ebook img

1D Semiconducting Hybrid Nanostructures: Synthesis and Applications in Gas Sensing and Optoelectronic PDF

362 Pages·2023·10.496 MB·english
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview 1D Semiconducting Hybrid Nanostructures: Synthesis and Applications in Gas Sensing and Optoelectronic

1D Semiconducting Hybrid Nanostructures 1D Semiconducting Hybrid Nanostructures Synthesis and Applications in Gas Sensing and Optoelectronics Edited by Arvind Kumar, Dinesh K. Aswal, and Nirav Joshi Editors All books published by WILEY-VCH are carefully produced. Nevertheless, authors, editors, and Dr. Arvind Kumar publisher do not warrant the information Chaman Lal (P.G.) College contained in these books, including this book, Department of Physics to be free of errors. Readers are advised to keep Chaman Lal Mahadidhyalaya in mind that statements, data, illustrations, Haridwar procedural details or other items may India inadvertently be inaccurate. Dr. Dinesh K. Aswal Library of Congress Card No.: applied for CSIR-National Physical Laboratory British Library Cataloguing-in-Publication Data: New Delhi A catalogue record for this book is available India from the British Library. Dr. Nirav Joshi Bibliographic information published by the University of Sao Paolo Deutsche Nationalbibliothek Sao Caro Institute of Physics The Deutsche Nationalbibliothek Sao Paolo lists this publication in the Deutsche Brazil Nationalbibliografie; detailed bibliographic data are available on the Internet at <http:// Cover Image: © Inkoly/Shutterstock dnb.d- nb.de>. © 2023 Wiley‐VCH GmbH, Boschstraße 12, 69469 Weinheim, Germany All rights reserved (including those of translation into other languages). No part of this book may be reproduced in any form – by photoprinting, microfilm, or any other means – nor transmitted or translated into a machine language without written permission from the publishers. Registered names, trademarks, etc. used in this book, even when not specifically marked as such, are not to be considered unprotected by law. Typesetting Straive, Chennai, India Print ISBN 978‐3‐527‐35027‐8 ePDF ISBN 978‐3‐527‐83766‐3 ePub ISBN 978‐3‐527‐83765‐6 oBook ISBN 978‐3‐527‐83764‐9 v Contents Preface xiii 1 One-Dimensional Semiconducting Hybrid Nanostructure: Gas Sensing and Optoelectronic Applications 1 Jyoti Rawat, Himani Sharma, and Charu Dwivedi 1.1 Introduction 1 1.2 Synthesis of 1D Hybrid Nanostructures 2 1.2.1 Top-Down Approach 2 1.2.2 Bottom-Up Approach 3 1.2.2.1 Nanotubes 4 1.2.2.2 Nanowires 5 1.2.2.3 Nanorods 6 1.3 Applications of 1D Hybrid Nanostructures 7 1.3.1 Gas Sensing 7 1.3.1.1 Safety Monitoring of Exhaust Gases in Automobile 8 1.3.1.2 Health Monitoring 10 1.3.1.3 Environmental Monitoring 11 1.3.2 Optoelectronic Application 12 1.3.2.1 Photodetector 14 1.3.2.2 Solar Cell 16 1.3.2.3 Light-Emitting Diode 16 1.4 Conclusions 18 Acknowledgment 18 References 18 2 Synthesis and Gas-Sensing Application of 1D Semiconducting Hybrid Nanostructures 27 Nguyen D. Cuong and Nguyen Van Hieu 2.1 Introduction 27 2.2 Noble Metal-Functionalized 1D Metal Oxide Semiconductors for Gas Sensors 29 2.3 1D Metal Oxide/Metal Oxide Heterojunctions-Based Gas Sensors 34 vi Contents 2.4 Conducting Polymer/1D Metal Oxide Nanocomposites for Gas Sensors 36 2.5 Hybrid Conducting Polymer/Carbon Nanotube-Based Gas Sensors 39 2.6 Conclusion and Future Perspectives 44 Acknowledgment 45 References 45 3 Room-Temperature Gas-Sensing Properties of Metal Oxide Nanowire/ Graphene Hybrid Structures 57 Pooja Devi, Sandeep Sharma, and Rajan Saini 3.1 Introduction 57 3.2 Synthesis of Graphene and Graphene Oxide 58 3.2.1 Mechanical Exfoliation 58 3.2.2 Electrochemical Method 58 3.2.3 Sonication 58 3.2.4 Exfoliation of Graphite Oxide 59 3.2.5 Unzipping Carbon Nanotubes 59 3.2.6 Epitaxial Growth on Silicon Carbide (SiC) 59 3.2.7 Chemical Vapor Deposition 60 3.3 Graphene/Metal Oxide Nanowires Hybrid-Based Sensors 60 3.3.1 ZnO Nanowires Reduced Graphene Oxide-Based Hybrids for NH 3 Detection 61 3.3.1.1 Influence of Weight Percentage on Ammonia-Sensing Characteristics 63 3.3.2 NO Detection Using Metal Oxide Nanowires Hybrids with Reduced 2 Graphene Oxide 65 3.3.2.1 Cu O Nanowires/RGO-Based Hybrid 65 2 3.3.2.2 SnO Nanowires/RGO-Based Hybrid 66 2 3.3.3 H S Detection Using SnO Quantum Wire/RGO-Based Hybrid 67 2 2 3.3.4 ZnO Nanowires-Graphene-Based H Sensor 67 2 3.3.5 ZnO Nanowires on Laser-Scribed Graphene-Based Devices for NO Gas Detection 69 3.3.6 UV Light-Activated NO - and SO -Gas-Sensing Using RGO/Hollow SnO 2 2 2 Nanofibers 69 3.4 Conclusion 72 References 72 4 Highly Sensitive Room-Temperature Gas Sensors Based on  Organic–Inorganic Nanofibers 75 Bhagyashri Bhangare, Sinjumol K. Rajan, Niranjan S. Ramgir, Dinesh Kumar Aswal, and Anil Krishna Debnath 4.1 Introduction 75 4.2 Classification of Nanofibers for Gas-Sensing Application 77 4.2.1 Organic Nanofibers 77 4.2.2 Inorganic Nanofibers 77 4.2.3 Heterostructure-Based Organic–Inorganic Nanofibers 77 Contents vii 4.3 Different Configurations of Gas Sensors 79 4.4 Synthesis of NFs 80 4.4.1 Electrospinning and Coaxial Electrospinning Techniques 80 4.4.2 On-Chip Fabrication and Direct Writing of NFs-Based Gas Sensors 81 4.5 Role of Physicochemical Properties of Nanofibers in Gas Sensing 81 4.5.1 Surface-Dependent Properties 82 4.5.2 Interface-Dependent Properties 82 4.5.3 Morphology-Controlled Properties 83 4.5.4 Adsorption–Desorption Kinetics 83 4.6 Enhancement of Characteristics of Nanofibers-Based Sensor Performance 85 4.6.1 UV Light/High-Energy Beam Irradiation 85 4.6.2 Noble Metal Sensitizers 85 4.7 Recent Trends 86 4.7.1 Single-Nanofiber-based Gas Sensors Synthesized by Electrospinning 87 4.7.2 E-Noses and Nano-e-Noses Using NFs 87 4.7.3 On-Chip Fabrication of Aligned NFs Heterostructures 89 4.7.4 Wearable Devices 90 4.8 Conclusion and Future Perspectives 90 Acknowledgment 91 References 92 5 1D Hybrid Tin Oxide Nanostructures: Synthesis and Applications 97 Pedro H. Suman, Alexandre O. Jorgetto, Fernanda C. Romeiro, Anderson A. Felix, Paulo V. Morais, Miécio O. Melquíades, and Marcelo O. Orlandi 5.1 Main Features of 1D Materials 97 5.2 Synthesis of 1D SnO, Sn O , and SnO Materials 99 3 4 2 5.2.1 Hydrothermal Method 99 5.2.2 Electrospinning Method 100 5.2.3 Chemical Vapor Deposition (CVD) 101 5.2.4 Reactive Sputtering Method 102 5.3 Tin-Based Hybrid Nanostructures 103 5.3.1 SnO -Based Hybrid Nanostructures 103 2 5.3.2 Sn O -Based Hybrid Nanostructures 104 3 4 5.3.3 SnO-Based Hybrid Nanostructures 105 5.4 Gas-Sensing Performance of 1D Tin Oxide-Based Hybrid Nanostructures 106 5.4.1 Pristine 1D Tin Oxide Nanostructures 106 5.4.2 Doping, Loading, and Surface Functionalization with Noble Metals 107 5.4.3 Heterostructures and the Effect of Heterojunctions in Gas-Sensing Performance 108 5.4.4 Composites with Carbon-Based Materials 109 5.4.5 Composites with Conducting Polymers 110 5.5 Photo(Electro)Catalytic Application of 1D Tin Oxide-Based Heterostructures and Doped Materials 110 viii Contents 5.5.1 Photocatalytic Degradation of Organic Pollutants and NO Gas and Photocatalytic Conversion of Benzyl Alcohol into Benzaldehyde Using 1D Tin Oxide-Based Materials 110 5.5.2 Photo(Electro)Catalytic Water Splitting with 1D Tin Oxide-Based Materials 113 5.6 Other Applications of 1D Tin Oxides 113 5.7 Final Considerations and Future Outlook 115 Acknowledgments 116 References 116 6 Recent Advances in Semiconducting Nanowires-Based Hybrid Structures for Solar Cell Application 127 Jaydip Bhaliya, Meera R. Popaliya, Gautam M. Patel, Arvnabh Mishra, and Vraj Shah 6.1 Introduction 127 6.2 Semiconductor Materials 129 6.2.1 Classification Semiconductors 130 6.2.1.1 Intrinsic Semiconductor 130 6.2.1.2 Extrinsic Semiconductor 131 6.2.2 Solar Photovoltaic Systems 131 6.2.3 Nanomaterials as Semiconductors 133 6.2.4 Effect of Nanomaterial Morphology in Semiconductors Applications 134 6.3 Semiconductor Nanowires Synthesis 136 6.3.1 Advantages of Nanowire Morphology 137 6.3.2 Nanowire Synthesis 138 6.3.2.1 ZnO Nanowire 139 6.3.2.2 SiNWs Preparation 140 6.3.2.3 NaNbO Nanowire 140 3 6.3.2.4 TiO Nanowires 140 2 6.3.2.5 ZnS Nanowire 141 6.3.2.6 CdS Nanowires 141 6.3.3 Characterization 142 6.4 Applications of Semiconductors in Solar Cells 145 6.4.1 Si-NWs for Solar Cells 145 6.4.2 ZnO Nanowires for Solar Cell 146 6.4.3 Ag-NWs for Solar Cells 148 6.4.4 III-V NWs 149 6.4.5 Cu-NWs for Solar Cell 149 6.5 Conclusion and Future Perspectives 150 References 151 7 Introduction and Types of Semiconducting Hybrid Nanostructures for Optoelectronic Devices 163 Byrappanapalya S. Ravikumar and Baishali Garai 7.1 Introduction 163 7.2 Synthesis of Nanostructured Materials 164 Contents ix 7.2.1 1D ZnO Nanostructures (Nanowires/Nanorods) 165 7.2.1.1 Hydrothermal Method: Experimental Steps for ZnO 165 7.2.2 Chemical Vapor Deposition: MoS Few Layer Structures 167 2 7.2.2.1 CVD: Experimental Steps for MoS 167 2 7.2.2.2 CVD: Experimental Steps for ZnO 168 7.2.3 Reduced Graphene Oxide (RGO) 169 7.2.3.1 Experimental Steps for RGO 169 7.2.3.2 Experimental Steps for ZnO/RGO Hybrid Structure 170 7.2.4 Experimental Steps for ZnO/MoS Hybrid Structure 171 2 7.3 Applications of ZnO–Graphene Heterostructure for Photon Detection 172 7.3.1 ZnO Nanowire/Graphene-Based Photodetector 173 7.3.2 Figure of Merits of a Photodetector 174 7.3.3 One-Dimensional Chalcogenide Material for Optoelectronic Applications 175 7.3.4 Heterostructure-Based Solar Cell 176 7.4 Conclusion and Summary 176 References 177 8 One-Dimensional Si Nanostructure-Based Hybrid Systems: Surface- Enhanced Raman Spectroscopy and Photodetector Applications 185 Prajith Karadan and Arvind Kumar 8.1 Introduction 185 8.2 Si Nanostructures 186 8.3 Fabrication of 1D Si Nanostructures 187 8.3.1 Vapor–Liquid–Solid Growth 187 8.3.2 Dry Etching 188 8.3.3 Metal-Assisted Chemical Etching 189 8.4 Applications of 1D Si Nanostructures Hybrids in SERS and Photodetectors 190 8.4.1 SERS Applications of Si Nanostructure Hybrids 190 8.4.2 Si Nanostructure Hybrids for Photodetector Applications 195 8.4.2.1 Device Geometries of Photodetectors 195 8.4.2.2 1D Si Nanostructure Hybrids for Photodetectors 195 8.5 Conclusions 197 References 197 9 Hybrid 1D Semiconducting ZnO and GaN Nanostructures for Light-Emitting Devices 205 Vinod Kumar, Habtamu F. Etefa, Mulugeta T. Efa, and Leta T. Jule 9.1 Introduction About 1D Nanostructures 205 9.2 Synthesis Methods for the Growth of 1D Nanostructure 206 9.2.1 Hydrothermal Method for the Synthesis of 1D ZnO Nanorods 207 9.2.2 Pulsed Laser Deposition Method 208 9.2.3 Chemical Vapor Deposition Method 208 9.2.4 Metal Organic Chemical Vapor Deposition 209 x Contents 9.3 Application of ZnO- and GaN-Based Hybrid 1D Nanostructure for Light-Emitting Devices 209 9.4 Conclusion 213 References 214 10 Optoelectronic Properties of TiO Nanorods/Au Nanoparticles 2 Heterostructure 217 Dhyey Raval, Abhijit Ray, and Brijesh Tripathi 10.1 Introduction 217 10.2 Theory of Electron Transfer 219 10.2.1 Description of Band Diagram 219 10.2.2 Extinction Estimation 220 10.3 Experimental 221 10.3.1 TiO Nanorods 221 2 10.3.2 Structural, Morphological, Elemental, and Optical Measurement 222 10.3.3 Amperometric Measurement 222 10.4 Results and Discussion 222 10.4.1 Morphology 222 10.4.2 Structural 224 10.4.3 Optical 225 10.4.4 Electrical 226 10.4.4.1 Electron Transfer Mechanism from AuNP to TiO NR 226 2 10.4.4.2 Amperometric (Current–Time) 228 10.5 Conclusions 229 Acknowledgments 229 Compliance with Ethical Standards 229 References 229 11 2D Materials with 1D Semiconducting Nanostructures for High-Performance Gas Sensor 235 Shulin Yang, Yinghong Liu, Gui Lei, Huoxi Xu, Zhigao Lan, Zhao Wang, and Haoshuang Gu 11.1 Introduction 235 11.2 Enhanced Gas-Sensing Performances of 1D-Sensing Materials Composited with Different 2D Materials 237 11.2.1 Graphene or Reduced Graphene Oxide-based Composites 237 11.2.2 MoS -based Composites 243 2 11.2.3 WS -based Composite 249 2 11.2.4 ZnO-based Composite 252 11.2.5 NiO-based Composites 254 11.2.6 Other 2D material-decorated 1D nanomaterial 256 11.3 Remain Challenges and Possible Effective Ways to Explore High- Performance Gas Sensor 262 11.4 Conclusions 265 Acknowledgments 265 References 265

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.