ebook img

1989, Granites and Rhyolites PDF

508 Pages·2014·45.001 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview 1989, Granites and Rhyolites

Collected Reprint Series Granites and Rhyolites American Geophysical Union Washington, DC Copyright 1989 by the American Geophysical Union 2000 Florida Avenue, N.W. Washington, DC 20009 Figures, tables and short excerpts may be reprinted in scientific books and journals if the source is properly cited. Authorization to photocopy items for internal or personal use, or the internal or personal use of specific clients, is granted by the American Geophysical Union for libraries and other users registered with the Copyright Clearance Center (CCC). This consent does not extend to other kinds of copying, such as copying for creating new collective works or for resale.The reproduction of multiple copies and the use of full articles or the use of extracts, including figures and tables, for commercial purposes requires permission from the American Geophysical Union. CONTENTS Chapter 1: Introduction to special issue on Granites and Rhyolites: A commentary for the nonspecialist Fred Barker .....................................................................................................................................................10131 Chapter 2: A summary of the geology and petrology of the Sierra La Primavera, Jalisco, Mexico Gail A. Mahood ..............................................................................................................................................10137 Chapter 3: Gradients in silicic magma chambers: Implications for lithospheric magmatism Wes Hildreth ..................................................................................................................................................10153 Chapter 4: Partitioning of rare earths and other trace elements between sanidine and coexisting volcanic glass William P. Leeman and David W. Phelps ..........................................................................................................10193 Chapter 5: Volcanic ash beds: Recorders of Upper Cenozoic silicic pyroclastic volcanism in the western United States Glen A. Izett ...................................................................................................................................................10200 Chapter 6: Pleistocene high-silica rhylolites of the Coso Volcanic Field, Inyo County, California Charles R. Bacon, Ray Macdonald, Robert L. Smith, and Philip A. Baedecker ..................................................10223 Chapter 7: The mineralogy and chemistry of the anorogenic Tertiary silicic volcanics of the SE Queensland and NE New South Wales, Australia A. Ewart ..........................................................................................................................................................10242 Chapter 8: Petrogenesis of oceanic andesites Sven Maaløe and Tom Svane Petersen ............................................................................................................10273 Chapter 9: Gravity and thermal models of the Twin Peaks Silicic Volcanic Center, southwestern Utah Daniel L. Carrier and David S. Chapman .........................................................................................................10287 Chapter 10: Late Cenozoic volcanism at Twin Peaks, Utah: Geology and Petrology H. R. Crecraft, W. P. Nash, and S. H. Evans Jr. ..................................................................................................10303 Chapter 11: Geochemistry and petrology of mid-Tertiary ash flow tuffs from the Sierra el Virulento Area, Eastern Chihuahua, Mexico Elizabeth J. Moll ..............................................................................................................................................10321 Chapter 12: Three S-type volcanic suites from the Lachlan Fold Belt, southeast Australia D. Wyborn, B. W. Chappell, and R. M. Johnston ..............................................................................................10335 Chapter 13: Calderas in the Precambrian terrane of the St. Francois Mountains, southeastern Missouri J. Ronald Sides, M. E. Bickford, R. D. Shuster, and R. L. Nusbaum ....................................................................10349 Chapter 14: Chemical evolution of magmas in the Proterozoic terrane of the St. Francois Mountains, southeastern Missouri, 1, Field, petrographic, and major element data M. E. Bickford, J. R. Sides, and R. L. Cullers ......................................................................................................10365 Chapter 15: Chemical evolution of magmas in the Proterozoic terrane of the St. Francois Mountains, southeastern Missouri, 2, Trace element data R. L. Cullers, R. J. Koch, and M. E. Bickford ..... ................................................................................................10388 Chapter 16: Contrasting eolution of calc-alkalic volcanic and plutonic rocks of Western Chihuahua, Mexico W. C. Bagby, K. L. Cameron, and M. Cameron .................................................................................................10402 Chapter 17: Phase relationships of I-type granite with H O to 35 kilobars: The Dinkey Lakes 2 biotite-granite from the Sierra Nevada Batholith Charles R. Stern and Peter J. Wyllie .................................................................................................................10412 Chapter 18: The Redskin Granite: Evidence for thermogravitational diffusion in a Precambrian granite batholith Steve Ludington ..............................................................................................................................................10423 Chapter 19: Chemistry of rock-forming minerals of the Cretaceous-Paleocene batholith in southeastern Japan and implications for magma genesis Gerald K. Czamanske, Shunso Ishihara, and Stevan A. Atkin ...........................................................................10431 Chapter 20: A neodymium and strontium isotopic study of the Mesozoic calc-alkaline granite batholiths of the Sierra Nevada and Peninsular Ranges, California Donald J. DePaolo ..........................................................................................................................................10470 Chapter 21: Petrology and geochronology of metamorphosed volcanic rocks in a Middle Cretaceous volcanic neck in the east-central Sierra Nevada, California Ronald W. Kistler and Samuel E. Swanson .......................................................................................................10489 Chapter 22: Caledonian plutonism in Britian: A summary G. C. Brown, J. Cassidy, C. A. Locke, J. A. Plant, and P. R. Simpson ...................................................................10502 Chapter 23: Phase relationships of S-type granite with H to 35 kbar: Muscovite granite from 2 Harney Peak, South Dakota W. L. Huang and P. J. Wyllie ............................................................................................................................10515 Chapter 24: The New England Batholith, eastern Australia: Geochemical variations in time and space S. E. Shaw and R. H. Flood ..............................................................................................................................10530 Chapter 25: Manaslu Leucogranite: A collision signature of the Himalaya, a model for its genesis and emplacement Patrick Le Fort .................................................................................................................................................10545 Chapter 26: Hybrid granodiorites intruding the accretionary prism, Kodiak, Shumagin, and Sanak Islands, southwest Alaska Malcolm Hill, Julie Morris, and Joseph Whelan ...............................................................................................10569 Chapter 27: Petrogenesis of garnet two-mica granites in the Ruby Mountains, Nevada R. W. Kistler, E. D. Ghent, and J. R. O’Neil .......................................................................................................10591 Chapter 28: Two-mica granites of northeastern Nevada Donald E. Lee, Ronald W. Kistler, Irving Friedman, and Richard E. Van Loeren .................................................10607 Chapter 29: The Late Archaean Qôrqut Granite Complex of southern west Greenland Michael Brown, C. R. L. Friend, V. R. McGregor, and W. T. Perkins ...................................................................10617 Chapter 30: Seismic reflections from the basal contacts of batholiths Heloise B. Lynn, Laura D. Hale, and George A. Thompson ..............................................................................10633 JOURNALO F GEOPHYSICALR ESEARCHV, OL. 86, NO. BII, PAGES1 0131-1013N5O, VEMBER1 0, 1981 Introductiotno SpeciaIls sueo n Granitesa ndR hyolites' A Commentaryfo r the Nonspecialist FRED BARKER U.S. GeologicaSl urveyD, enverF ederalC enterD, enver.C olorado8 0225 WHY GRANITES AND RHYOLITES? containing2 5% of other mineralsn eed containo nly 15% The siliceousp, otassicig neousr ockst hat containm ore than quartzt o fall into the granitef ield( Figure1 ). This petrogra- phicd efinitiono f granitet husp recludeesx actc hemicadl efini- ~69%S iO2a ndt ypically3 .5-5.5%K 20--the graniteasn dr hy- tions. olites--nowf ollowb asaltsin theiri mportancteo earths cien- tists.T hough the 1970'sc ouldb estb e termeda 'Decadeo f Ba- Rhyolitesp osea differenpt roblemin terminologbye cause salts'[ Hart andA llegre,1 980],a n increasingn umbero f earth mosta rep artlyt o largelyg lassayn ds oc annobt ec lassifiebdy scientistsa re now turningt heir attentiont o the more siliceous proportionso f mineral phases.A chemicalc lassificationis rocksT. he presenct ollectioonf paperso n granitesa nd rhyo- necessarAy. usefuly et simpleo ne,s hownh erea sF igure2 , is liteisn cludgeeso logaicnadgl eophysfiiecladslt udipesh,y sicabla seodn S iOa2n dK 20a bundanacnedws asp roposbeyd andc hemiceaxlp erimensttuald ieasn,a lysoifsb othro ckasn d. Pecceriallnod T aylo[r1 976a]n dm odifiebdyE war[t1 979A].s the constituenmt ineralsf or major and minor elementsa nd ther eaderw ouldju dge,t hec orrespondenocf ec hemicalldye - variousis otopicra tios,a nd consideratioonf pertinenpt late finedr hyolitea ndo f granited efinedb y proportionosf miner- tectonicp rocesseasn d environmentPs.r ocesseWsh ichg ener- als is haphazard.C lassificationo f theser ocksr emainsa minor ate granitic-rhyolitmice ltsa nd mechanismosf emplacement problem. of thesem eltsi n the upperc rusto r at the earth'ss urfacea re of Many petrologisatsn d geochemisftusr thers eparateg ran- ites, rhyolitesa nd relatedr ocksi nto the followingt hree paramounitn teresht ere.T his speciails suei s a sampleo f modernr esearchan d conceptasb outg ranitesa nd rhyolites. groupsb y molar proportionso f severalm ajor constituents [Shand, 1951]: NOMENCLATURE peraluminous:A 120>3 Na20+ K20 + CaO Becausteh e definitionso f granitea nd rhyoliteh ave been metaluminous: Na(cid:127)O + K20 < AI(cid:127)O3< Na(cid:127)O + K(cid:127)O changedr ecently,t erminologyi s discussedfi rst. + CaO AlmOsat ll granitesa re intrusivea nd mostr hyolitesa re ex- peralkaline: AI(cid:127)O(cid:127) < Na20 + K(cid:127)O trusiveH. owevera, classificatitohna ti s independeonft mode of occurrencies preferreda nd so granitei s definedp etro- Two other classifications chemeso f igneousr ock suitesd e- graphicallyI.t is a whollyc rystallinero ckw hosem ajor min- servem ention. The CIPW rock norm classification[C rosse t eral constituentasr e 1-25 mm in averaged imension(f iner- al., 1902;J ohannsen1, 939] is basedo n the calculation( by grainedv arietiesa re termedf elsiteo r aplite;c oatsetv arieties weightp roportions)o f a completes et of hypotheticanl orma- arep egmatitea) ndi t containse ssentiaall kalif eldsparq, uartz, tive 'minerals' that include quartz (SiOn), orthoclase andp lagiøclasCeo. mmonliyt alsoc ontainosn eo r morev ari- (KA1Si(cid:127)Os)a, lbite (NaAISi(cid:127)Os),a northite( CaAl(cid:127)Si(cid:127)Os),c o- etal mineralss uch as biotite, hornblende,m uscovite,s odic, rundum (AI20(cid:127)), enstatite( MgSiO3), and others.T he CIPW amphiboleo, r othersa nd accessorpyh ases(cid:127)u ch(cid:127) magnetite, classificatiogne nerallyi s bettera ppliedt o volatile-poorb asal- ilmenite, apatite, zircon, allanitc, garnet, or others.T he his- tic systems[s eeM orse, 1980]t han to mostg raniteo r rhyolite tory of rockc lassificationdse,f initionos f a multitudeo f pet- suites,b ut it has provenv ery usefult o experimentapl etrolo- rographicte rms,a nd a now little-usedb ut internallyc onsis- gistsi n describingr elativelys implea rtificial systemss, ucha s tent systemo f classificatioanr e given by Johannsen[1 939, the classici nvestigationb y Tuttle and Bowen[ 1958] of the 1932, 1937, 1938]. Many modem workers,h owever,u se the granite-H(cid:127)Os ystema t low to moderatew ater pressuresS. ome more recent International Union of Geological Sciences workersa lso use the CIPW schemet o describeg raniteso r (IUGS) classification[S treckeisen1, 976].T he IUGS defini- rhyolitesa s corundum-normativoer diopside-normativ(ei. e., tion of granite and similar holocrystallineS, iO2-saturated showingc orundumo r diopsidea s a calculatedn ormative rocksi s showni n Figure 1. 'mineral'). The IUGS classificatioanl lowsg ranitet o containa s much Another notable descriptives chemei s that of Peacock as9 0%o f mineralso thert hanq uartza ndf eldsparsF.e w gran- [1931],w hich is usedt o classifys uiteso f igneousr ockst hat ites, though, contain more than about 20% of other minerals. rangef rom mafico r intermediatteo siliceoucso mpositions. The readers houldk eepi n mindt hat in thiss chemeth e pro- Plotso f Na(cid:127)O + K(cid:127)O versusS iO(cid:127) and of CaO versusS iO(cid:127) are poRionso f the three definingm ineralsa re relativea nd that superposed.T he SiO2 content at which the two lines intersect their absolutec ontentisn a giveng ranitev ary inverselyw ith is termedt he alkali-limein dex( ALI). Peacockd istinguishes total contento f other,n onessenti(avl arietala nd accessory) four groupso f rock serieso n this index: ALI< 51 --'alkali½ mineralsT. husa granitec ompriseodf onlyt he two feldspars (alkaline),5 1 <ALI < 56 alkali-calcic5, 6 <ALI < 61 = calc- and quartzm ustc ontaina t least2 0%q uartz,w hereasa granite alkalic (ca(cid:127)lc-alkalinea),n d ALI> 61 calcic.P eacock'sc lassifi- cationis morea pplicablteo rocks uitesfo rmedb y closed-sys- Thisp apeirs nots ubjectot U.S.c opyrighPtu. blisheind 1981b y tem crystal-liquifdra ctionatioonf a basaltico r andesiticp a- theA mericaGne ophysiUcanli on. rentaml agmaT. het erms'c alc-alkalinaen' d' alkalines' tilla re Paper number IBI015. 10132 BARKER: INTRODUCTION TO GRANITES AND RHYOLITES Quartz cussede arly in this century.I t wasa pproachedfr om two very different points of view. One considered the Precambrian crystallinec omplexeso f granitic to tonalitic gneissesm, ica schists,a mphobolites, and other intensely deformed and metamorphosedro cksi ntruded by siliceousm agmasr anging from quartz diorite to granite. Sealerholm[1 907] gave us a classice xample of such a complex in the mid-Proterozoic 6O rocks of southern Finland and coined the word 'anatexis' for ALKALI-FELDSPAR the partial to complete( ?) meltingo f a siliceousg neissto pro- GRA E duceg raniticm agma.T he seconda pproacht o partial melting involved the geosynclineo r fold belt. Loewinson-Lessing [1911] describedf olding of a 10- to 15-kin-thick filling of a large sedimentaryb asin wherein sufficientc rustalt hickening 20/ / ! \ \ (cid:127),.QUARTZ occurredt hat the lower parts of the basin reached melting temperaturesF. usiono f shale,s andstonea, nd other sediments producedg ranitic magmas.T hese rise diapirically or stope their way into the overlyingr ocks. 10 35 65 90 Alkalif eldspar Plagioclase Modem studieso f crustalm eltingu set he pressure-temper- Fig;. 1. Ternaryd iag;ramin volumetricp roportionsa fter $treckei- ature constraintse stablishedb y experimentalp etrology.H art sen [1976] showing;c ompositionalf ields of g;ranit½a nd other rock and (cid:127)lllegre [1980]s ummarizem uchr ecentw ork, emphasizing types.P roportionso f other minerals,n ot shownh ere, may rangef rom the use of O, St, Nd, and Pb isotopesi n evaluating both 0 to 90% of the rock. sourcreo cksa ndp rocessePsa.r tiaml eltingin thisi ssueis dis- cussedb y Bickford et al., Cullerse t al., Czamanskee t al., Hill widely used.T hese termsa nd othersa re usedi n the extended et al., Le Fort, Shaw, and Flood, and Wyborn et al. chemical classificationsin the papers of Irvine and Baragar Australianw orkersl ed by Chappella nd White [1974] have [1971] and Miyashiro [1974]. given a large impetust o considerationo f partial melting proc- essesIn. the Lachianfo ldb elt,s outheasteAruns traliath, ey GENERATION OF GRANITIC-RHYOLITIC MAGMAS distinguisht wo major typeso f graniteb y sourcem aterial---S Granitic-rhyolitic magmas typically are generated in re- type and I type. The S type is derivedf rom sedimentaryr ocks sponset o thermal and tectonic processesin the mantle. To (actuallym etamorphosedsh aleo r pelitic schistf or all Austra- date no one has demonstratedt hat suchm agmasm ay form in lian S type granites),a nd the I type granitesa re derived from the mantle. Indeed, much experimental and geochemical igneourso cksth atm ayr angef romg abbroitco graniticc om- work indicates that such siliceousl iquids cannot originate positions.B oth types are intruded as magma or mush con- there (e.g., Stern and Wyllie, Huang and Wyllie, this issue). sistingo f variousp roportionso f melt and residuum( or 'res- Therefore,s uchm agmasm ust be generatedin the crust,a l- tite'). S type granites are biotite-muscovite-bearing and though somem ay contain material of immediate mantle deri- chemicallya re stronglyp eraluminousI. types,b y contrast,a re vation (see, e.g., DePaolo, this issue). Furthermore, though metaluminous,b iotite or biotite-hornblendeg ranites.T he S rhyolite doeso ccuri n oceanice nvironments,s ucha s the low- type designationa pplies to similar granitesi n other parts of K rhyolites of some island arcs and the normal to alkaline the world (see,e .g., Kistler et al., Le Fort, Lee et al., this is- rhyolites located near some oceanic spreadingc enters ($i- sue), typically with only minor changes in Chappell and gurdsson[1 977]m akesa n excellentc asef or generationo f Ice- White's [1974] original definition. However, there are other, landic rhyolite by partial melting of plagiograniteo f the oce- far more voluminousg raniteso f sedimentaryo rigin,m ostlyi n anic crust)--they are minisculei n amount as comparedt o the the Precambrians hieldst, hat do not fit Chappell and White's granitesa nd rhyoliteso f the continents.T he latter occur in classificationT. hese granitesa re derived from graywackes-- environmentsr angingf rom accretionaryp rismsa t continental maxginsto continentaml arginm agmatica rcsa nd fold beltst o 6 i extensionalr egionsa nd hotspotsi n continentali nteriors. The origin of granite and rhyolite has been debatedf or the last two centuries.T hree general processesh ave been sug- gested,a s showni n Table 1. These are: (1) partial melting of (BANAKITE) HIGH-K RHYOLITE pre-existings olid rocks;( 2) closed-systemcr ystal-liquidf rac- tionation;a nd (3) coupledf ractionation-meltingo, r open-sys- HIGH-K DACITE -- HIGH-K tem fractionationi n which a mafic or intermediatel iquid may ANDESITE extensivelyr eactw ith, or incorporatet, he immediatew allrocks RHYOLITE DACITE or roof. A subsidiaryp rocess(cid:127)liquid state differentiation-- (talc-alkaline) may operatet o produces ignificantc ompositionalg radientsi n ANDESITE many magma chambers( Hildreth, Bacon et al., Mahood, this LOW-K RHYOLITE issue). L'(cid:127)--KA NDESITEL'O W-K DACITE I I I I 63 65 69 70 75 Partial Melting SiO2 (WEIGHTP ERCENT) The concepto f partial to completem elting of crustalr ocks Fig. 2. Classificatioonf andesited, acite,a nd rhyohteb y K20 and to produce granitic-rhyoliticm agmas was extensivelyd is- SiO2c ontents[ afterE wart, BARKER: INTRODUCTION TO GRANITES AND RHYOLITES 10133 TABLE 1. A HypotheticalS chemef or the Generationo f Granitic-RhyoliticM agmas General Process PartialM elting Crystal-LiquidF ractionation CombinedM elting-Fractionation Geologicael nvironment Fold belts,a ccretionarpyr isms(?), Midoceanr idgeso, ceanica nd Continentaml arginm agmatica rcs, Precambriagnr eenstonbee lts, continentainl traplatem agmatism continentarilf. ts,c ontinental old metamorphica nd plutohie or hotspotsis, landa rcs,o ceanic hotspotslo, callyi n accretionary complexes. and continentarli fts,o ther prismsp, robablyi n other environments. environments. Source materials Graywackep, elite( S type liquids), Basalticl iquid of olivine- or Marie melt plus crustalm elt less volcanicr ocks,m etamorphic quartz-tholeiitict ype, or precipitatedl iquidusp hasesa nd complexesp, lutonicc omplexes. andesiticli quid in some lessp recipitatedre fractory environments. crustal material; crustal melt from any crustalr ock containing K(cid:127)_O,N a(cid:127)_O,S iOn(_o ther componentsa re incidental). Heat source Depressiono f sourcer ocksi nto (Self-contained.) Heats of crystallizationo f magmatic higher geotherms. (liquidus) phaseso f mantle- derivedm arie magma, locally (or commonly?)s uperheato f mantle- derivedm agma,c rustalr ocks initially about 200ø-600øC. Derivation of liquid Partial melting of sourcer ock and Separationo f olivine, pyroxenes, Mantle-derivedm ariem agmap ools then (1) separationo f liquid plagioclasea, nd other phases in crusta t deep to shallowl evels from refractoryr esidueo r (2) from increasinglys iliceous and (1) while precipitating ascento f liquid-residuem ush. liquid: e.g., 100p artsb asaltic liquidusp hasesr eactsd irectly liquid yield 8-10 partsg ranitic with crustalr ocks,p artly liquid. meltinga nd incorporatingt hem, partly reactingw ith and precipi- tating their refractoryp arts,o r (2) simplyh eatinga nd melti(cid:127) nearbyc rustalr ocks,o r (3) mixing of liquidsp roducedi n 1 and2. Types of rocksp roduced S type from pelite only;t rondhjemite Granophyric-texturedh, igh Fe/Mg Metaluminou(asp proachinpger a-l from metabasalt;m inimum melt to typesc ommon;s yenitic-trachytic kaline) and peralkalinet ypeso f calc-alkaline-trendty pe from typesa lso common. high Fe?Mg, low H(cid:127)_Oa ctivity other sources. from 1 and 3 above;2 above producest ypesa s under 'partial melting' at left. See text for details and references. ofteno f volcanogenitey pe(cid:127)and soy ield partial meltso f met- quartz in diabased ikesa nd sills;a nd the sodar hyolitest hat aluminousto mildlyp eraluminoucsh aracterA. n excellenet x- are foundw ith trachytea nd otherm oderatelya lkalinel avas amplei s givenb y Arth and Hanson[ 1975]i n their chemical of somen ear-ridgeo ceanici slands( e.g., as at EasterI sland modellingo f the late ArcheanV ermiliona nd Giants Range [Bakere t al., 1974]).M any yearsa go Grout[ 1926]c alculated Graniteos f northeasteMrni nnesotaT.h eI typed esignatioonf thata moderatelpyo tassibca sal(tK 20 -- 1.52%c) ouldy iedl a Chappella nd White, howeverh, asn ot met with similarw ide- maximumo f about 10% graniteb y crystal-liquidf ractiona- spreada pplication( seed iscussionin Czamanskee t al., this is- tion. sue). Controversya risesa s to the scaleo f the fractionationo f ba- salt to granite and rhyolite. Can granite stocksa nd batholiths Closed-SyCsrtyesmta l-LiFqruaicdt ionation severtaolm ancyu bikci lometienr vso lumoer c ontinental The secondm ajor modeo f origino f siliceousm agmasis by rhyolitica sh flowso f similarv olumef orm by the closed-sys- crystal-liquidf ractionationo r differentiationin which the tem fractionationo f basalticli quid?B owen[ 1922a,1 928]p ro- magmad oesn ot interactw ith any of the enclosingr ockso r poseda 'reactions erieso' f mineralst hat successivelcyr ystal- fluids.I n this processm ineralst hat are lesss iliceousth an the lizeda nd separatedfr om a primaryo r mantle-derivedb asaltic liquid crystallizea nd eithers ettleo r float out of the magma liquid. This seriesc ommencewd ith olivinea nd calcicp lagio- and therebyc auset he remainingl iquid to becomem ore si- ½lasea nd terminatedw ith potash feldspar,m uscovitea nd liceousT. his mechanismw asf irsts uggestebdy Darwin [1851] quartz,a nd led to productiono f calc-alkalineg ranitic-rhyo- and has sinceb eena ppliede xtensivelyto many crystal-liquid litic liquid. Bowen[ 1948]f urther suggestetdh at mostg ranites systemso f marie to intermediatec ompositionT. here is little were producedb y suchf ractionationa nd that assimilationo f doubtt hat basalticli quidsf ractionateto yield granitic½ ompo- crustalr ocksb y the liquid waso f minore xtent.B owen'sin flu- sitionse: xamplesin cludet he interstitiarlh yoliticg lasse(sS iO2 encew asp ervasivea nd a generationo f geologists(cid:127)excepfot r 75.0-75.9%,K 20 5.5-6.0%)f ormedb y crystallizationo f basalt the quasi-rationalg ranitizersw ho contendedt hat fluids or (SiO25 0-51%, K20 -- 0.5-0.6%)o f the Makaopuhi and Alae cloudso f ions formed granites(cid:127)tacitly agreedw ith him. To lava lakes,H awaii [Wright and Okamura, 1977];t he world- date, however,n o one has demonstratedth at any graniteo r wide occurrenceo f a few percento f scatteredd ikeletsa nd rhyolitem asso f severacl ubick ilometerso r largerh as formed pods of granophyreo r intergrowthso f alkali feldspara nd by simplef ractionationT. here are severapl roblemsp osed 10134 BARKER: INTRODUCTION TO GRANITES AND RHYOLITES fractionationo n sucha scalet hat have not yet been fully re- type (e.g., the rapakivi massifso f southernF inland, and the solved:o ne involvest he small yield of siliceousl iquid from Pikes Peak batholith) originally may have graded upward basalticl iquid and the mechanicso f its aggregationin to large from deep anorthosite-gabbroc omplexest o syenite-granite magmab odies[ Holmes,1 936].A nother involvesm aintaining complexest o rapakivitic batholithst o overlying subvolcanic- reservoirso f basaltic liquid in the crust of sutiicients ize to volcanic ring complexes( such as the Younger Granites and generateg ranitic batholiths 2 to 8 km thick and 5000-10,000 associatedrh yolitesa nd other rockso f Nigeria and nearby re- km2 in area,s ucha st he PikesP eakb atholitha nd the Wiborg gions), and at the surfacet o largely bimodal basalt-rhyolite granite massifo f southernF inland and RussianK arelia. The fields such as Yellowstone. intermediatet o ultramaficr esidualm aterial from sucha large Taylor [1980] has consideredth e role of oxygena nd stron- fractionation event would be of 25- to 100-km aggregate tium isotopes in coupled fractionation-melting. DePaolo thicknessI.f suchr esiduae xisted,h ave they all sunkb ack into [1981] has derived equationsd escribingt he behavior of trace the mantle?L astly,i sotopics tudieso f someg raniticr ocksl ong elements and isotopesi n such systems,a nd in this issueh e thought to be generatedb y simple fractionationi ndicate that considerst he origin of the Sierra Nevada and Peninsular they containm oderatet o large fractionso f wallrockm aterial. Ranges batholithsi n this context. A prominent example is the late-stageg ranophyreo f the Many aspectso f coupledf ractionation-meltingn eed eluci- Skaergard intrusion, East Greenland [Leemah and Dasch, dation. Especially,d o we have a completer angeo f interaction 19781. from an endmemberi n which the thermal sourcem agmas im- ply suppliest he heat of partial melting but doesn ot mix with CoupledF ractionation-Melting or incorporatec rustalm aterial to situationsi n which the ther- The third major mode of origin of granite and rhyolite is a mal sourcem agma incorporatesv ery high fractionso f crustal coupling or combinationo f crystal-liquidf ractionationa nd melt? melting of the enclosingc rustalr ocks (Table 1). As long ago FUTURE WORK as 1914, Daly speculatedt hat superheatedb asaltic liquid might assimilatel arge fractionso f crustalr ocks( his 'abyssal As seeni n this issue,t he currently active areaso f research assimilation').I n notable papers a few years later, Bowen on granitesa nd rhyolitesa re in the disciplineso f geochemistry [1922b, 1928] set forth the principlesc ontrollingr eaction of and petrology, and in volcanic processesW. e need further magmasw ith inclusions.I n particular, he pointed out that studieso n the magmatics ourcer egionsi n the lower and inter- heats of crystallizationo f liquidus minerals--rather than su- mediate crust.T hesew ould include modelling studieso n ther- perheat-would be the major energys ourcef or the melting of mal aspectso f melting,s ucha s that of Yoder[ 1980];t heoreti- siliceous to intermediate crustal inclusions in basaltic or ande- cal considerationo f all possibles ource rocks, e.g., that of sitic liquids. Thus much of the heat originally suppliedb y a pelitesb y Grant [1973]a nd Thompsona nd Algor [1977];s tudy mantle reservoiri n heating ultramafic mantle material to pro- of geothermometersa nd geobarometerso f xenoliths to give duce basalt is transferredb y injection of that basalticl iquid direct information on conditionso f magma generation,l ike into the crusta nd it becomesa vailable for the melting of crus- that of Wyborn et al. in this issue;g eophysicasl tudiesth at will tal rocks.B owen,h owever,d id not assigna major role to this give us physicali nformation on regionsw here magnaasa re mechanismf or the productiono f granitic-rhyoliticli quids, as generated,s ucha s that by the COCORP projecto f a magma mentioned above. Holmes, however, did this in a notable but body in the Rio Grande rift, New Mexico (seeR eilingere t al. neglectedp aper of 1931, using as examplest he largely bi- [1980] for references)a; nd especiallys tudiesr elating tecton- modal gabbroica nd dioritic-graniticH ebredeans ubvolcanic ism to the chemicals tyle of magmatism. complexeso f northwesternS cotland. Wager et al. [1965] re- vived Holmes' model for the shallow graniteso f the Western Red Hills complex, Skye. Strontium isotopicr atios indicate AcknowledgmentsI. extend my thanks to many people for their that these granites,i ndeed, were derived largely from Pre- guidance and cooperationw ith this special issue.R obert Coleman cambrian basementr ocks [Moorbath and Bell, 1965]. suggesteJdG R-Red as its vehicle,p ointingo ut JGR's rare combina- tion of worldwide distribution and modest cost. Allan Cox enthusias- The Hebredeang raniteb odiesa re roughly 10-100 km3 in tically backedC oleman'ss uggestionE.d itor ThomasA hrensg uided volume. Seriousa pplication of mantle-derived,b asaltich eat severala spectso f the reviewp rocessw ith care and goodj udgment sourcest o generationo f larger batholithsi nclude: (1) Har- and wash elpfuli n manyo therw ays.R uth Ridenourg avee xemplary graves'[ 1962] and Ashwals'[ 1978] discussiono f anorthositic editoriala ssistancaen d her expeditioush andlingo f manuscriptasn d reviewsm ade our presentp ublicationd ate possibleL. astly,t he more gabbroa nd the associatedg ranite and syeniteo f the Adiron- than 50 earth scientistsw ho reviewedt he papersh erein deserveo ur dack massif;( 2) Presnalla nd Bateman's[ 1973] and Brown's thanks for their effectivec ommentary. [1973]c onclusionth at andesitico r basalticl iquid generateda t or near subductionz ones migrated upward into the crust, REFERENCES causingm elting of wallrocks and the extensivec ontinental Arth, J. G., and G. N. HansonG, eochemistrayn d Origino f the early margin calc-alkalinem agmatismo f SierraN evadan type; and Precambrian crust of northeastern Minnesota, Geochim. Cosmo- (3) Hodge's[ 1974]m odellingo f melting and othert hermal re- chim. Acta, 39, 325-362, 1975. Ashwal,L . D., Petrogenesiosf massif-typea northositesC: rystalliza- lations around magma chambers.B arker et al. [1975] inde- tion historya nd liquid line of descento f the Adirondacka nd Morin pendentlys uggestetdh at the widespreadc ontinentalg abbro- complexesP, h.D. thesis,1 36p p., PrincetonU niv., PrincetonN, .J., anorthosite-syenite-potassgicra nite suites were formed by 1978. coupled fractionation-meltingS. mith and Shaw [1975], Duf- Baker,P . E., F. Buckleya, ndJ . G. Holland,P etrologya ndg eochemis- field et al. [1980],B acon( this issue),a nd Hildreth (this issue) try of Easter Island, Contrib. Mineral. Petrol., 44, 85-100, 1974. Barker,F ., D. R. Wones,W . N. Sharp,a nd G. A. DesboroughT, he point out that basalticl iquid is a necessarhy eat sourcein the PikesP eak batholith,C oloradoF ront Range, and a modelf or the generationo f continental rhyolites. The writer emphasizes origin of the gabbro-anorthosite-syenite-potasgsraicn ites uite,P re- that the plutonic suiteso f gabbro-anorthosite-syenite-granite cambrian Res., 2, 97-160, BARKER: INTRODUCTION TO GRANITES AND RHYOLITES 10135 Bowen, N. L., The reaction principle in petrogenesisJ, . GeoL, 30, Leeman,W . P., and E. J. Dasch, Strontium,l ead and oxygeni sotopic 177-198, 1922a. investigationo f the Skaergard intrusion, East Greenland, Earth Bowen, N. L., The behavior of inclusionsi n igneous magmas, J. Planet. $ci. Lett., 41, 47-59, 1978. Geol., 30, 513-570, 1922b. Loewinson-LessingF,. , The fundamentalp roblemso f petrogenesiso, r Bowen, N. L., The Evolutiono f the IgneousR ocks,P rincetonU niver- the origin of the igneousr ocks,G eol.M ag., 8, 297-300, 1911. sity PressP, rincetonN, .J., 1928. Miyashiro, A., Volcanicr ock seriesi n island arcsa nd active continen- Bowen,N . L., The granitep roblema nd the methodo f multiple prej- tal margins,A m. J. $ci., 274, 321-355, 1974. udices,M ere. Geol. $oc. Am., 28, 79-90, 1948. Moorbath, S., and J. D. Bell, Strontium isotopea bundances tudies Brown, G. C., Evolution of granitem agmasa t destructivep late mar- and rubidium-strontiuma ge determinationso n Tertiary igneous gins,N atureP hys.$ ci., 241, 26-28, 1973. rocksf rom the Isle of Skye, northwestS cotland,J . Petrol., 6, 37-66, Chappell,B . W., and A. J. R. White, Two contrastingg ranitet ypes, 1965. Pac. Geol., 8, 173-174, 1974. Morse, S. A., Basaltsa nd PhaseD iagrams,S pringer-Verlag,B erlin, Cross,W . C., J.P. Iddings,L . V. Pirsson,a nd H. S. Washington,A 1980. quantitativec hemico-mineralogiccalal ssificatioann dn omenclature Peacock,M . A., Classificationo f igneousr ock series,J . Geol.,3 9, 65- of igneousr ocks,J . Geol.,1 0, 555-690, 1902. 67, 1931. Daly, R. A., IgneousR ocks and Their Origin, McGraw-Hill, New Peccerillo,A ., and S. R. Taylor, Geochemistryo f some calc-alkaline York, 1914. volcanicr ocksf rom the Kastamonua rea,n orthernT urkey, Contrib. Darwin, C. R., GeologicalO bservationos n Coral Reefs, VolcanicI s- Mineral. Petrol., 58, 63-81, 1976. lands,a nd on SouthA merica, Smith, Elder and Co., London, 1851. Presnall,D .C., and P. C. Bateman,F usion relationsi n the system DePaolo, D. J., Trace-elementa nd isotopice ffectso f combinedw all- NaAISiaOs-CaAIaSiaOs-KAISiaOs-SiO2-H2a0n d generation of rock assimilationa nd fractional crystallization,E arth Planet. Sci. granitic magmas of the Sierra Nevada batholith, Geol. $oc. Am. Lett., 53, 189-202, 1981. Bull., 84, 3181-3202, 1973. Duffield, W. A., C. R. Bacon, and G. B. Dalrymple, Late Cenozoic Reilinger, R., J. Oliver, L. Brown, A. Sanford, and E. Balazs, New volcanismg, eochronologya,n d structureo f the Coso Range, Inyo measurementos f crustald oming over the Socorrom agma body, County,C alifornia, J. GeophysR. es.,8 5, 2381-2404, 1980. New Mexico, Geology8, , 291-295, 1980. Ewart, A., A review of the mineralogya nd chemistryo f Tertiary-Re- Sederholm,J . J., Om granit och gneis, Bull. Comm. Geol. Finl., 23, cent dacitic, latitic, rhyolitic, and related salic volcanicr ocks, in 1907. TrondhjemiteDs,a citesa, nd RelatedR ocks,e ditedb y F. Barker,p p. Shand, S. J., EruptiveR ocks,J ohn Wiley, New York, 1951. 13-121, Elsevier, Amsterdam, 1979. SigurdssonH, ., Generationo f Icelandicr hyolitesb y melting of pla- Grant, J. A., Phasee quilibriai n high-gradem etamorphisma nd par- giogranitesi n the oceanicl ayer, Nature, 269, 25-28, 1977. tial meltingo f pelitic rocks,A m. J. Sci., 273, 289-317, 1973. Smith, R. L., and H. R. Shaw, Igneous-relatedg eothermals ystems, Grout, F. F., The use of calculationsin petrology,J . Geol., 34, 549- Geol. $urv. Circ. U. $., 726, 58-83, 1975. 581, 1926. StreckeisenA, ., To each plutonic rock its proper name, Earth $ci. HargravesR, . B., Petrologyo f the Allard Lake anorthosites uite,Q ue- Rev., 12, 1-33, 1976. bec,i n PetrologicS tudiesA: Volumei n Honor of A. F. Buddington, Taylor, H. P., Jr., The effectso f assimilationo f countryr ocksb y mag- edited by A. E. J. Engel, H. L. James,a nd B. F. Leonard,p p. 163- maso n lSo/160 and S?SrS6sSyrs tematicins igneousro cks,E arth 189, GeologicalS ocietyo f America,B oulder,C olo., 1962. Planet. $ci. Lett., 47, 243, 1980. Hart,S . R., andC . J. AllegreT, race-elemecnotn strainotsn magma ThompsoAn,. B.,a ndJ . R. AlgorM, odels ystemfosr a natexiosf pc- genesisin, Physicso f MagmaticP rocesseesd, itedb y R. B. Har- litic rocks,C ontribM. ineral.P etrol.,6 3, 247-269,1 977. graves,p p. 121-159, PrincetonU niversity Press,P rinceton,N .J., Tuttle, O. F., and N. L. Bowen,O rigino f granitei n the light of exper- 1980. imental studies in the system NaAISi3Os-KAISi3Os-SiOa-HaO, Hodge,D . $., Thermal model for origin of graniticb atholiths,N ature, Mem. Geol. Soc. Am., 74, 1958. 251, 297-299, 1974. Wager, L. R., E. A. Vincent, G. M. Brown, and J. D. Bell, Marscoitc Holmes,A ., The problemo f the associationo f acid and basicr ocksi n and related rockso f the Western Red Hills Complex, Isle of Skye, central complexes,G eol. Mag., 68, 241-254, 1931. Philos. Trans. R. Soc. London Set. A, 257, 273-307, 1965. Holmes, A., The idea of contrasted differentiation, Geol. Mag., 73, Wright, T. L., and R. T. Okamura,C oolinga nd crystallizationo f tho- 228-238, 1936. leiitic basalt, 1965 Makaopuhi lava lake, Hawaii, Geol. Surv. Prof. Irvine, T. N., and W. R. B. Baragar,A guidet o the chemicald assifi- catlono ft hec ommoing neourso cksC, anJ. . EarthS ci.8, , 523-548, Pap. U.S., 1004, 1977. 1971. Yoder, H. S., Jr., Heat and mass transfer in magma generation:A JohannsenA, ., A DescriptiveP etrographyo f the IgneousR ocks,v ol. 2, progressre porto f an experimentasl tudy, YearB ook CarnegieIn st. Universityo f ChicagoP ress,C hicago,I ll., 1932. Washington7, 9, 263-267, 1980. JohannsenA, ., A DescriptiveP etrographyo f the IgneousR ocks,v ol. 3, University of ChicagoP ress,C hicago,I ll., 1937. JohannsenA, ., A DescriptiveP etrographyo f the IgneousR ocks,v ol. 4, Universityo f ChicagoP ress,C hicago,I ll., 1938. (Received March 12, 1981; JohannsenA, ., A DescriptiveP etrographyo f the IgneousR ocks,v ol. 1, revisedM ay 21, 1981; University of ChicagoP ress,C hicago,I ll., 1939. acceptedJ une 16, JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 86, NO. BII, PAGES 10137-10152, NOVEMBER 10, 1981 A Summaryo f the Geology and Petrologyo f the Sierra La Primavera, Jalisco, Mexico GAIL A. MAHOOD Departmento f GeologyS, choolo f Earth SciencesS, tanfordU niversityS, tanford,C alifornia9 4305 The SierraL a Primavera,n ear Guadalajara,M exico, is a Late Pleistocenerh yolitic centerc onsistingo f lava flows and domes,a sh flow tuff, air fall pumice, and calderal ake sedimentsA. ll eruptive units are high-silicar hyolites,b ut systematicc ompositionadl ifferencesc orrelatew ith age and eruptivem ode. The earliestl avas erupteda pproximately1 45,000y earsa go and were followed approximately9 5,000 years agob y the eruptiono f about2 0 kra3 of magmaa s ashf lowst hat form the Tala Tuff. The Tala Tuff is zonedf rom a mildly peralkalinef irst-eruptedp ortion enrichedi n Na, Rb, Cs, CI, F, Zn, Y, Zr, Nb, Sb, HREE, Hf, Ta, Pb, Th, and U to a metaluminousla st-eruptedp art enrichedi n K, LREE, Sc, and Ti; AI, Ca, Mg, Mn, Fe, and Eu are constantw ithin analyticale rrors.C ollapseo f the roof zone of the magma chamberl ed to the formation of a shallow 1l -km-diameter calderai n which lake sedimentsb egant o col- lect. The earliestp ostcalderala va, the south-centradl ome, is nearly identicalt o the last-eruptedp ortion of the Tala Tuff, whereast he slightly younger north-central dome is chemically transitional from the south-centradl omet o later, more marie,r ing domes.T his sequenceo f ashf low tuff and domesr epresents the tapping of progressivelyd eeperl evels of a zoned magma chamber9 5,000 + 5,000 years ago. Sedi- mentationc ontinueda nd a period of volcanicq uiescencwe asm arkedb y the depositiono f some3 0 m of fine-graineda shys edimentsA. pproximately7 5,000y earsa go a new group of ring domese rupteda t the southernm argino f the l(cid:127)tke. Thesed omesa re lappedb y only 10-20 m of sedimentsa s uplift resulting from renewedi nsurgenceo f magma broughta n end to the lake. This uplift culminatedi n the eruption, beginninga pproximately6 0,000y earsa go, of aphyricl avasa long a southerna rc. The youngesto f these lavase rupteda pproximately3 0,000y earsa go. The lavast hat erupted7 5,000,6 0,000,a nd 30,000 years agob ecamed ecteasingplye ralkalinea ndp rogressiveelyn richedo nly in Si, Rb, Cs,a ndp ossiblyU with time. They represents uccessiveer uption of the uppermostm agma in the postcalderam agma chamber. Eruptive units of La Primaveraa re either aphyrico r containu p to 15%p henocrystso f sodics anidine_ > quartz >> ferrohedenbergit>e fayalite > ilmenite + titanomagnetiteM. ajor elementc ompositionso f san- idine, clinopyroxene,a nd fayalite phenocrystsv ary only slightly betweene ruptive groups,b ut the con- centrationso f many tracee lementsc hangeb y factorso f 5-10. This is reflectedi n phenocryst/glasps arti- tion coefficienttsh at differ by factorso f up to 20 betweens uccessiveleyr uptedu nits. Becauseth e major elemenct ompositioonfs t hep henocrysatns dt hep ressurtee, mperaturaen, df o2o f them agmaws eree s- sentiallyc onstant,t he large variationsi n partitioningb ehaviora re thoughtt o result from small changes in bulk compositiono f the melt. Crystal settlinga nd incrementalp artial melting are by themselvesin - capable of producinge ither the chemicalg radientsw ithin the Tala Tuff magma chamber or the trends with time in the post-95,000-yearla vas. Rather, diffusionalp rocessesin the silicatel iquid are thought to have been the dominant differentiation mechanisms. The zonation in the Tala Tuff is attributed to trans- port of trace metalsa s volatile complexesw ithin a thermal and gravitationalg radient in a volatile-rich but water-undersaturatemd agma.T he evolutiono f the postcalderala vasw ith time is thoughtt o involve the diffusivee migrationo f tracee lementsfr om a relativelyd ry magmaa s a decreasingp roportiono f net- work modifiersa nd/or a decreasingc oncentrationo f complexingl igandsp rogressivelyre ducedo ctahe- dral site availability in the silicate melt. INTRODUCTION pose of this study of the Sierra La Primavera, therefore,h as been to trace the chemical evolution of a rhyolit(cid:127)ic complex One way to understandt he differentiationp rocesseso per- through time, interpretingi t as the periodic samplingo f an ating in high-level magma chamberst hat solidify as granitic evolving magma chamber. plutonsi s to studym aterial eruptedf rom suchc hambers.A sh To determinet he eruptive history,t he Sierra La Primavera, flow tuffs are rapidly quenched voluminous samples of locatedo n the westerno utskirtso f Guadalajara, Jalisco,M ex- magma chambers;a s sucht hey have made possiblet he char- ico (Figure 1), was mapped at a scaleo f 1'25,000. Eruptive acterizationo f chemicala nd thermal gradientsw ithin the up- units were classifiedi nto groups based on stratigraphic rel(cid:127)a- per portionso f silicicm agmac hambersju st prior to eruption tions, and the eruptive sequencew as calibrated with over 50 [Lipman et al., 1966; Smith and Bailey, 1966; Hildreth, 1977, K-At dates performed at University of California, Berkeley 1979; Smith, 1979; Ritchie, 1979; Hildreth et al., 1980]. Com- [Mahood, 1980a]. This paper summarizest he geological and plementaryt o studieso f ash flow tuffs, which are inverted rec- chemical evolution of the Primavera system;t he geology of ords of magma chambersa t singlep oints in time, is the infor- the Sierra La Primavera is describedi n more detail by Ma- mation contained in a sequenceo f eruptive units, which hood [1980a, 1980b],w hereast he petrologyi s discussedm ore record the chemicale volution of the upper portionso f a silicic fully by Mahood [1980a, 1981]. magma chamber through time. Making the reasonablea s- sumptionth at a lavaf lowo r ashf lowt apst he mostd ifferenti- REGIONAL SETTING ated uppermostm agma in the systema t a particular moment, The Sierra La Primavera lies at the intersection of the two a sequenceo f eruptive units providesp rogressr eportso n the major Cenozoicv olcanicp rovinceso f Mexico (Figure 1). Its differentiationm echanismso peratinga t depth. The main put- mildly peralkaliner ockss tandi n marked chemicalc ontrastt o Copyright¸ 1981 by the AmericanG eophysicaUl nion. both the andesitic stratovolcanoes and basaltic cinder cones Paper number IB0529. 0148-0227/81/001B-0529501.00

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.