JOURNALOFVIROLOGY,Jan.2005,p.1036–1044 Vol.79,No.2 0022-538X/05/$08.00(cid:1)0 doi:10.1128/JVI.79.2.1036–1044.2005 Copyright©2005,AmericanSocietyforMicrobiology.AllRightsReserved. Natural History of a Recurrent Feline Coronavirus Infection and the Role of Cellular Immunity in Survival and Disease Jolanda D. F. DE Groot-Mijnes,1† Jessica M. VAN Dun,1 Robbert G. VAN DER Most,2 and Raoul J. DE Groot1* VirologyDivision1andImmunologyDivision,2DepartmentofInfectiousDiseasesandImmunology, FacultyofVeterinaryMedicine,UtrechtUniversity,Utrecht,TheNetherlands Received22June2004/Accepted16August2004 D Wedescribethenaturalhistory,viraldynamics,andimmunobiologyoffelineinfectiousperitonitis(FIP),a o w highly lethal coronavirus infection. A severe recurrent infection developed, typified by viral persistence and n acutelymphopenia,withwavesofenhancedviralreplicationcoincidingwithfever,weightloss,anddepletion lo of CD4(cid:1) and CD8(cid:1) T cells. Our combined observations suggest a model for FIP pathogenesis in which a d virus-inducedT-celldepletionandtheantiviralT-cellresponseareopposingforcesandinwhichtheefficacy e d ofearlyT-cellresponsescriticallydeterminestheoutcomeoftheinfection.RisingamountsofviralRNAinthe f blood,consistentlyseeninanimalswithend-stageFIP,indicatethatprogressiontofataldiseaseisthedirect ro consequenceofalossofimmunecontrol,resultinginuncheckedviralreplication.Thepathogenicphenomena m described here likely bear relevance to other severe coronavirus infections, in particular severe acute respi- h ratory syndrome, for which multiphasic disease progression and acute T-cell lymphopenia have also been tt p reported. Experimental FIP presents a relevant, safe, and well-defined model to study coronavirus-mediated :/ / immunosuppression and should provide an attractive and convenient system for in vivo testing of anticoro- jv naviraldrugs. i.a s m . o ThegenusCoronavirus(familyCoronaviridae,orderNidovi- seereference9),pathogenicvirulencemutantsspontaneously rg / rales) comprises a group of enveloped positive-strand RNA arising from apathogenic feline enteric CoV field strains (18, o virusesofmammalsandbirds.Withagenomeof27to31kb, 35, 49). Typical for the disease are the widespread pyogranu- n encoding an (cid:2)750-kDa pp1ab replicase polyprotein, four lomatous lesions, which occur in various tissues and organs, M a structural proteins (S, M, N, and E) and up to five accessory includinglung,liver,spleen,omentum,andbrain(32,50,54). r c nonstructural proteins, coronaviruses (CoVs) are the largest Theinfectionofmacrophagesandmonocytesisthoughttobe h 1 RNAvirusesknowntodate(5,11).Inhumans,theyaremostly key to the pathogenic mechanism (40, 52). There is ample 3 associated with mild enteric or respiratory infections, such as evidence for a crucial involvement of the immune system. A , 2 thecommoncold,andhencewerelongconsideredofmodest profound T-cell depletion from the periphery and the lym- 0 1 clinicalimportance.However,thesuddenemergenceofsevere phatictissues,observedincatswithend-stageFIP(16,21),and 5 acuterespiratorysyndrome(SARS)hassparkedwideinterest thecommonoccurrenceofhypergammaglobulinemia(29,50) b y inCoVbiologyandpathogenesis(12,22,23,34,36).Themore areindicativeofaseverevirus-inducedimmunedysregulation U recentdiscoveryofyetanotherhumanCoV,HCoV-NL63(14, (20).ThehumoralresponseagainstFIPVdoesnotseemtobe N I 45), also implicated in severe respiratory disease, further em- protective and can in fact lead to “early death syndrome,” a V phasizes the pathogenic potential of CoVs and stresses the more fulminating and drastically shortened course of the dis- O F needforthedevelopmentofnewprophylacticandtherapeutic ease(31,52).AntibodiesdirectedagainstthespikeproteinS, S strategies. whenpresentatsubneutralizingtiters,apparentlyopsonizethe Y Among the most conspicuous clinicopathological findings virusandenhancetheinfectionoftargetcellsviaFcreceptor- D N reported for SARS are the protracted multiphasic course of mediatedattachment(7,19,47).Itiscommonlybelievedthat E theinfectionwithrecurrenceoffeveranddiseaseafterinitial the control of infection and FIPV clearance are primarily Y apparent improvement and a consistent CD4(cid:1) and CD8(cid:1) T- achievedthroughcell-mediatedimmunity(CMI)(17,35,51). celllymphopenia(4,8,23,36,44,56).Inthisrespect,thereare Here,wepresentacomprehensivestudyofthenaturalhis- striking similarities with a lethal CoV infection occurring in tory and immunobiology of FIP, based upon longitudinal in- cats. Feline infectious peritonitis (FIP) is a progressive debil- fection experiments performed with the highly virulent FIPV itatingconditioncausedbyFIPviruses(FIPVs)(forareview, strain 79–1146. We show that FIPV causes a multiphasic re- current infection with waves of enhanced FIPV replication coinciding with fever, weight loss, and a dramatic decline in *Corresponding author. Mailing address: Virology Division, De- peripheralCD4(cid:1)andCD8(cid:1)T-cellcounts.Consistentwiththe partmentofInfectiousDiseasesandImmunology,FacultyofVeteri- notionthatCMIisprotective,wedetectedFIPV-specificTh1 naryMedicine,UtrechtUniversity,Yalelaan1,3584CLUtrecht,The T-cellresponsesinsurvivinganimalswiththespikeproteinSas Netherlands. Phone: 31 30 2531463. Fax: 31 30 2536723. E-mail: themainCD8(cid:1)T-cellantigen.Amodelisdiscussedinwhich [email protected]. †Presentaddress:DepartmentofVirology,Eijkman-WinklerCen- cellular immunity is counteracted by virus-induced T-cell de- ter,UniversityMedicalCenterUtrecht,Utrecht,TheNetherlands. pletionandinwhichtheefficacyoftheinitialT-cellresponses 1036 VOL.79,2005 VIRAL DYNAMICS AND IMMUNOBIOLOGY OF FIP 1037 TABLE 1. ClinicopathologicalmanifestationsinFIPV-infectedcats Disease Vaccination Catno. DPIb Clinicalsignsc Viremia FIP Exudated Lesionse type historya 307 A C 18 WL,F,L,J (cid:1) (cid:1) Th Lu,P 315 A M1 21 WL,F,L,J (cid:1) (cid:1) Pe Li,K,S,I 007 A A 21 WL,F,L,J (cid:1) (cid:1) Pe,Th Lu,(Li),I 081 A A 21 WL,F,L,J (cid:1) (cid:1) Pe,Th Lu,K,(S),I 089 A A 21 WL,F,L,J (cid:1) (cid:1) Pe Li,S,I 319 A C 22 WL,F,L,J (cid:1) (cid:1) Th,(Pe) Lu,(P),Li,(K),S 283 A C 24 WL,F,L,J (cid:1) (cid:1) Lu,Li,K,S 299 A C 24 WL,F,L,J (cid:1) (cid:1) Pe Lu,Li,I 157 A M2 16 WL,F,L,J (cid:1) (cid:1) Th Lu,(S) 199 A M2 16 WL,F,L,J (cid:1) (cid:1) Pe Li,S,I 145 A A–D 22 WL,F,L,J (cid:1) (cid:1) Pe,(Th) Lu,Li,(K),S,I 147 A M2 25 WL,F,L,J (cid:1) (cid:1) Pe,Th Lu,P,Li,S,I D o 201 A A–D 22 WL,F,L,J (cid:1) (cid:1) Pe,(Th) Lu,Li,S w 325 B C 27 WL,F,L,J (cid:1) (cid:1) Pe,Th Lu,P,Li,S,I n 301 B C 28 WL,F,L,J (cid:1) (cid:1) Pe Lu,Li,K,(S),I lo 083 B C 28 WL,F,L,J (cid:1) (cid:1) Pe,Th Lu,(Li,S),I ad 149 B A–D 29 WL,F,L,J (cid:1) (cid:1) Pe Li,S,I e 159 B A–D 29 WL,F,L,J (cid:1) (cid:1) Pe (Li,)S,I d 173 B M2 28 WL,F,L,J (cid:1) (cid:1) Pe,Th Lu,Li,S,I fr o 303 C M1 36 WL,F,L,J (cid:1) (cid:1) Pe,Th Lu,P,Li,S,I m 041 C M1 35 WL,F,L,J (cid:1) (cid:1) Th Lu,P,Li,K,(S),I h 009 C A 35 WL,F,L,J (cid:1) (cid:1) Pe Lu,P,(Li,S),I t t 197 C M2 34 WL,F,L,J (cid:1) (cid:1) Lu,(P),Li,S,I p 317 D A 54 WL,F,L,J (cid:1) (cid:1) Pe Lu,P,Li,S,I :// 175 D A–D 50 WL,F,L,J (cid:1) (cid:1) Pe Li,S jv 085 NAf M1 58 WL,F,L,J (cid:1) (cid:4) i.a 155 NAf M2 42 WL,F,L,J (cid:1) (cid:4) sm 281 E M1 (cid:5)100 WL,F,L,J (cid:1) (cid:4) . 289 E M1 (cid:5)100 WL,F,L,J (cid:1) (cid:4) or 005 E M1 (cid:5)100 WL,F,L,J (cid:1) (cid:4) g / 291 E A (cid:5)100 WL,F,L,J (cid:4) (cid:4) o 297 E A (cid:5)100 WL,F,L,J (cid:1) (cid:4) n 249g E NAf (cid:5)100 WL,F,L,J NDf (cid:4) M a aM1,mockvaccinatedwithtwodosesof0.5mgofapcDNAvectorcarryingthelacZgeneintradermally(i.d.)andonedoseof1(cid:6)108PFUofrVV-TK(cid:4)i.d.at6-week rc intervals;M2,mockvaccinatedwithonedoseof0.125mgofapcDNAvectorcarryingthelacZgenebothi.d.andintramuscularly(i.m.)andonedoseof1(cid:6)108 h rVV-TK(cid:4)i.d.at6-weekintervals;A,POLAvaccinatedwithtwodosesof0.5mgofapcDNAvectorexpressingPOLAi.d.andonedoseof1(cid:6)108PFUofrVV-POLA 1 i.d.at6-weekintervals;C,POLCvaccinatedwithtwodosesof0.5mgofapcDNAvectorexpressingPOLCi.d.and1doseof1(cid:6)108PFUofrVV-POLCi.d.at6-week 3 , intervals;A–D,POLA-Dvaccinatedwithonedoseofamixtureof0.125mg(each)offivepcDNAvectorsexpressingPOLAthroughPOLDbothi.d.andi.m.andone 2 doseofamixtureof2(cid:6)107PFU(each)ofrVV-POLA,-POLB1,-POLB2,-POLC,and-POLDat6-weekintervals. 0 bDPI,dayofeuthanasiapost-FIPVinoculation. 1 cWL,weightloss;F,fever;L,lymphopenia;J,jaundiceasdeterminedbyplasmacolor. 5 dTh,thorax;Pe,peritoneum. b y eLu,lungs;P,pleura;Li,liver;K,kidney;S,spleen;I,intestine.(),minorlesions. fNA,notapplicable;ND,notdetermined. U gSeealsoreference16a. N I V O F criticallydeterminesdiseaseprogressionandtheultimateout- bloodsamplesweretakentwotothreetimesperweektotestforviremiaby S comeoftheinfection. reversetranscription-PCR(RT-PCR).Plasmasampleswerepreparedweeklyto Y D determine virus-neutralizing antibody titers. EDTA-treated and heparinized bloodsampleswerecollectedweeklyforleukocytecountingandCD4(cid:1)/CD8(cid:1) N E MATERIALSANDMETHODS staining,respectively. Y Analysis of FIPV-neutralizing antibody titers. Neutralizing antibody titers Cellsandviruses.CellsweremaintainedinDulbecco’smodifiedEagle’sme- weredeterminedbyend-pointdilutionaspreviouslydescribed(7).Briefly,50(cid:3)l dium(LifeTechnologies)supplementedwith10%fetalcalfserum(Wisent),100 IUofpenicillin,and100(cid:3)gofstreptomycinperml.FIPVserotypeIIstrain containing100PFUofFIPVstrain79–1146wasmixedwithanequalvolumeof 79–1146(25)waspropagatedinfcwf-Dcellsandwild-typevacciniavirus(VV) serial twofold dilutions of heat-inactivated plasma and preincubated at room strainWRandrecombinantderivativesinRK13cells,Ost7-1cells,andhuman temperaturefor1h.Thevirus-antibodymixtureswereaddedtomonolayersof TK(cid:4)143cells. fcwf-Dcells,whichhadbeenseededintomicrotiterplates16hinadvance.All Animalexperimentation.Specificpathogen-free(SPF)cats(HarlanNether- dilutionsweretestedintriplicate.Thecytopathiceffectwasscoredat48hafter lands)werehousedattheCentralAnimalFacility,UtrechtUniversity.Experi- inoculation.AntibodytiterswereestimatedaccordingtoReedandMu¨nch(37). mentswereperformedinaccordancewithinstitutionalandgovernmentalguide- Histochemicalandreal-timeRT-PCRanalysisofbloodsamples.Whole-blood linesafterapprovaloftheAnimalExperimentationEthicsCommitteeofthe differentiationandleukocytecountingwereperformedbyanalysisofEDTA- FacultyofVeterinaryMedicine.Thirty-threeSPFcats,aged5to7months,which treatedbloodbyemployinganADVIA120HematologySystem(BayerDiag- had been included in prime-boost vaccination trials with DNA vectors and nostics).Immunophenotypingofheparinizedbloodsampleswascarriedoutby recombinantVVs(rVVs),wereinoculatedwith500to1,000PFUofFIPVstrain using fluorochrome-conjugated antisera: phycoerythrin-conjugated anti-feline 79–1146 6 weeks after the last boost. Details with respect to the vaccination CD4andbiotinylatedanti-felineCD8(SouthernBiotechnologyAssociates,Inc.) historyofeachindividualcatarelistedinTable1.Theanimalsweremonitored incombinationwithAlexa-633-conjugatedstreptavidin(MolecularProbes).Per dailyforbodyweight,rectaltemperature,andgrossclinicalsigns.EDTA-treated sample,100,000leukocyteswereanalyzedwithaFACScaliburflowcytometer 1038 DE GROOT-MIJNES ET AL. J.VIROL. TABLE 2. ListofFIPVsequencesexpressedbyrecVVs Insertname Gene Ncta Nctb POLA orf1a 296–5198 (cid:4)14to4889 POLB1 orf1a 5194–9447 4885–9138 POLB2 orf1a 9442–11990 9133–11681 POLC orf1b 12684–16011 12375–15702d POLD orf1b 15914–20259 15605–19950d 3E7a 3a 24860–25075 1–216 3E7a 3b 25020–25235 1–216 3E7a 3c 25232–25966c 1–735 3E7a E 25953–26201 1–249 3E7a 7a 28151–28456 1–306 FIG. 1. SurvivaltimeandmortalityafterexperimentalFIPVinfec- 7b 7b 28461–29081 1–621 tion.BarsindicatethenumberofanimalssuccumbingtoFIPperday. S S 20435–21913 1–1479 I ThelabelsAthroughEindicategroupsofcatswithdistinctpatternsof D SII S 21164–22663 730–2229 diseaseprogression(seetext). o S S 21854–23365 1420–2931 w III S S 23306–24789 2872–4355 n IV lo aRelativetothefirstnucleotideoftheFIPV79–1146sequence(GenBank a ployingDNAvectorsandrVVsexpressingnonstructuralpro- d accessionnumber). e bRelativetothefirstnucleotideoftheORF. teinsofFIPV.Animalswerechallengedoronasallywith500to d cTheTAGstopcodonin3catposition25352wasmutatedintoCAG,asisthe 1,000 PFU of the highly virulent FIPV serotype II strain 79– fr caseincaninecoronavirusstrainInsave. o dRelativetothefirstnucleotideoforf1a. 1146 and monitored for up to 126 days postinfection (p.i.). m Vaccination did not protect against or alter the course of the h infection,asvaccinatedandsham-vaccinatedcatsweresimilar tt p (Becton Dickinson) and the Windows-based WinMDI software (J. Trotter; with regard to the development of clinical signs and survival :// http://facs.scripps.edu/software.html).Lymphocyteswereselectedintheforward rate.Unfortunatethoughthismaybe,theseextensivelongitu- jv andsidescatterplotsandgatedforphycoerythrin-stainedCD4(cid:1)andAF633- dinal experiments did provide a unique opportunity to study i.a stainedCD8(cid:1)Tcellsinthesidescatterplots.AbsoluteT-cellcountspermilli- CoV-mediateddiseaseprogressioninclosedetail. sm literofwholebloodwerecalculatedfromthefrequenciesofCD4(cid:1)andCD8(cid:1)T Twoanimals(numbers085and155)weresacrificedmidin- .o cellsasdeterminedbyflowcytometryandthetotalleukocytecounts([Tcells/ r 100,000](cid:6)[totalleukocytes/ml]). fection (see below); the remaining animals were followed g / RNA was extracted from plasma and white blood cell pellets by using the throughout the complete course of the disease. Only six of o QIAGENviralRNAkit,andtheequivalentof8(cid:3)lofwholebloodwassubjected these(19%)apparentlymadefullrecovery,survivingformore n toFIPV-specificreal-timeRT-PCRessentiallyaspreviouslydescribed(15)inan M than 100 days. Twenty-five cats (81%) were euthanized in ABIPrism7000SequenceDetectionsystem(AppliedBiosystems). a ConstructionofrVVs.rVVsexpressingtheFIPVS,M,andNproteinswere extremis with typical signs of FIP, 23 of these succumbing rc describedelsewhere(47,48).ElevenadditionalrVVsweregeneratedtoexpress within 36 days p.i. (Fig. 1). In all cases, FIP diagnosis was h 1 the 7b protein (rVV-7b), subfragments of pp1ab replicase polyprotein (rVV- confirmeduponpostmortemexamination,revealingpyogranu- 3 POLA,rVV-POLB1,rVV-POLB2,rVV-POLC,andrVV-POLD),achimeric lomatous lesions in major organs and intestines, peritoneal , 2 genecomprisingopenreadingframes(ORFs)3ato3c,theEgene,andORF7a and/orpleuraleffusions,andaprofoundT-celldepletion.Sur- 0 (rVV-3E7a),oroverlappingsubfragmentsoftheSprotein(rVV-S through-S ) 1 (Table2).Withtheexceptionofthe7bgene,genesandgenefrIagmentsweIVre vivors were free of lesions. All animals seroconverted. No 5 providedwithaninitiationcodonanda5(cid:7)-terminalubiquitin-encodingsequence. differences were observed between survivors and FIP cases by Toensureoptimalexpressionofthepp1absubfragments,crypticVVtranscrip- with respect to the onset of production and the final titers of U tionterminationsignals(TTTTNT)(13)wereabolished.Proteolyticprocessing neutralizing antibodies (Fig. 2). For detailed clinicopatholog- N of pp1a expression products was prevented by rendering papain-like cystein I icalfindingsandvaccinationstatusofthecats,seeTable1. V proteinase1inactivethroughaC11173Nsubstitution,andbydevisingtheoverall cloningstrategysuchthatthecodingsequencesforpapain-likecysteinproteinase DiseaseprogressioninFIPV-infectedcats.Diseaseprogres- O F 2andthechymotrypsin-likemainproteinasewerecleavedintwo.TheFIPV sionwasmonitoredbymeasuringbodyweight,rectaltemper- S genes were cloned into transfer vector pSC11, downstream of the VV p7.5 ature, leukocyte counts, and the presence of viral RNA in Y early-latepromoter,andrVVswereconstructedaspreviouslydescribed(6).In plasmaandwhitebloodcells(Fig.3).Irrespectiveofthefinal D allcases,expressionoftheFIPVgeneswasconfirmedbyradioimmunoprecipi- N tationassaywithprotein-specificantisera(datanotshown). outcome, i.e., full-blown FIP or recovery, clinical signs were E Lymphocyte stimulation, cytokine staining, and flow cytometry. Single-cell remarkablysimilarinallanimalsduringtheinitial7to8days Y spleensuspensions,preparedaspreviouslydescribed(10),wereresuspendedin ofinfectionandoccurredwithsurprisingsynchronicity.Atran- 25mMHEPES-bufferedRPMI1640(InvitrogenCorporation),supplemented sientfever((cid:5)39.6°C)developedbetweendays2to4p.i.,last- w50ith(cid:3)M10%2-mheearct-aipntaocetitvhaatneodlf,e1t0a0lcIaUlfosefrpuemn,icGillluinta/mmla,xanId(I1n0v0itr(cid:3)oggeonfCstorerppotoramtiyocnin)/, ingfrom1to8days(mean,3.6(cid:9)1.7days),whichwasinvari- ml. To detect FIPV-specific T cells, 0.5 (cid:6) 106 to 1 (cid:6) 106 splenocytes were ablyaccompaniedbyprogressivelossofbodyweightandacute stimulated fo r 6 h in thepresence of 10 (cid:3)M brefeldin A with autologous lymphopenia ((cid:1)1.5 (cid:6) 103 lymphocytes/(cid:3)l of blood). At day immortalizedfibroblasts(5(cid:6)104)(10),whichhadbeeninfectedwithrVVfor 8 p.i., body weight was reduced on average by 10% (cid:9) 2.6%, 16h.Three-colorflowcytometryanalysisofvirus-specificCD4(cid:1)andCD8(cid:1)T andlymphocytenumbershaddroppedwellbelow50%ofthe cells,basedupondetectionofintracellulartumornecrosisfactoralpha(TNF-(cid:8)), wasperformedaspreviouslydescribed(10). initial counts (mean, 23.4% (cid:9) 16%; 0.7 (cid:6) 103(cid:9) 0.6 (cid:6) 103 lymphocytes/(cid:3)l).At7to8daysp.i.,diseaseprogressionseem- ingly halted: fever subsided, body weight either stabilized or RESULTS increased, and the total number of peripheral blood lympho- Outline of longitudinal infection experiments. Thirty-three cytes started to rise again. This recovery, however, was only SPF cats were included in prime-boost vaccination trials em- temporary;withtheexceptionofsurvivor289(notshown),all VOL.79,2005 VIRAL DYNAMICS AND IMMUNOBIOLOGY OF FIP 1039 fever,wasting,andT-celldepletionallcorrelatewithenhanced viralreplication. Virus-specificCD8(cid:1)T-cellresponsesinFIPVsurvivorsare mainlydirectedagainstS.Consistentwithaprominentroleof CMIincontrollingFIPVinfectionandviralclearance,stimu- lationofsplenocytesfromFIPsurvivorswithautologousFIPV- infectedcellsrevealedvirus-specificTh1-typeT-cellresponses, as measured by flow cytometric detection of intracellular TNF-(cid:8)(10).Toidentifytherelevantantigens,weconstructed alibraryof14rVVs,whichtogetherexpressalmosttheentire FIPV 79–1146 proteome (Fig. 4; Table 2). Autologous fibro- blastcultureswereinfectedwiththeserecombinantvirusesand wereusedtostimulatesplenocytesinourintracellularcytokine D (TNF-(cid:8)) staining assay (10). We analyzed T-cell responses in o FIG. 2. Kinetics of neutralizing antibody titers in FIPV-infected w catswithdifferenttypesofdiseaseprogression.Thevirus-neutralizing the spleen because it is both the major lymphoid organ har- n antibodytitersweredeterminedweeklyandareexpressedasthere- boring memory T cells and a prime target site for FIPV rep- lo a ciprocal log10 plasma dilution causing 50% virus neutralization. The lication. d averagetitersoftherapidandintermediate(■,typesAandB;10cats) e andthedelayed(F,typeC;3cats)progressorsandtheprolonged(Œ, Inadditiontothreelong-termsurvivors(cats249,281,and d typeD;2cats)andlong-term((cid:1),typeE,5cats)survivorsareplotted 291), we studied two animals, numbers 155 and 085, which fr o on the y axis. Curves for types A and B were virtually identical and weresacrificedmidinfectionatday42and58p.i.,respectively. m werethereforecombined. One of these, number 155, displayed only mild clinical signs; h afterashortrelapse,itquicklyrecoveredandremainedseem- tt p inglyhealthy.Theotherexperiencedchronicfeverandstayed :/ / underweight from day 21 p.i. onward. Although both animals jv i. animals suffered a relapse. Starting from day 10, a second werepersistentlyinfected,asevidencedbyRT-PCRdetection a s episodeoffeverdeveloped.Fromthispointon,fivepatternsof ofviralRNAintheblood(Fig.3F),noFIPlesionswerefound m disease progression could be distinguished, based upon body upon postmortem analysis. Apparently, these cats had ac- .o r weight and survival time (Fig. 1 and 3). Rapid progressors quiredatleastpartialimmunityinresponsetoFIPVinfection. g / (typeA)showedlittletonoregaininbodyweightduringdays In all five cats, the S protein was identified as the main o 8 to 14 p.i., then developed a chronic secondary fever with CD8(cid:1)T-cellantigen(Fig.5and6).TheSproteinapparently n severe wasting, and succumbed to FIP within 24 days (mean containsmultipleCD8(cid:1)T-cellepitopes,asshownbylympho- M a survivaltime,21(cid:9)3days).Intermediateanddelayedprogres- cyte stimulation assays with rVVs expressing overlapping S rc sors(typesBandC)closelyresembledtypeAbutmanagedto subfragments (Fig. 4; Table 3). In cat 155, responses were h regain body weight to almost 100% after the initial bout of exclusively directed against S, indicating that a CD8(cid:1) T-cell 13 I disease and displayed increased survival times (mean, 28 (cid:9) 1 epitopewaslocatedwithintheN-terminal-most250residuesof , 2 daysand35(cid:9)1days,respectively).Prolongedsurvivors(cats S.Cat249recognizedbothS andS ,suggestingthepresence 0 II III 1 175 and 317; type D) developed an even more protracted of an epitope in the 270-residue overlapping region (residues 5 courseoftheinfection(survivaltimes,50and54days,respec- 474to743).Finally,cat291presumablyharboredCD8(cid:1)mem- b y tively)withthreeepisodesoffeverandweightlossandperiods oryTcellsdirectedagainsttwoepitopes,oneintheC-terminal U of up to 12 days of apparent recovery. Long-term survivors halfofsubfragmentS (residues744to977),theotherinS N III IV I (typeE)apparentlysucceededincontrollingthevirus,inone (residues958to1452;S andS shareonlya20-amino-acid V III IV case(cat289)afterthefirstwaveofdisease.Theotheranimals overlap). In long-term survivors 281 and 291, CD8(cid:1) T-cell O F sufferedoneortworelapsesbeforeultimatelygainingcontrol. responsesseemedexclusivelydirectedagainsttheSprotein.In S Waves of FIPV replication coincide with fever, weight loss, long-term survivor 249 and in the partially protected animals Y and T-cell depletion. Previous experiments by our laboratory 085 and 155, subdominant CD8(cid:1) T-cell responses were de- D N revealed that cats with terminal FIP are depleted for T cells tected against the pp1a B2 subfragment (085), the M protein E both in the peripheral blood and in lymphoid tissues (16). In (cats 085 and 249), and the chimeric protein 3E7a (cats 155 Y fact,wehavenowobservedthatthelevelsofperipheralCD4(cid:1) and249).TheSproteinalsoseemedtobeaprominenttarget and CD8(cid:1) T lymphocytes dropped significantly very early in for antiviral CD4(cid:1) T cells, although considerable responses infectionand,inthoseanimalswhichdevelopedfataldisease, against other antigens, most notably M, were also detected remainedlowthroughoutthecourseoftheinfection(Fig.3). (Fig.5and6). During the short intermittent periods of apparent recovery, T-cellcountsroseonlytodeclineagainwiththerenewedonset DISCUSSION of disease. Episodes of disease coincided with an increase of viralRNAinplasmaand/orwhitebloodcellsasmeasuredby FIP, a paradigm of CoV-mediated chronic disease, was al- real-time and conventional RT-PCR (Fig. 3 and data not ready recognized in earlier studies as a complex multiphasic shown). Although FIPV primarily replicates in tissues, the condition with recurrent (biphasic) fever as one of its most amounts of viral RNA detected in the blood do provide a distinctivetraits(41,47,50,53).Thepathogenicmechanisms, reflection—albeitmostlikelyanunderestimation—oftheviral however,remainpoorlyunderstood.Here,weextendprevious load at extravascular sites. Our combined data indicate that findings(16,32,50,53)andpresentacomprehensivestudyof 1040 DE GROOT-MIJNES ET AL. J.VIROL. inoculatedoronasallywithFIPV(cid:1)(cid:1)untsandCD4andCD8T-cells(cid:1)blue,37°C;green,37to39.7°C;titersasdeterminedbyreal-timeaspercentagesofthecellcountstoobtaintrendcurves(left-handpresentativeexamplesareshown. FIG.3.Diseaseprogressioninrapid(A),intermediate(B),anddelayed(C)progressorsandinprolonged(D)andlong-term(E)FIPVsurvivors.Cats,79–1146,weremonitoredforupto126daysforfever,bodyweight,andviralRNAinwhitebloodcellsandplasma(topgraphs).Inaddition,totallymphocytecocounts(black,redandbluelines,respectively)weredetermined(bottomgraphs).Periodsoffeverareindicatedbypinkshadingandcolorcodingasfollows:(cid:2)orange,39.7to40°C;red,40to41°C;magenta,41°C.Bodyweight(blackline,opencircles)isexpressedasthepercentageofweightatday0.ViralRNACyRT-PCRareexpressedasvaluesonaninvertedaxis(redline,whitebloodcells;blueline,plasma).TotallymphocyteandT-cellcountsarepresentedT(cid:10)ndeterminedatday0.ForgroupsAtoC,dataacquiredforanimalswithhighlysimilardiseaseprogressionwereaveraged(7,3,and3cats,respectively)panels).Resultsobtainedforindividualanimalsareshownontheright.ForgroupsDandE,onlydataforindividualanimalsarepresented;forgroupE,twore(F)Diseaseprogressioninpersistentlyinfectedcats085and155.Theanimalsweresacrificedatdays58and42,respectively. on March 13, 2015 by UNIV OF SYDNEYhttp://jvi.asm.org/Downloaded from VOL.79,2005 VIRAL DYNAMICS AND IMMUNOBIOLOGY OF FIP 1041 FIG. 4. rVVexpressionlibraryoftheFIPV79–1146proteome.Theviralgenomeisshownschematically.Depictedasboxesarethecoding sequencesforpolyproteinpp1ab(ORF1aandORF1b),thespikeprotein(S),thesmallmembraneprotein(E),themembraneprotein(M),the D o nucleocapsidprotein(N),andthosefortheaccessoryproteins3ato3c,7a,and7b.IndicatedbelowaretheregionsexpressedbythevariousrVVs w (Table2). n lo a d thenaturalhistory,viraldynamics,andimmunobiologyofFIP. acuteinfectionwithfever,weightloss,acutelymphopenia,and e d Inalongitudinalexperiment,wefolloweddiseaseprogression thepresenceofviralRNAinbloodcellsandplasma.Then,by f r inalargecohortofcatsafteroronasalinfectionwiththehighly day 7 to 8 p.i., disease seemingly resolved and the animals o m virulent FIPV strain 79–1146. We found that the very early improved:feversubsided,bodyweightstabilizedorincreased, h stages of experimentally induced FIP were virtually identical and the amounts of viral RNA in the blood decreased below t t p amongthedifferentanimals,irrespectiveofthefinaloutcome, detection levels. However, all cats but one suffered a major : / / i.e.,deathorrecovery.Allcatspresentedcharacteristicsignsof relapse,andmostoftheminexorablyprogressedtolethaldis- jv i. a s m . o r g / o n M a r c h 1 3 , 2 0 1 5 b y U N I V O F S Y D N E Y FIG. 5. FIPV-specificT-cellresponsesinpersistentlyinfected,partiallyprotectedcatsandinalong-termsurvivor.Splenocyteswerestimulated withautologousfibroblastcultures(10),whichhadbeeninfectedwithrVVsexpressingthevariousFIPVproteins.AnrVVwithlacZinsertedinto theTKlocus(rVV-TK)servedasanegativecontrol.OnlytheresultsobtainedwithrVV-TK,rVV-S,rVV-M,andrVV-Nareshown.Virus-specific CD4(cid:1)andCD8(cid:1)TcellswereidentifiedbyintracellularexpressionofTNF-(cid:8)bythree-colorflowcytometry.Resultsobtainedforpartiallyprotected animals085and155andforlong-termsurvivor291areshownasdot-plotrepresentations,withfrequenciesofantigen-specificTcellsgivenas percentagesofthetotalCD4(cid:1)orCD8(cid:1)populations. 1042 DE GROOT-MIJNES ET AL. J.VIROL. TABLE 3. CD8(cid:1)T-cellresponsesagainstSsubfragmentsa TK(cid:4) S S S S I II III IV 155 0 1.8 0.1 0.2 (cid:11)0.1 249 (cid:11)0.1 0.1 0.6 0.4 (cid:11)0.1 291 0 0.1 0.1 0.4 0.7 aFrequenciesofTNF-(cid:8)-producingCD8(cid:1)Tcellsaregivenaspercentagesof thetotalCD8(cid:1)T-cellpopulation.Datainboldfacetyperepresentthefrequen- ciesofSprotein-specificTcells. remainedpersistentlyinfectedatalowlevel.Insimilarcases, FIP could be induced even up to 1 year after initial FIPV D inoculation by performing a superinfection with the immuno- o w suppressivefelineleukemiavirus(33). n Perhaps the most intriguing aspect of FIPV infection is its lo a effect on the CD4(cid:1) and CD8(cid:1) T-cell levels. FIPV-induced d e T-celldepletionhasbeendocumentedbefore(16,21),butwe d are first to show that this phenomenon already occurs very fr o earlyininfectionandcorrelateswith(enhanced)viralreplica- m tion. After the initial general lymphopenia, total lymphocyte h numbersroseagainandremainedatlevelsequaltoorexceed- tt p ingthoseatday0.Incontrast,CD4(cid:1)andCD8(cid:1)T-cellcounts :/ / remained consistently low. During the periods of apparent jv i. convalescence, T-cell counts increased modestly only to fall a s again with the renewed onset of overt disease. In agreement m with earlier reports (16, 21), T cells were virtually depleted .o r fromlymphatictissueandfromperipheraltissueintheanimals g / with end-stage FIP. How FIPV causes T-cell lymphopenia is o n not clear. As there are no indications that T cells are suscep- M tible to infection, their depletion most likely occurs through a indirecteffects(16).Inotherexamplesofvirus-inducedT-cell rc depletion, e.g., measles, the infection of antigen-presenting h 1 cells, and of dendritic cells (DCs) in particular, is thought to 3 , causeT-cellapoptosis(28,30,38,39).Likewise,FIPVreport- 2 edlytargetsantigen-presentingcells,suchasmacrophagesand 0 1 monocytes (16, 29, 40, 52), the serotype II strains via the 5 dedicatedcellreceptorCD13(43).Giventhefactthathuman b y immature myeloid DCs express CD13 (42), it is likely that U certain DC subsets of the cat do so as well and hence are N FIG. 6. FIPV-specificT-cellresponsesinpersistentlyinfected,par- susceptibletoFIPV. IV tiallyprotectedcatsandinlong-termsurvivors.Splenocyteswerestim- Weproposethatthevirus-drivenT-celldepletionresultsin O ulatedwithautologousfibroblastcultures(10),whichhadbeenmock F infectedorinfectedwithrVVsexpressingFIPVproteins(Athrough an acute immunodeficiency and that in the early stages of S 7b;3indicates3E7a)(seeFig.4).rVV-TKservedasanegativecontrol infectiontheimmunesystemisalreadyfacinganuphillstrug- Y (TK).Virus-specificTcellswereidentifiedbyintracellularexpression gle.Still,allanimalswereabletoatleasttemporarilycontain D ofTNF-(cid:8)bythree-colorflowcytometry.Theresultsarepresentedas N bar graphs, depicting the antigen-specific CD4(cid:1) and CD8(cid:1) T-cell the first wave of disease. In agreement with the general view E responses in persistently infected animals (cats 085 and 155) and in thathumoralimmunityisnotprotective,virus-neutralizingan- Y long-termsurvivors(cats249,281,and291).Frequenciesofantigen- tibodiesappearedandrosewithidenticalkineticsandtosim- specificTcells(yaxis)aregivenaspercentagesofthetotalCD4(cid:1)or ilar titers in survivors and nonsurvivors (Fig. 2). Moreover, CD8(cid:1)populations. antibodiesseemtobegeneratedtoolateduringthecourseof acuteFIPVinfectiontocontributetohostdefenses.Wethere- foreassumethatthepartialcontrolofviralreplication,which easewithin16to54days.Wedistinguishedfivegroupsonthe occursduringtheearlydaysafterinfection,isprimarilyT-cell basis of survival time, which were operationlly designated as mediated.Indeed,theonsetofapparentconvalescencearound rapid, intermediate, or delayed progressors and prolonged or day7p.i.wouldcorrelatetemporallywiththeexpectedpeakof long-term survivors. Animals in the latter two groups suc- the early virus-specific effector CD8(cid:1) T-cell response, as de- ceeded in countering the second wave of disease either to scribedwithothersystems(1,26). succumb to a subsequent, final relapse or to gain apparent Our combined observations are therefore consistent with a control of the infection, respectively. It is unknown whether model for FIP pathogenesis in which virus-induced T-cell de- long-termsurvivorsreallyachievedcompleteviralclearanceor pletionandtheantiviralT-cellresponsesareopposingforces. VOL.79,2005 VIRAL DYNAMICS AND IMMUNOBIOLOGY OF FIP 1043 The net result is an intermittent infection, with episodes of Moreover, as disease progression is highly reproducible and disease driven by enhanced viral replication punctuated by primarily driven by viral replication, it should provide an at- short periods of apparent convalescence. The efficacy of the tractive and convenient model system for in vivo testing of primaryT-cellresponsesmostlikelydeterminestowhatextent anti-CoVdrugs. theinitialwaveofinfectioncanbecontainedandhencewould be the decisive factor in disease progression. If the first re- ACKNOWLEDGMENTS sponse is too weak, a second wave of increased virus replica- WethankRachidaSiamari,BenvanSchaijk,andthepersonnelof tionwillfurtherreduceT-cellnumbersandswiftlyoverwhelm theInfectionUnit(CentralAnimalFacility,UniversityofUtrecht)for the immune system (rapid progressors; type A) (Fig. 3). If, excellenttechnicalassistance;HermanEgberinkforhishelpwiththe however,theinitialT-cellresponsessucceedinlargelycontain- animal experiments; Fermin Simons and Liesbeth Breure-Vogel for adviceconcerningreal-timeRT-PCR;andBert-JanHaijemaforshar- ingviralreplication,theanimalmaydevelopamoreprotracted ingmaterials. courseofthedisease(delayedprogressors;typeC)(Fig.3)or OurresearchwassupportedbyagrantfromIntervetInternational evengetasecondchance(prolongedandlong-termsurvivors; B.V. D typesDandE)(Fig.3).TherisingamountsofviralRNAinthe o w REFERENCES blood,consistentlyseeninanimalswithend-stageFIP,indicate n thatprogressiontofataldiseaseisthedirectconsequenceofa 1. Benlhassan-Chahour,K.,C.Penit,V.Dioszeghy,F.Vasseur,G.Janvier,Y. lo Riviere,N.Dereuddre-Bosquet,D.Dormont,R.LeGrand,andB.Vaslin. a lossofimmunecontrol,ultimatelyresultinginuncheckedviral 2003.Kineticsoflymphocyteproliferationduringprimaryimmuneresponse d e replication. Whether or not an animal is able to mount a inmacaquesinfectedwithpathogenicsimianimmunodeficiencyvirusSIV- d mac251:preliminaryreportoftheeffectofearlyantiviraltherapy.J.Virol. protectiveimmuneresponsemaybedeterminedatleastinpart 77:12479–12493. fro by its haplotype. Indeed, cheetahs (Acinonyx jubatus) are ex- 2. Berger, A., C. Drosten, H. W. Doerr, M. Sturmer, and W. Preiser. 2004. m tremelysensitivetoFIP,apeculiaritywhichhasbeenascribed Severeacuterespiratorysyndrome(SARS)-paradigmofanemergingviral h to their genetic uniformity and their lack of major histocom- 3. iBnefregcmtioann.nJ,.CC.linC..,VJir.oDl..29A:l1t3m–a2n2., D. Hinton, and S. A. Stohlman. 1999. ttp patibilitycomplexclassIpolymorphism(27). Inverted immunodominance and impaired cytolytic function of CD8(cid:1) T :/ / If CMI does confer protection, the question arises as to cells during viral persistence in the central nervous system. J. Immunol. jv 163:3379–3387. i. whichviralantigensareinvolved.Ouranalysisofthespecificity 4. Booth,C.M.,L.M.Matukas,G.A.Tomlinson,A.R.Rachlis,D.B.Rose, a s of splenic (memory) T-cell pools in three long-term survivors H.A.Dwosh,S.L.Walmsley,T.Mazzulli,M.Avendano,P.Derkach,I.E. m and in two persistently infected, partially protected animals EHpahwtriymluiocsk,,IE..KRietaa,i,J.BS..DC.hMenekdiner,sDk.i,WS..CBe.scSohna,dSo.wMit.z,PWou.taLn.enG,oaldn,dLA..AS.. .o identifiedthespikeproteinasthedominanttargetforCD8(cid:1)T Detsky.2003.Clinicalfeaturesandshort-termoutcomesof144patientswith rg cells.Theimmunodominanceofepitopesfromaviralenvelope SARSinthegreaterTorontoarea.JAMA289:2801–2809. o/ 5. Brown,T.D.K.,andI.Brierly.1995.Thecoronaviralnonstructuralproteins, n glycoproteinafterchronicinfectionisreminiscentofthesitu- p.191–217.InS.G.Siddell(ed.),TheCoronaviridae.PlenumPress,New M ationininbredmicechronicallyinfectedwiththemousehep- York,N.Y. a aatrietnisavCirouVs((LMCHMVV)).oIrnwbioththtchaeselys,mimphmoucyntoicdocmhoinriaonmceensihnigftietids 6. vcCoehcmatokbrrin:aabcnoatretxvipi,rrSue.ss,spKiol.anqBuroeefcsb.helMitnaog-lg,.aaClnaedcltlB.osB.iMdioalos.se5s:.p31r4o90v83i5–d.3eV4s0av9ci.csuinailasvcirreuesneixnpgreosfsiroen- rch 1 duringthecourseofpersistentinfectionfromepitopesonthe 7. Corapi,W.V.,C.W.Olsen,andF.W.Scott.1992.Monoclonalantibody 3 analysis of neutralization and antibody-dependent enhancement of feline , highly expressed cytoplasmic nucleocapsid proteins (N for infectiousperitonitisvirus.J.Virol.66:6695–6705. 2 MHV and NP for LCMV) towards those from the envelope 8. Cui,W.,Y.Fan,W.Wu,F.Zhang,J.Y.Wang,andA.P.Ni.2003.Expression 01 glycoproteins(SforMHVandGPforLCMV)(3,46,55).In oflymphocytesandlymphocytesubsetsinpatientswithsevereacuterespi- 5 LCMV-infected animals, the NP-specific CD8(cid:1) T cells un- ratorysyndrome.Clin.Infect.Dis.37:857–859. b 9. deGroot,R.J.,andM.C.Horzinek.1995.Felineinfectiousperitonitis,p. y dergo rapid inactivation (exhaustion) or even deletion as a 239–309.InS.G.Siddell(ed.),TheCoronaviridae.PlenumPress,NewYork, U resultofantigenicoverstimulation(55).Asimilarmechanism N.Y. N 10. de Groot-Mijnes, J. D. F., R. G. van der Most, J. M. van Dun, E. G. te I hasbeenpostulatedtoexplaintheinversionofimmunodomi- Lintelo,N.M.P.Schuurman,H.F.Egberink,andR.J.deGroot.2004. V nanceduringchronicMHVinfection(3).Itisthereforetempt- Three-colorflowcytometrydetectionofvirus-specificCD4(cid:1)andCD8(cid:1)T O cellsinthecat.J.Immunol.Methods285:41–54. F ing to speculate that the immunodominance of S-derived 11. deVries,A.A.F.,M.C.Horzinek,P.J.M.Rottier,andR.J.deGroot.1997. S CD8(cid:1)T-cellepitopesafterchronicFIPVinfectionreflectsthe The genome organization of the nidovirales: similarities and differences Y selectivesurvivalofS-specificCD8(cid:1)Tcellsattheexpenseof betweenarteri-,toro-,andcoronaviruses.Semin.Virol.8:33–47. D 12. Drosten,C.,S.Gunther,W.Preiser,S.vanderWerf,H.R.Brodt,S.Becker, N T cells recognizing epitopes of other viral proteins, in partic- H.Rabenau,M.Panning,L.Kolesnikova,R.A.Fouchier,A.Berger,A.M. E ularofN(46).TheapparentdominanceofS-derivedepitopes Burguiere,J.Cinatl,M.Eickmann,N.Escriou,K.Grywna,S.Kramme,J.C. Y becomesevenmoreremarkableifonetakesintoaccountthat Manuguerra,S.Muller,V.Rickerts,M.Sturmer,S.Vieth,H.D.Klenk,A.D. Osterhaus, H. Schmitz, and H. W. Doerr. 2003. Identification of a novel cats are outbred. Indeed, the anti-S responses measured in coronavirus in patients with severe acute respiratory syndrome. N. Engl. individualcatsweredirectedagainstdifferentepitopes,imply- J.Med.348:1967–1976. 13. Earl,P.L.,A.W.Hugin,andB.Moss.1990.Removalofcrypticpoxvirus ingthattheimmunodominanceofSdidnotmerelyreflectthe transcriptionterminationsignalsfromthehumanimmunodeficiencyvirus chancedominanceofasingleepitope-majorhistocompatibility type1envelopegeneenhancesexpressionandimmunogenicityofarecom- complexclassIcombination. binantvacciniavirus.J.Virol.64:2448–2451. 14. Fouchier,R.A.,N.G.Hartwig,T.M.Bestebroer,B.Niemeyer,J.C.DeJong, Thepathogenicphenomenadescribedheremaynotbelim- J.H.Simon,andA.D.Osterhaus.2004.Apreviouslyundescribedcorona- itedtoFIPbutlikelybearrelevancetotheimmunobiologyand virusassociatedwithrespiratorydiseaseinhumans.Proc.Natl.Acad.Sci. pathogenesisofotherchronicCoVinfections,inparticularof USA101:6212–6216. 15. Gut,M.,C.M.Leutenegger,J.B.Huder,N.C.Pedersen,andH.Lutz.1999. SARS, for which acute T-cell lymphopenia, multiphasic dis- One-tube fluorogenic reverse transcription-polymerase chain reaction for ease,andviralpersistencehavebeenpreviouslyreported(2,4, thequantitationoffelinecoronaviruses.J.Virol.Methods77:37–46. 16. Haagmans,B.L.,H.F.Egberink,andM.C.Horzinek.1996.Apoptosisand 8, 12, 24, 36, 44, 56). FIP presents a relevant, safe, and well- T-celldepletionduringfelineinfectiousperitonitis.J.Virol.70:8977–8983. defined model to study CoV-mediated immunosuppression. 16a.Haijema, B. J., H. Volders, and P. J. M. Rottier. 2004. Live, attenuated 1044 DE GROOT-MIJNES ET AL. J.VIROL. coronavirusvaccinesthroughthedirecteddeletionofgroup-specificgenes 36. Poutanen,S.M.,D.E.Low,B.Henry,S.Finkelstein,D.Rose,K.Green,R. provide protection against feline infectious peritonitis. J. Virol. 78:3863– Tellier,R.Draker,D.Adachi,M.Ayers,A.K.Chan,D.M.Skowronski,I. 3871. Salit,A.E.Simor,A.S.Slutsky,P.W.Doyle,M.Krajden,M.Petric,R.C. 17. Hayashi, T., N. Sasaki, Y. Ami, and K. Fujiwara. 1983. Role of thymus- Brunham,andA.J.McGeer.2003.Identificationofsevereacuterespiratory dependentlymphocytesandantibodiesinfelineinfectiousperitonitisafter syndromeinCanada.N.Engl.J.Med.348:1995–2005. oralinfection.NipponJuigakuZasshi45:759–766. 37. Reed,L.H.,andH.Mu¨nch.1938.Asimplemethodforestimating50percent 18. Herrewegh,A.A.,H.Vennema,M.C.Horzinek,P.J.Rottier,andR.J.de endpoints.Am.J.Hyg.27:493–497. Groot.1995.Themoleculargeneticsoffelinecoronaviruses:comparative 38. Schneider-Schaulies,S.,K.Bieback,E.Avota,I.Klagge,andV.terMeulen. sequenceanalysisoftheORF7a/7btranscriptionunitofdifferentbiotypes. 2002.Regulationofgeneexpressioninlymphocytesandantigen-presenting Virology212:622–631. cellsbymeaslesvirus:consequencesforimmunomodulation.J.Mol.Med. 19. Hohdatsu,T.,M.Nakamura,Y.Ishizuka,H.Yamada,andH.Koyama.1991. 80:73–85. Astudyonthemechanismofantibody-dependentenhancementoffeline 39. Servet-Delprat,C.,P.O.Vidalain,H.Valentin,andC.Rabourdin-Combe. infectiousperitonitisvirusinfectioninfelinemacrophagesbymonoclonal 2003.Measlesvirusanddendriticcellfunctions:howspecificresponseco- antibodies.Arch.Virol.120:207–217. habitswithimmunosuppression.Curr.Top.Microbiol.Immunol.276:103– 20. Hunziker, L., M. Recher, A. J. Macpherson, A. Ciurea, S. Freigang, H. 123. Hengartner,andR.M.Zinkernagel.2003.Hypergammaglobulinemiaand 40. Stoddart,C.A.,andF.W.Scott.1988.Isolationandidentificationoffeline autoantibodyinductionmechanismsinviralinfections.Nat.Immunol.4:343– peritonealmacrophagesforinvitrostudiesofcoronavirus-macrophagein- 349. teractions.J.Leukoc.Biol.44:319–328. D 21. Kipar,A.,K.Kohler,W.Leukert,andM.Reinacher.2001.Acomparisonof 41. Stoddart,M.E.,J.T.Whicher,andD.A.Harbour.1988.Catsinoculated o w lymphatic tissues from cats with spontaneous feline infectious peritonitis withfelineinfectiousperitonitisvirusexhibitabiphasicacutephaseplasma n (FIP),catswithFIPvirusinfectionbutnoFIP,andcatswithnoinfection. proteinresponse.Vet.Rec.123:622–624. lo J.Comp.Pathol.125:182–191. 42. Summers,K.L.,B.D.Hock,J.L.McKenzie,andD.N.Hart.2001.Pheno- a 22. Ksiazek,T.G.,D.Erdman,C.S.Goldsmith,S.R.Zaki,T.Peret,S.Emery, typiccharacterizationoffivedendriticcellsubsetsinhumantonsils.Am.J. d S.Tong,C.Urbani,J.A.Comer,W.Lim,P.E.Rollin,S.F.Dowell,A.E. Pathol.159:285–295. e d Ling,C.D.Humphrey,W.J.Shieh,J.Guarner,C.D.Paddock,P.Rota,B. 43. Tresnan,D.B.,R.Levis,andK.V.Holmes.1996.FelineaminopeptidaseN Fields, J. DeRisi, J. Y. Yang, N. Cox, J. M. Hughes, J. W. LeDuc, W. J. servesasareceptorforfeline,canine,porcine,andhumancoronavirusesin fr o Bellini,andL.J.Anderson.2003.Anovelcoronavirusassociatedwithsevere serogroupI.J.Virol.70:8669–8674. m acuterespiratorysyndrome.N.Engl.J.Med.348:1953–1966. 44. Tsang,O.T.,T.N.Chau,K.W.Choi,E.Y.K.Tso,W.Lim,M.C.Chiu,W.L. 23. Lee,N.,D.Hui,A.Wu,P.Chan,P.Cameron,G.M.Joynt,A.Ahuja,M.Y. Tong,P.O.Lee,B.H.S.Lam,T.K.Ng,J.Y.Lai,W.C.Yu,andS.T.Lai. h t Yung,C.B.Leung,K.F.To,S.F.Lui,C.C.Szeto,S.Chung,andJ.J.Sung. 2003. Severe acute respiratory syndrome: recurrence? Hospital infection? tp 2003.AmajoroutbreakofsevereacuterespiratorysyndromeinHongKong. Emerg.Infect.Dis.9:1180–1181. : / N.Engl.J.Med.348:1986–1994. 45. van der Hoek, L., K. Pyrc, M. F. Jebbink, W. Vermeulen-Oost, R. J. M. /jv 24. Leung,W.K.,K.To,P.K.S.Chan,H.L.Y.Chan,A.K.L.Wu,N.Lee,K.Y. Berkhout,K.C.Wolthers,P.M.E.Wertheim-vanDillen,J.Kaandorp,J. i. Yuen,andJ.J.Y.Sung.2003.Entericinvolvementofsevereacuterespira- Spaargaren,andB.Berkhout.2004.Indentificationofanewhumancoro- a torysyndrome-associatedcoronavirusinfection.Gastroenterology125:1011– navirus.Nat.Med.10:368–373. sm 1017. 46. vanderMost,R.G.,K.Murali-Krishna,J.G.Lanier,E.J.Wherry,M.T. . 25. McKeirnan,A.J.,J.F.Evermann,A.Hargis,andR.L.Ott.1981.Isolation Puglielli,J.N.Blattman,A.Sette,andR.Ahmed.2003.Changingimmu- o offelinecoronavirusesfromtwocatswithdiversediseasemanifestations. nodominancepatternsinantiviralCD8T-cellresponsesafterlossofepitope rg FelinePract.11:17–20. presentationorchronicantigenicstimulation.Virology315:93–102. / 26. Murali-Krishna,K.,J.D.Altman,M.Suresh,D.J.Sourdive,A.J.Zajac, 47. Vennema,H.,R.J.deGroot,D.A.Harbour,M.Dalderup,T.Gruffydd- o n J.D.Miller,J.Slansky,andR.Ahmed.1998.Countingantigen-specificCD8 Jones, M. C. Horzinek, and W. J. Spaan. 1990. Early death after feline M Tcells:areevaluationofbystanderactivationduringviralinfection.Immu- infectiousperitonitisviruschallengeduetorecombinantvacciniavirusim- nity8:177–187. munization.J.Virol.64:1407–1409. a r 27. O’Brien, S. J., M. E. Roelke, L. Marker, A. Newman, C. A. Winkler, D. 48. Vennema,H.,R.J.deGroot,D.A.Harbour,M.C.Horzinek,andW.J. c h Meltzer,L.Colly,J.F.Evermann,M.Bush,andD.E.Wildt.1985.Genetic Spaan.1991.Primarystructureofthemembraneandnucleocapsidprotein basisforspeciesvulnerabilityinthecheetah.Science227:1428–1434. genesoffelineinfectiousperitonitisvirusandimmunogenicityofrecombi- 1 3 28. Okada, H., F. Kobune, T. A. Sato, T. Kohama, Y. Takeuchi, T. Abe, N. nantvacciniavirusesinkittens.Virology181:327–335. , Takayama,T.Tsuchiya,andM.Tashiro.2000.Extensivelymphopeniadue 49. Vennema,H.,A.Poland,J.Foley,andN.C.Pedersen.1998.Felineinfectious 2 to apoptosis of uninfected lymphocytes in acute measles patients. Arch. peritonitisvirusesarisebymutationfromendemicfelineentericcoronavi- 0 1 Virol.145:905–920. ruses.Virology243:150–157. 5 29. Paltrinieri,S.,M.P.Cammarata,G.Cammarata,andS.Comazzi.1998. 50. Ward,J.M.,D.H.Gribble,andD.L.Dungworth.1974.Felineinfectious b Someaspectsofhumoralandcellularimmunityinnaturallyoccuringfeline peritonitis: experimental evidence for its multiphasic nature. Am. J. Vet. y infectiousperitonitis.Vet.Immunol.Immunopathol.65:205–220. Res.35:1271–1275. U 30. Palucka, K., and J. Banchereau. 2002. How dendritic cells and microbes 51. Weiss,R.C.,andN.R.Cox.1989.Evaluationofimmunitytofelineinfectious N interacttoelicitorsubvertprotectiveimmuneresponses.Curr.Opin.Im- peritonitisincatswithcutaneousviral-induceddelayedhypersensitivity.Vet. I munol.14:420–431. Immunol.Immunopathol.21:293–309. V 31. Pedersen,N.C.,andJ.F.Boyle.1980.Immunologicalphenomenainthe 52. Weiss, R. C., and F. W. Scott. 1981. Antibody-mediated enhancement of O effusiveformoffelineinfectiousperitonitis.Am.J.Vet.Res.41:868–876. disease in feline infectious peritonitis: comparisons with dengue hemor- F 32. Pedersen, N. C., J. F. Evermann, A. J. McKeirnan, and R. L. Ott. 1984. rhagicfever.Comp.Immunol.Microbiol.Infect.Dis.4:175–189. S Pathogenicity studies of feline coronavirus isolates 79–1146 and 79–1683. 53. Weiss,R.C.,andF.W.Scott.1981.Pathogenesisoffelineinfectiousperi- Y Am.J.Vet.Res.45:2580–2585. tonitis:natureanddevelopmentofviremia.Am.J.Vet.Res.42:382–390. D 33. Pedersen,N.C.,andK.Floyd.1985.Experimentalstudieswiththreenew 54. Weiss,R.C.,andF.W.Scott.1981.Pathogenesisoffelineinfectiousperi- N strainsoffelineinfectiousperitonitisvirus:FIPV-UCD2,FIPV-UCD3and tonitis:pathologicchangesandimmunofluorescence.Am.J.Vet.Res.42: E FIPV-UCD4.Compend.Contin.Educ.Pract.Vet.7:1001–1011. 2036–2048. Y 34. Peiris,J.S.,S.T.Lai,L.L.Poon,Y.Guan,L.Y.Yam,W.Lim,J.Nicholls, 55. Wherry,E.J.,J.N.Blattman,K.Murali-Krishna,R.vanderMost,andR. W.K.Yee,W.W.Yan,M.T.Cheung,V.C.Cheng,K.H.Chan,D.N.Tsang, Ahmed.2003.ViralpersistencealtersCD8T-cellimmunodominanceand R.W.Yung,T.K.Ng,andK.Y.Yuen.2003.Coronavirusasapossiblecause tissue distribution and results in distinct stages of functional impairment. ofsevereacuterespiratorysyndrome.Lancet361:1319–1325. J.Virol.77:4911–4927. 35. Poland,A.M.,H.Vennema,J.E.Foley,andN.C.Pedersen.1996.Two 56. Wong,R.S.,A.Wu,K.F.To,N.Lee,C.W.Lam,C.K.Wong,P.K.Chan, relatedstrainsoffelineinfectiousperitonitisvirusisolatedfromimmuno- M.H.Ng,L.M.Yu,D.S.Hui,J.S.Tam,G.Cheng,andJ.J.Sung.2003. compromisedcatsinfectedwithafelineentericcoronavirus.J.Clin.Micro- Haematologicalmanifestationsinpatientswithsevereacuterespiratorysyn- biol.34:3180–3184. drome:retrospectiveanalysis.BMJ326:1358–1362.