyflexibleandstringentsurveillancestrate- these two CoVs at around 1890 and speculated an inter-species gies provide us an opportunity to anticipate the disease in a transmission event from Bovine CoV to human might have population and prevent its further spreading by implementing occurred around this period (Vijgen et al., 2005). Moreover, a appropriatecontrolmeasures.Thesporadicre-emergenceofSCoV numberofCoVsaredocumentedtoinfectmultiplecloselyrelated in the early 2004 illustrated the importance of stringent hostspecies,e.g.bovineCoVshasbeenisolatedfromcaptivewild surveillance in preventing the further spread of a zoonotic virus ruminants (Alekseev et al., 2008); closely related Group 3 CoVs in the early phase. One step further, the surveillance strategies have been isolated from various avian species (Cavanagh et al., must be adopted in a way that we could learn more about the 2002; Jonassen et al., 2005; Liu et al., 2005b). These findings diversityof potentially zoonotic viruses in their reservoirs.With impliedtherelativelypromiscuousnatureofthehostspecificityof CoVasanexample,giventherelativelypromiscuousnatureofits CoVs, which was best demonstrated by the evidence of inter- host specificity as discussed above, extensive and regular species transmission of highly similar if not identical SCoVs surveillance of known CoVs in pets and agricultural animals, betweentwodistantlyrelatedspecies,i.e.humanandcivets(Wang which are in close contact with human, should be set up. Well- etal.,2005a). established knowledge on the diversity of potentially zoonotic virusescertainlyacceleratestheidentificationofitsanimalorigin 5.2. HowmuchdidrecombinationcontributetothediversityofCoV? once it emerges in human. Last but not least, although the immediate zoonotic source of SCoV seems to be eliminated by Last but not least, the relatively high rate of homologous culling of civets in Mainland China, the uncertainties about the recombinationhasbeenspeculatedtofacilitatetheinter-species diversityofSLCoVinbatsstillposethreatontherecurrenceSCoV transmissionsofCoVs(Baricetal.,1995,1997).Despitethelackof (Hon et al., 2008). Therefore, we emphasize the importance of relevantexamplestosupportthishypothesis,naturallyoccurring continuoussurveillanceonthegeneticdiversityofSLCoVinbats. recombinationbetweenCoVstrainsofthesamespecies(Jiaetal., 1995), as well as between strains of different CoV species, have Acknowledgements beendocumented(Herreweghetal.,1998;Honetal.,2008;Decaro et al., 2009), suggesting the generation of CoV diversity through This work is partially supported by Research Fund for the recombination has been happening in the field. In fact, the two ControlofInfectiousDiseases(referencenumber06060672)from recently discovered human CoVs were proposed to have a HongKongSARgovernmentandtheStrategicResearchThemeof recombinant history based on the observed phylogenetic incon- InfectionandImmunology,TheUniversityofHongKong. gruence between different genome regions (Woo et al., 2005b; Pyrcetal.,2006).Asdiscussedearlier,duetotherelativelyhigh References divergencebetweendifferentgroupsofCoV,cautionshavetobe taken to interpret these phylogeneticincongruencesas evidence Alekseev,K.P.,Vlasova,A.N.,Jung,K.,Hasoksuz,M.,Zhang,X.,Halpin,R.,Wang,S., Ghedin,E.,Spiro,D.,Saif,L.J.,2008.Bovine-likecoronavirusesisolatedfromfour for ancient recombination events (Holmes and Rambaut, 2004; speciesofcaptivewildruminantsarehomologoustobovinecoronaviruses, Chanetal.,2006).Insummary,thecurrentdataonlysuggeststhe basedoncompletegenomicsequences.J.Virol.82(24),12422–12431. occurrenceofrecombinationbetweencloselyrelatedCoVstrains, Antia,R.,Regoes,R.R.,Koella,J.C.,Bergstrom,C.T.,2003.Theroleofevolutioninthe emergenceofinfectiousdiseases.Nature426(6967),658–661. butprovidesnodirectevidencetosupportaroleofrecombination Baric,R.S.,Fu,K.,Chen,W.,Yount,B.,1995.Highrecombinationandmutationrates in the emergence of novel CoVs in novel host species, e.g. inmousehepatitisvirussuggestthatcoronavirusesmaybepotentiallyimpor- emergenceofSCoVinhuman. tantemergingviruses.Adv.Exp.Med.Biol.380,571–576. Baric, R.S., Yount, B., Hensley, L., Peel, S.A., Chen, W., 1997. Episodic evolution mediatesinterspeciestransferofamurinecoronavirus.J.Virol.71(3),1946– 6. Thelessonlearntandanalarmfornextzoonosis 1955. Bi,S.,Qin,E.,Xu,Z.,Li,W.,Wang,J.,Hu,Y.,Liu,Y.,Duan,S.,Hu,J.,Han,Y.,Xu,J.,Li,Y., The SARS epidemic in 2003 offers a solid lesson on the Yi,Y.,Zhou,Y.,Lin,W.,Xu,H.,Li,R.,Zhang,Z.,Sun,H.,Zhu,J.,Yu,M.,Fan,B.,Wu, Q.,Tang,L.,Yang,B.,Li,G.,Peng,W.,Jiang,T.,Deng,Y.,Liu,B.,Shi,J.,Wei,W.,Liu, applicationofphylogeneticsinunderstandingtheepidemiologyof H.,Tong,Z.,Zhang,F.,Zhang,Y.,Wang,C.,Ye,J.,Gan,Y.,Ji,J.,Li,X.,Tian,X.,Lu,F., anewlyestablishedepidemic,aswellastheevolutionarybasisofa Tan,G.,Yang,R.,Liu,S.,Li,S.,Cao,W.,Yu,J.,Dong,X.,Yang,H.,2003.Complete zoonoticviralemergence.Phylogeneticshasplayedanindispen- genomesequencesoftheSARS-CoV:theBJGroup(IsolatesBJ01-BJ04).Geno- micsProteomicsBioinform.1(3),180–192. sableroleinthepromptidentificationofthetransmissionchains Bosch,X.,2004.SARS:anamalgamofavianandmammalianviruses?LancetInfect. and its zoonotic origins, which provided important clues for the Dis.4(2),65. policy-making in public health, e.g. customs and border control, Cavanagh,D.,2005.Coronavirusesinpoultryandotherbirds.AvianPathol.34(6), 439–448. quarantinemeasures,cullingofcivetsandthecontinuoussearch Cavanagh, D., Mawditt, K., Welchman Dde, B., Britton, P., Gough, R.E., 2002. fortheviralnaturalreservoir.Thesevaluableexperiencesshould Coronaviruses from pheasants (Phasianus colchicus) are genetically closely 1194 C.W.Yipetal./Infection,GeneticsandEvolution9(2009)1185–1196 related to coronaviruses of domestic fowl (infectious bronchitis virus) and Jia,W.,Karaca,K.,Parrish,C.R.,Naqi,S.A.,1995.Anovelvariantofavianinfectious turkeys.AvianPathol.31(1),81–93. bronchitisvirusresultingfromrecombinationamongthreedifferentstrains. Chan, C.X., Beiko, R.G., Ragan, M.A., 2006. Detecting recombination in evolving Arch.Virol.140(2),259–271. nucleotidesequences.BMCBioinform.7,412. Jonassen,C.M.,Jonassen,T.O.,Grinde,B.,1998.AcommonRNAmotifinthe3’endof Chen,M.I.,Loon,S.C.,Leong,H.N.,Leo,Y.S.,2006.Understandingthesuper-spread- thegenomesofastroviruses,avianinfectiousbronchitisvirusandanequine ingeventsofSARSinSingapore.Ann.Acad.Med.Singapore35(6),390–394. rhinovirus.J.Gen.Virol.79(Pt4),715–718. Chim,S.S.,Tsui,S.K.,Chan,K.C.,Au,T.C.,Hung,E.C.,Tong,Y.K.,Chiu,R.W.,Ng,E.K., Jonassen,C.M.,Kofstad,T.,Larsen,I.L.,Lovland,A.,Handeland,K.,Follestad,A., Chan,P.K.,Chu,C.M.,Sung,J.J.,Tam,J.S.,Fung,K.P.,Waye,M.M.,Lee,C.Y.,Yuen, Lillehaug, A., 2005. Molecular identification and characterization of novel K.Y.,Lo,Y.M.,2003.Genomiccharacterisationofthesevereacuterespiratory coronavirusesinfectinggraylaggeese(Anseranser),feralpigeons(Columbia syndromecoronavirusofAmoyGardensoutbreakinHongKong.Lancet362 livia) and mallards (Anas platyrhynchos). J. Gen. Virol. 86 (Pt 6), 1597– (9398),1807–1808. 1607. Chiu,R.W.,Chim,S.S.,Lo,Y.M.,2003.MolecularepidemiologyofSARS—fromAmoy Kan,B.,Wang,M.,Jing,H.,Xu,H.,Jiang,X.,Yan,M.,Liang,W.,Zheng,H.,Wan,K.,Liu, GardenstoTaiwan.N.Engl.J.Med.349(19),1875–1876. Q.,Cui,B.,Xu,Y.,Zhang,E.,Wang,H.,Ye,J.,Li,G.,Li,M.,Cui,Z.,Qi,X.,Chen,K.,Du, CSMEC,2004.MolecularevolutionoftheSARScoronavirusduringthecourseofthe L.,Gao,K.,Zhao,Y.T.,Zou,X.Z.,Feng,Y.J.,Gao,Y.F.,Hai,R.,Yu,D.,Guan,Y.,Xu,J., SARSepidemicinChina.Science303(5664),1666–1669. 2005.Molecularevolutionanalysisandgeographicinvestigationofsevereacute Cui,J.,Han,N.,Streicker,D.,Li,G.,Tang,X.,Shi,Z.,Hu,Z.,Zhao,G.,Fontanet,A.,Guan, respiratorysyndromecoronavirus-likevirusinpalmcivetsatananimalmarket Y., Wang, L., Jones, G., Field, H.E., Daszak, P., Zhang, S., 2007. Evolutionary andonfarms.J.Virol.79(18),11892–11900. relationshipsbetweenbatcoronavirusesandtheirhosts.Emerg.Infect.Dis.13 Kim,O.J.,Lee,D.H.,Lee,C.H.,2006.CloserelationshipbetweenSARS-coronavirus (10),1526–1532. andgroup2coronavirus.J.Microbiol.44(1),83–91. Decaro,N.,Mari,V.,Campolo,M.,Lorusso,A.,Camero,M.,Elia,G.,Martella,V., Korber, B., Muldoon, M., Theiler, J., Gao, F., Gupta, R., Lapedes, A., Hahn, B.H., Cordioli,P.,Enjuanes,L.,Buonavoglia,C.,2009.Recombinantcaninecorona- Wolinsky,S.,Bhattacharya,T.,2000.TimingtheancestoroftheHIV-1pandemic virusesrelatedtotransmissiblegastroenteritisvirusofSwinearecirculatingin strains.Science288(5472),1789–1796. dogs.J.Virol.83(3),1532–1537. KosakovskyPond,S.L.,Posada,D.,Gravenor,M.B.,Woelk,C.H.,Frost,S.D.,2006. Dong,B.Q.,Liu,W.,Fan,X.H.,Vijaykrishna,D.,Tang,X.C.,Gao,F.,Li,L.F.,Li,G.J., GARD:ageneticalgorithmforrecombinationdetection.Bioinformatics22(24), Zhang,J.X.,Yang,L.Q.,Poon,L.L.,Zhang,S.Y.,Peiris,J.S.,Smith,G.J.,Chen,H., 3096–3098. Guan,Y.,2007.Detectionofanovelandhighlydivergentcoronavirusfromasian Ksiazek,T.G.,Erdman,D.,Goldsmith,C.S.,Zaki,S.R.,Peret,T.,Emery,S.,Tong,S., leopardcatsandChineseferretbadgersinSouthernChina.J.Virol.81(13), Urbani,C.,Comer,J.A.,Lim,W.,Rollin,P.E.,Dowell,S.F.,Ling,A.E.,Humphrey, 6920–6926. C.D.,Shieh,W.J.,Guarner,J.,Paddock,C.D.,Rota,P.,Fields,B.,DeRisi,J.,Yang,J.Y., Drosten,C.,Gunther,S.,Preiser,W.,vanderWerf,S.,Brodt,H.R.,Becker,S.,Rabenau, Cox,N.,Hughes,J.M.,LeDuc,J.W.,Bellini,W.J.,Anderson,L.J.,2003.Anovel H.,Panning,M.,Kolesnikova,L.,Fouchier,R.A.,Berger,A.,Burguiere,A.M.,Cinatl, coronavirusassociatedwithsevereacuterespiratorysyndrome.N.Engl.J.Med. J.,Eickmann,M.,Escriou,N.,Grywna,K.,Kramme,S.,Manuguerra,J.C.,Muller,S., 348(20),1953–1966. Rickerts,V.,Sturmer,M.,Vieth,S.,Klenk,H.D.,Osterhaus,A.D.,Schmitz,H., Lam,T.T.,Hon,C.C.,Lam,P.Y.,Yip,C.W.,Zeng,F.,Leung,F.C.,2008a.Commentstothe Doerr,H.W.,2003.Identificationofanovelcoronavirusinpatientswithsevere predecessorofhumanSARScoronavirusin2003-2004epidemic.Vet.Microbiol. acuterespiratorysyndrome.N.Engl.J.Med.348(20),1967–1976. 126(4),390–393. Drummond,A.,Pybus,O.G.,Rambaut,A.,2003.Inferenceofviralevolutionaryrates Lam,T.Y.,Hon,C.C.,Wang,Z.,Hui,R.K.,Zeng,F.,Leung,F.C.,2008b.Evolutionary frommolecularsequences.Adv.Parasitol.54,331–358. analysesofEuropeanH1N2swineinfluenzaAvirusbyplacingtimestampson Drummond,A.J.,Ho,S.Y.,Phillips,M.J.,Rambaut,A.,2006.Relaxedphylogenetics themultiplereassortmentevents.VirusRes.131(2),271–278. anddatingwithconfidence.PLoSBiol.4(5),e88. Lan,Y.C.,Liu,H.F.,Shih,Y.P.,Yang,J.Y.,Chen,H.Y.,Chen,Y.M.,2005a.Phylogenetic Drummond, A.J., Rambaut, A., 2007. BEAST: Bayesian evolutionary analysis by analysis and sequence comparisons of structural and non-structural SARS samplingtrees.BMCEvol.Biol.7,214. coronavirusproteinsinTaiwan.Infect.Genet.Evol.5(3),261–269. Eickmann,M.,Becker,S.,Klenk,H.D.,Doerr,H.W.,Stadler,K.,Censini,S.,Guidotti,S., Lan,Y.C.,Liu,T.T.,Yang,J.Y.,Lee,C.M.,Chen,Y.J.,Chan,Y.J.,Lu,J.J.,Liu,H.F.,Hsiung, Masignani,V.,Scarselli,M.,Mora,M.,Donati,C.,Han,J.H.,Song,H.C.,Abrignani, C.A.,Ho,M.S.,Hsiao,K.J.,Chen,H.Y.,Chen,Y.M.,2005b.Molecularepidemiology S.,Covacci,A.,Rappuoli,R.,2003.PhylogenyoftheSARScoronavirus.Science of severe acute respiratory syndrome-associated coronavirus infections in 302(5650),1504–1505. Taiwan.J.Infect.Dis.191(9),1478–1489. Fauci,A.S.,2006.Pandemicinfluenzathreatandpreparedness.Emerg.Infect.Dis.12 Lau,S.K.,Woo,P.C.,Li,K.S.,Huang,Y.,Tsoi,H.W.,Wong,B.H.,Wong,S.S.,Leung,S.Y., (1),73–77. Chan,K.H.,Yuen,K.Y.,2005.Severeacuterespiratorysyndromecoronavirus- Fouchier,R.A.,Hartwig,N.G.,Bestebroer,T.M.,Niemeyer,B.,deJong,J.C.,Simon,J.H., like virus in Chinese horseshoe bats. Proc. Natl. Acad. Sci. U.S.A. 102 (39), Osterhaus,A.D.,2004.Apreviouslyundescribedcoronavirusassociatedwith 14040–14045. respiratorydiseaseinhumans.Proc.Natl.Acad.Sci.U.S.A.101(16),6212–6216. Lemey,P.,Pybus,O.G.,Rambaut,A.,Drummond,A.J.,Robertson,D.L.,Roques,P., Gibbs,A.J.,Gibbs,M.J.,Armstrong,J.S.,2004.ThephylogenyofSARScoronavirus. Worobey,M.,Vandamme,A.M.,2004.Themolecularpopulationgeneticsof Arch.Virol.149(3),621–624. HIV-1groupO.Genetics167(3),1059–1068. Gorbalenya,A.E.,Snijder,E.J.,Spaan,W.J.,2004.Severeacuterespiratorysyndrome Lemey,P.,Pybus,O.G.,Wang,B.,Saksena,N.K.,Salemi,M.,Vandamme,A.M.,2003. coronavirusphylogeny:towardconsensus.J.Virol.78(15),7863–7866. TracingtheoriginandhistoryoftheHIV-2epidemic.Proc.Natl.Acad.Sci.U.S.A. Gribaldo,S.,Philippe,H.,2002.Ancientphylogeneticrelationships.Theor.Popul. 100(11),6588–6592. Biol.61(4),391–408. Li,F.,2008.Structuralanalysisofmajorspeciesbarriersbetweenhumansandpalm Guan,Y.,Peiris,J.S.,Zheng,B.,Poon,L.L.,Chan,K.H.,Zeng,F.Y.,Chan,C.W.,Chan,M.N., civetsforsevereacuterespiratorysyndromecoronavirusinfections.J.Virol.82 Chen,J.D.,Chow,K.Y.,Hon,C.C.,Hui,K.H.,Li,J.,Li,V.Y.,Wang,Y.,Leung,S.W., (14),6984–6991. Yuen,K.Y.,Leung,F.C.,2004.Molecularepidemiologyofthenovelcoronavirus Li,F.,Li,W.,Farzan,M.,Harrison,S.C.,2005a.StructureofSARScoronavirusspike thatcausessevereacuterespiratorysyndrome.Lancet363(9403),99–104. receptor-bindingdomaincomplexedwithreceptor.Science309(5742),1864– Guan,Y.,Zheng,B.J.,He,Y.Q.,Liu,X.L.,Zhuang,Z.X.,Cheung,C.L.,Luo,S.W.,Li,P.H., 1868. Zhang,L.J.,Guan,Y.J.,Butt,K.M.,Wong,K.L.,Chan,K.W.,Lim,W.,Shortridge,K.F., Li,W.,Moore,M.J.,Vasilieva,N.,Sui,J.,Wong,S.K.,Berne,M.A.,Somasundaran,M., Yuen,K.Y.,Peiris,J.S.,Poon,L.L.,2003.Isolationandcharacterizationofviruses Sullivan,J.L.,Luzuriaga,K.,Greenough,T.C.,Choe,H.,Farzan,M.,2003.Angio- relatedtotheSARScoronavirusfromanimalsinsouthernChina.Science302 tensin-convertingenzyme2isafunctionalreceptorfortheSARScoronavirus. (5643),276–278. Nature426(6965),450–454. Haijema,B.J.,Volders,H.,Rottier,P.J.,2003.Switchingspeciestropism:aneffective Li,W.,Shi,Z.,Yu,M.,Ren,W.,Smith,C.,Epstein,J.H.,Wang,H.,Crameri,G.,Hu,Z., waytomanipulatethefelinecoronavirusgenome.J.Virol.77(8),4528–4538. Zhang,H.,Zhang,J.,McEachern,J.,Field,H.,Daszak,P.,Eaton,B.T.,Zhang,S., Herrewegh,A.A.,Smeenk,I.,Horzinek,M.C.,Rottier,P.J.,deGroot,R.J.,1998.Feline Wang, L.F., 2005b. Bats are natural reservoirs of SARS-like coronaviruses. coronavirus type II strains 79-1683 and 79-1146 originate from a double Science310(5748),676–679. recombinationbetweenfelinecoronavirustypeIandcaninecoronavirus.J. Li,W.,Wong,S.K.,Li,F.,Kuhn,J.H.,Huang,I.C.,Choe,H.,Farzan,M.,2006.Animal Virol.72(5),4508–4514. origins of the severe acute respiratory syndrome coronavirus: insight from Hillis,D.M.,1996.Inferringcomplexphylogenies.Nature383(6596),130–131. ACE2-S-proteininteractions.J.Virol.80(9),4211–4219. Holmes, E.C., Rambaut, A., 2004. Viral evolution and the emergence of SARS Li,W.,Zhang,C.,Sui,J.,Kuhn,J.H.,Moore,M.J.,Luo,S.,Wong,S.K.,Huang,I.C.,Xu,K., coronavirus.Philos.Trans.R.Soc.Lond.B.Biol.Sci.359(1447),1059–1065. Vasilieva,N.,Murakami,A.,He,Y.,Marasco,W.A.,Guan,Y.,Choe,H.,Farzan,M., Holmes,E.C.,Worobey,M.,Rambaut,A.,1999.Phylogeneticevidenceforrecombi- 2005c. Receptor and viral determinants of SARS-coronavirus adaptation to nationindenguevirus.Mol.Biol.Evol.16(3),405–409. humanACE2.EMBOJ.24(8),1634–1643. Holmes,K.V.,Enjuanes,L.,2003.Virology.TheSARScoronavirus:apostgenomicera. Li,Y.,Yu,I.T.,Xu,P.,Lee,J.H.,Wong,T.W.,Ooi,P.L.,Sleigh,A.C.,2004.Predictingsuper Science300(5624),1377–1378. spreadingeventsduringthe2003severeacuterespiratorysyndromeepidemics Hon,C.C.,Lam,T.Y.,Shi,Z.L.,Drummond,A.J.,Yip,C.W.,Zeng,F.,Lam,P.Y.,Leung, inHongKongandSingapore.Am.J.Epidemiol.160(8),719–728. F.C.,2008.Evidenceoftherecombinantoriginofabatsevereacuterespiratory Liang,G.,Chen,Q.,Xu,J.,Liu,Y.,Lim,W.,Peiris,J.S.,Anderson,L.J.,Ruan,L.,Li,H.,Kan, syndrome(SARS)-likecoronavirusanditsimplicationsonthedirectancestorof B.,Di,B.,Cheng,P.,Chan,K.H.,Erdman,D.D.,Gu,S.,Yan,X.,Liang,W.,Zhou,D., SARScoronavirus.J.Virol.82(4),1819–1826. Haynes,L.,Duan,S.,Zhang,X.,Zheng,H.,Gao,Y.,Tong,S.,Li,D.,Fang,L.,Qin,P., Hudson, P.J., Rizzoli, A., Grenfell, B.T., Heesterbeek, H., Dobson, A.P., 2002. The Xu,W.,2004.Laboratorydiagnosisoffourrecentsporadiccasesofcommunity- EcologyofWildlifeDisease.OxfordUniversityPress,Oxford(UK). acquiredSARS,GuangdongProvinceChina.Emerg.Infect.Dis.10(10),1774– Janies,D.,Habib,F.,Alexandrov,B.,Hill,A.,Pol,D.,2008.Evolutionofgenomes,host 1781. shifts and the geographic spread of SARS-CoV and related coronaviruses. Lio,P.,Goldman,N.,2004.PhylogenomicsandbioinformaticsofSARS-CoV.Trends Cladistics24,111–130. Microbiol.12(3),106–111.

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.