ebook img

1485 Haug.vp PDF

12 Pages·2014·3.5 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview 1485 Haug.vp

(cid:2)(cid:3)(cid:4)(cid:5)(cid:3)(cid:6)(cid:7)(cid:6)(cid:8)(cid:9)(cid:10)(cid:11)(cid:4)(cid:12)(cid:10)(cid:13)(cid:14)(cid:15)(cid:9)(cid:16)(cid:3)(cid:6)(cid:17)(cid:9)(cid:4)(cid:5)(cid:14)(cid:9)(cid:11)(cid:7)(cid:7)(cid:14)(cid:3)(cid:9)(cid:18)(cid:12)(cid:15)(cid:19)(cid:20)(cid:21) (cid:22)(cid:23)(cid:12)(cid:15)(cid:15)(cid:12)(cid:15)(cid:15)(cid:12)(cid:7)(cid:7)(cid:12)(cid:20)(cid:21)(cid:24)(cid:9)(cid:6)(cid:16)(cid:9)(cid:14)(cid:20)(cid:15)(cid:4)(cid:14)(cid:3)(cid:21)(cid:9)(cid:25)(cid:14)(cid:3)(cid:17)(cid:20)(cid:21)(cid:26) (cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:7)(cid:8) (cid:9)(cid:10)(cid:11)(cid:6)(cid:4)(cid:12)(cid:13)(cid:14)(cid:11)(cid:8)(cid:4)(cid:15)(cid:16)(cid:17) (cid:6)(cid:18)(cid:19)(cid:16)(cid:15)(cid:20)(cid:14)(cid:11)(cid:5)(cid:4)(cid:15)(cid:3)(cid:21)(cid:7)(cid:17) (cid:6)(cid:4)(cid:12)(cid:13)(cid:14)(cid:11)(cid:4)(cid:17)(cid:22)(cid:15)(cid:16)(cid:4)(cid:20) (cid:8)(cid:4)(cid:4)(cid:20)(cid:14)(cid:11)(cid:22)(cid:7)(cid:16)(cid:9)(cid:16)(cid:15) (cid:23)(cid:4)(cid:21)(cid:3)(cid:20)(cid:24)(cid:16)(cid:25)(cid:14) (cid:2)(cid:26)(cid:15)(cid:13) (cid:23)(cid:10)(cid:11)(cid:20)(cid:5)(cid:6)(cid:17)(cid:16)(cid:7)(cid:22)(cid:16)(cid:15)(cid:11)(cid:27) (cid:6)(cid:4)(cid:17)(cid:20) (cid:25)(cid:16)(cid:15)(cid:28) ArthropodcuticlesfromtheMississippian(EarlyCarboniferous,Viséan)HainichenSubgroup,ErzgebirgeBasin,have beenencounteredinbulk-maceratedsamplesfromaroadcutexposureinChemnitz-Glösa,easternGermany.Thecuti- clesaredescribedindetailandcomparedwithlargerfaunalcomponentsknownfromthesamehorizons.Partofthespec- imensrepresentremainsofarthropodappendages,whileothers,thoughexhibitingfinedetailofsurfacetexture,could notbeassignedtocertainbodyregions.InallcasesitremainsdifficulttoassignthefragmentsfromChemnitz-Glösato taxaknownfromtheHainichenSubgrouporfromotherlocalitiesyieldingarthropodremainsofsimilarpreservation. However,itissuggestedthatseveralspecimensmayrepresentscorpionremains,eitherlimbparts(pieceofthepedipalp, distalclawofwalkinglimb)orfragmentsofthebodysurface.Onespecimen,asingleappendageelement,couldrepre- sent the first insect fragment from this locality. All fragments appear to be terrestrial faunal components. Chemnitz-GlösaisoneoftheveryfewLowerCarboniferouslocalitiestoyieldremainsofterrestrialarthropodsandthe only one outside Scotland. (cid:129) Key words: Mississippian, Lower Carboniferous, arthropod cuticles, Erzgebirge Basin. HAUG,J.T.,HÜBERS,M.,HAUG,C.,MAAS,A.,WALOSZEK,D.,SCHNEIDER,J.W.&KERP,H.2014.Arthropodcuti- clesfromtheupperViséan(Mississippian)ofeasternGermany.BulletinofGeosciences89(3),541–552(7figures). CzechGeologicalSurvey,Prague.ISSN1214-1119.ManuscriptreceivedSeptember20,2013;acceptedinrevisedform January 13, 2014; published online May 6, 2014; issued June 9, 2014. JoachimT.Haug(correspondingauthor)&CarolinHaug,LMUMunich,Biocenter–DepartmentofBiologyIIand GeoBio-Center,GroßhadernerStraße2,82152Planegg-Martinsried,Germany;[email protected] (cid:129) Maren Hübers & Hans Kerp, Forschungsstelle für Paläobotanik, Institut für Geologie und Paläontologie, WestfälischeWilhelms-UniversitätMünster,Heisenbergstraße2,48149Münster,Germany(cid:129)AndreasMaas&Dieter Waloszek,AGBiosystematischeDokumentation,UniversitätUlm,Helmholtzstraße20,89081Ulm,Germany(cid:129)JörgW. Schneider,TUBergakademieFreiberg,GeologischesInstitut,Bernhard-von-Cotta-Straße2,09596Freiberg,Germany and Kazan Federal University, Kremlevskaya st. 18, 420008 Kazan, Russian Federation ThemiddleMississippianHainichenSubgroupcomprises nearChemnitz.Thefaunalrecord,includingadpressionsof the oldest terrestrial erosional debris (“Early Molasses”) arachnids, myriapods, arthropleurids, eurypterids, shark oftheVariscanOrogenineasternGermany.Thesemostly eggcapsulesandsingleisolatedfishremains(Nindel1955, coarseclasticshavebeendepositedintheHainichenSub- Rößler&Schneider1997)hasexclusivelybeendescribed group of the Hainichen Basin, which is part of the fromtheBerthelsdorfFormationuntil2001(Schneideret Carboniferous-PermianErzgebirgeBasin(Fig.1;Schnei- al.2005).DuringthereconstructionoftheA4federalmo- der et al. 2005). The Hainichen Subgroup is divided into torwaynearChemnitz-Glösafrom2001to2003extensive twoformations(Fig.2).Thelowerone,theOrtelsdorfFor- collectionoffossilplantsandanimalswaspossibleinthe mation,isdatedasViséan3b(Asbian),theupperone,the Ortelsdorf Formation. The preservation of fossil arthro- BerthelsdorfFormation,isdatedasViséan3c(Brigantian) podsingeneralis,however,notrestrictedtoadpressions. (Gaitzschetal.2010).Bothformationshaveyieldedarich SeveralarthropodcuticlesweredescribedfromthePalaeo- anddiverseflora,whichhasbeendescribed,by,e.g.,Roth- zoic,mainlyfromtheDevonian(e.g.,Størmer1970,1976; pletz (1880), Sterzel (1884), Máyas (1920) and Hartung Rolfe 1980; Shear et al. 1984) and Pennsylvanian (e.g., (1938).TheplantmaterialmainlycomesfromtheOrtels- Winslow 1959, Bartram et al. 1987, Jeram 1994a, Braun dorf Formation and was sampled in dumps of coal mines 1997,Stankiewiczetal.1998).Cuticlescanprovideadditi- betweenHainichenandChemnitz.Thesecoalmineswere onalinformationonmorphologicalfeatures,whichcannot active during the 18th century. Additional material was be gained in such detail from adpression remains. Also sampledinsandandclaypitsoftheBerthelsdorfformation bulkmacerationofsamplesfromtheOrtelsdorfFormation (cid:22)(cid:3)(cid:7)(cid:11)(cid:31) (cid:10)!(cid:31)(cid:30) "#$%%(cid:10)&’()*+(cid:10)(cid:31)(cid:30),(cid:29) (cid:29)(cid:30)(cid:31) (cid:2)(cid:3)(cid:4)(cid:4)(cid:5)(cid:6)(cid:7)(cid:8)(cid:9)(cid:10)(cid:11)(cid:9)(cid:12)(cid:5)(cid:10)(cid:13)(cid:14)(cid:7)(cid:5)(cid:8)(cid:14)(cid:5)(cid:13)(cid:9)(cid:15)(cid:9)(cid:16)(cid:10)(cid:4)(cid:17)(cid:9)(cid:18)(cid:19)(cid:20)(cid:9)(cid:21)(cid:20)(cid:9)(cid:22)(cid:23)(cid:24)(cid:25) (cid:29)(cid:12)(cid:30)(cid:11)(cid:3)(cid:14)(cid:9)(cid:31) PositionoftheMississippianHainichenBasin(A)andthePennsylvanian-PermianErzgebirgebasins(B:FlöhaBasin,C–D:Zwickau-Oelsnitz Basin)ineasternGermany(afterSchneider&Romer2010,theirfig.8). yieldedseveralarthropodcuticles,whicharedescribedinthis islateViséan(earlyBrigantian)inage(VFZone)(Fig.2). paper.Wecomparethesecuticleswithotherfossilandextant Although the single-Zircon Pb/Pb evaporation age of arthropodmaterialandtrytoalignthemwithmacroscopicre- 330 ± 4 Ma of a rhyolithic tuff at the base of the coal- mainsalreadydescribedfromtheHainichenSubgroup. bearing fossiliferous upper part of the formation (Gehm- lichetal.1998,Gaitzschetal.2010)isnotveryprecise,it isconsistentwiththepalynologicaldating.Coalificationin (cid:27)(cid:6)(cid:10)(cid:20)(cid:13)(cid:12)(cid:4)(cid:26)(cid:28)(cid:9)(cid:17)(cid:20)(cid:4)(cid:14)(cid:3)(cid:12)(cid:20)(cid:13)(cid:9)(cid:20)(cid:21)(cid:8)(cid:9)(cid:17)(cid:14)(cid:4)(cid:5)(cid:6)(cid:8)(cid:15) the Hainichen Basin is low (sub-bituminous coals; R ~0.5).Inthefirsthalfofthe20thcenturyoutcropsyiel- m Elevensamplesfromdifferentplantdetritus-richhorizons dedoneoftheveryfewViséanmacrofloraswithArchaeo- andcarbonaceousshalesofdecimeterthicknesswerecol- calamitesradiatus,LepidodendronlosseniiandLyginopte- lected in the upper Ortelsdorf Formation in Chemnitz- ris bermudensiformis as common elements (Hartung Glösa(50°52´34.67˝N;12°54´38.73˝E).Thespecimens 1938). The shales exposed near Glösa contain abundant describedherewerecollectedfromaroadcutoftheA4fe- organicdebris,mainlyplantsincludinglycopsids(Hübers deral motorway near Chemnitz-Glösa, Free State of Sa- etal.2011)andtheoldestmosses(Hübers&Kerp2012, xony,Germany,wherea80mthicksuccessionofMissis- Hübersetal.2013).Someofthesamplescontainmacro- sippian sandstones, shales and occasional coaly layers of scopicplantremainsoftheseedfernLyginopterisbermu- theupperpartoftheOrtelsdorfFormation,HainichenSub- densiformis and the lycophyte Lepidodendron lossenii. group,HainichenBasin,isexposed(Schneideretal.2005). Macroscopicfaunalremainscouldnotbeobservedinthe The Hainichen Basin is a small basin, filled with alluvial samples, but have been discovered during outcrop docu- plain,alluvialfanandfandeltadeposits.TheupperOrtels- mentation 2001–2002. dorf Formation at Glösa has been dated palynologically Bulk maceration with 48% hydrofluoric acid yielded (Jäger & Wierich 2006) and comprises the NM and VF many small plant fragments. Small pieces of sample zonesofthepalynologicalstandardzonationofClaytonet 2324/2004 were carefully removed from the surface and al.(1977).Thesamplesarefromtheuppermostpartwhich dissolvedin48%hydrofluoricacid;allothersampleswere (cid:29)(cid:30)- (cid:26)(cid:10)(cid:27)(cid:14)(cid:28)(cid:7)(cid:29)(cid:30)(cid:17)(cid:9)(cid:31)(cid:27)(cid:3) (cid:5)(cid:6)(cid:9)(cid:27)(cid:4)(cid:17)(cid:9)(cid:15)(cid:9)!"(cid:6)(cid:28)"(cid:10)#(cid:10)$(cid:9)(cid:14)(cid:3)(cid:6)(cid:7)(cid:14)(cid:4)(cid:5)(cid:13)(cid:9)(cid:11)"(cid:10)(cid:29)(cid:9)(cid:6)(cid:28)(cid:5)(cid:9)(cid:3)##(cid:5)"(cid:9)(cid:16)(cid:7)(cid:13)%(cid:27)(cid:8)(cid:9)(cid:10)(cid:11)(cid:9)(cid:5)(cid:27)(cid:13)(cid:6)(cid:5)"(cid:8)(cid:9)(cid:12)(cid:5)"(cid:29)(cid:27)(cid:8)& dissolvedcompletely.Cuticlepreparationwascarriedoutas describedbyKerp(1990)andKerp&Krings(1999).Iso- lated cuticles were macerated using Schulze’s reagent (HNO + KClO ), treated with a 4% potassium hydroxide 3 3 solution (KOH ), dehydrated in glycerol and finally aq mounted on microscope slides using glycerine jelly. The slidesarestoredinthecollectionoftheForschungsstellefür PaläobotanikattheInstitutfürGeologieundPaläontologie, WestfälischeWilhelms-UniversitätMünster,Germany. Forcomparison,differentfossilandextantarthropods were studied. This includes isolated legs of an undeter- mined pseudoscorpion, Brachistosternus sp. (Scorpiones, Chelicerata), Scutigera coleoptrata (Chilopoda, Myria- (cid:29)(cid:12)(cid:30)(cid:11)(cid:3)(cid:14)(cid:9)" Age, subdivision, facies pattern and fossil content of the poda), and Oniscus asellus (Isopoda, Crustacea), which Hainichen Subgroup (after Gaitzschet al. 2010, their fig. 3). weremaceratedin10%KOHfortwoweeks.(Thecuticle ofazygentomaninsecttreatedinthesamewayprovedto betoomuchdamagedforfurtherprocessing.)The(remain- (propertyoftheAxelrodInstitute,UniversityofGuelph,on ing) cuticles were rinsed in water, placed between two longtermloantotheROM)weredocumentedasthesepro- glass slides and left there for drying. This procedure was videfinedetailsofdifferentappendages.Specimensfrom usedtoobtaincomparabledatafromextantspecimens,asit Crato were documented in the same way as those from is supposed to partly resemble the taphonomic and Mazon Creek. The specimen from the Rhynie Chert was preparational history of Glösa arthropod remains. Subse- documentedwithtransmittedlightonaZeissAxioskop2 quently the dried specimens were documented using a equippedwithagrey-scaleAxioCam.Animagestackwas Zeiss Axioskop microscope equipped with a SkopeTek recordedandprojectedasaminimumintensityprojection DCM510ocularcameraundertransmittedpolarizedlight. using the software ImageJ. Images were recorded in the form of stacks, several for eachspecimen.ThesestackswerefusedwithCombineZM andCombineZP.Thefusedimageswerethenstitchedwith !(cid:14)(cid:15)(cid:10)(cid:3)(cid:12)(cid:7)(cid:4)(cid:12)(cid:6)(cid:21)(cid:9)(cid:6)(cid:16)(cid:9)(cid:4)(cid:5)(cid:14)(cid:9)(cid:20)(cid:3)(cid:4)(cid:5)(cid:3)(cid:6)(cid:7)(cid:6)(cid:8)(cid:9)(cid:10)(cid:11)(cid:4)(cid:12)(cid:10)(cid:13)(cid:14)(cid:15) AdobePhotoshopCS3orMicrosoftImageCompositeEdi- tor (details on procedure in Hauget al.2009). (cid:2)(cid:3)(cid:4)(cid:5)(cid:3)(cid:6)(cid:7)(cid:6)(cid:8)(cid:9)(cid:10)(cid:7)(cid:7)(cid:11)(cid:12)(cid:8)(cid:10)(cid:13)(cid:11)(cid:9)(cid:11)(cid:14)(cid:11)(cid:15)(cid:11)(cid:12)(cid:4)(cid:16) Foranoverviewoftaxapossiblyrepresentedbythecu- ticle remains from Glösa, different arthropods from the ThesamplesfromGlösacontainfourcuticularremainsof Upper Carboniferous Mazon Creek Lagerstätte, Illinois, different arthropod appendage elements: USA(ROM43581trigonotarbid;ROM45545Geralinura (cid:129) Specimen“Glösa-2324/2004-018”(Fig.3A):Appen- carbonaria,thelyphonidwhipscorpion;ROM45559scor- dage element, ca 1100 µm long, width increasing pion; ROM 45571 Latzelia primordialis, scutigeromorph fromproximaltodistalend,upto400µm.Surfaceex- centipede; ROM 47504 Hesslerella shermani, aquatic hibiting pore-like structures, ca 10 µm in diameter, isopod;ROM61543pterygoteinsect;ROM61608diplo- whichmayrepresentinsertionsofsetae.Threedistal pod;ROM61541Dasyleptussp.,archaeognath)andEarly movableelements,446µm,390µmand227µmlong. Permian Carrizo Arroyo deposits, New Mexico, USA Triangular movable setae (60–70 µm long) arranged (ROM 57075 Dasyleptus sp.) from the collection of intworows. the Royal Ontario Museum (ROM) Toronto were docu- (cid:129) Specimen“Glösa-ProfilKS11-099”(Fig.3B):Presum- mentedunderpolarizedlightwithaCanonRebelT3icam- ably terminal sickle-shaped claw, about 820 µm long. era and an MP-E 65 mm macro lens. Also several stacks Two smaller spines arise medio-proximally from the were obtained from each specimen and processed as de- claw. scribed above. Additionally, an isolated appendage frag- (cid:129) Specimen “Glösa-Profil KS27-101” (Fig. 3C): Appen- ment of a trigonotarbid specimen from the Devonian dageelement,ca690µmlongand400µmwide.Surface Rhynie Chert, Scotland (RRC 3702, Remy Rhynie Chert exhibitspore-likestructures,probablyhairbases;some Collection at the Forschungsstelle für Paläobotanik, hairs still attached. Münster) and leg details of different insect specimens (cid:129) Specimen “Glösa-Profil KSgr.Pr.-056” (Fig. 3D): Pre- [ROM63044(AI190)grylloid;ROM63045(AI459)blat- sumablyterminalappendageelement,ca1.65mmlong, toid; ROM 63046 (AI 751) tettigoniid; ROM 63047 upto170µmwide,arcuate.Smallserrationsonconcave (AI2649)orthopteran;ROM63048(AI3211)notonectid lateralsideofthelimb.Serrationsupto25µmlong.Sur- heteropteran]fromtheCretaceousCratoFormation,Brazil face rough. No special structures present. (cid:29)(cid:30)! (cid:2)(cid:3)(cid:4)(cid:4)(cid:5)(cid:6)(cid:7)(cid:8)(cid:9)(cid:10)(cid:11)(cid:9)(cid:12)(cid:5)(cid:10)(cid:13)(cid:14)(cid:7)(cid:5)(cid:8)(cid:14)(cid:5)(cid:13)(cid:9)(cid:15)(cid:9)(cid:16)(cid:10)(cid:4)(cid:17)(cid:9)(cid:18)(cid:19)(cid:20)(cid:9)(cid:21)(cid:20)(cid:9)(cid:22)(cid:23)(cid:24)(cid:25) % & ! (cid:2) (cid:29)(cid:12)(cid:30)(cid:11)(cid:3)(cid:14)(cid:9)# Arthropodappendageelements.(cid:129)A–Glösa-2324/2004-018.Appendageelementwithdistalmovableelementsandtriangularmovable setae,scalebar=100µm.(cid:129)B–Glösa-ProfilKS11-099.Clawwithdenticles,scalebar=100µm.(cid:129)C–Glösa-ProfilKS27-101.Arthropodappend- ageelementshowinghairs(indicatedbyarrows),scalebar=100µm.(cid:129)D–Glösa-ProfilKSgr.Pr.-056.Sickle-shapedelementwithserrations,scale bar=100µm. (cid:17)(cid:4)(cid:5)(cid:11)(cid:3)(cid:9)(cid:10)(cid:3)(cid:4)(cid:5)(cid:3)(cid:6)(cid:7)(cid:6)(cid:8)(cid:9)(cid:18)(cid:19)(cid:4)(cid:20)(cid:18)(cid:14)(cid:11)(cid:9)(cid:21)(cid:3)(cid:10)(cid:13)(cid:15)(cid:11)(cid:12)(cid:4)(cid:16) andmoreorlessregularlyarrangedpores.Poresgenerally 15–20 µm in diameter, sometimes containing hair bases ThesamplesfromGlösaalsocontainseveralfragmentsof (Fig.4B),largestpore161µmindiameterwithremnantsof arthropodcuticle,whichcannotbeassignedtocertainbody thin cuticle at the margin (Fig. 4D). Some specimens ex- parts.However,theirwell-preservedsurfacesexhibitmany hibitingsmallpapillae(Fig.4C).Papillaeca3µmindiam- structural details. eter. –ArthropodCuticleType1:Glösa-ProfilKS62/2-037 –ArthropodCuticleType2:Glösa-ProfilKS62/2-001, to -041, -043 to -053, -056, -057, -061; Glösa-Profil -003,-004,-030,-031;Glösa-2324/2004-095(Fig.4E-G): KSgr.Pr.-014, -043, -060; Glösa-Profil KS 11-016, -038, Thickcuticlewithstrongsclerotizationandroughtubercu- -092; Glösa-Profil KS27-105; Glösa-Profil KS34/35-024 lar surface, occasionally with pore-like structures (Fig.4A–D):Cuticlefragmentswithisodiametricstructure (Fig. 4F). (cid:29)(cid:12)(cid:30)(cid:11)(cid:3)(cid:14)(cid:9)$ ArthropodCuticleType1andArthropodCuticleType2.(cid:129)A–Glösa-ProfilKS62/2-040.ArthropodCuticleType1,overviewshowing isodiametricstructureandpores,scalebar=100µm.(cid:129)B–detailofA,showingporewithhairbase,scalebar=10µm.(cid:129)C–Glösa-ProfilKS62/2-041.Ar- thropodCuticleType1showingsmallpapillae(indicatedbyarrows),scalebar=10µm.(cid:129)D–Glösa-ProfilKS62/2-061.ArthropodCuticleType1show- ingexceptionallylargeporewithremnantsofthincuticleatthemargin,scalebar=100µm.(cid:129)E–Glösa-ProfilKS62/2-001.ArthropodCuticleType2, overviewshowingroughtubercularsurface,scalebar=100µm.(cid:129)F–detailofD,showingpore-likestructures,scalebar=100µm.(cid:129)G–Glösa-Profil KS62/2-003. Arthropod Cuticle Type 2, specimen showing differences in strength of sclerotization, scale bar = 100 µm. (cid:29)(cid:30)(cid:30) (cid:26)(cid:10)(cid:27)(cid:14)(cid:28)(cid:7)(cid:29)(cid:30)(cid:17)(cid:9)(cid:31)(cid:27)(cid:3) (cid:5)(cid:6)(cid:9)(cid:27)(cid:4)(cid:17)(cid:9)(cid:15)(cid:9)!"(cid:6)(cid:28)"(cid:10)#(cid:10)$(cid:9)(cid:14)(cid:3)(cid:6)(cid:7)(cid:14)(cid:4)(cid:5)(cid:13)(cid:9)(cid:11)"(cid:10)(cid:29)(cid:9)(cid:6)(cid:28)(cid:5)(cid:9)(cid:3)##(cid:5)"(cid:9)(cid:16)(cid:7)(cid:13)%(cid:27)(cid:8)(cid:9)(cid:10)(cid:11)(cid:9)(cid:5)(cid:27)(cid:13)(cid:6)(cid:5)"(cid:8)(cid:9)(cid:12)(cid:5)"(cid:29)(cid:27)(cid:8)& (cid:2) ! % & (cid:25) ’ (cid:29) (cid:29)(cid:30)(cid:29) (cid:2)(cid:3)(cid:4)(cid:4)(cid:5)(cid:6)(cid:7)(cid:8)(cid:9)(cid:10)(cid:11)(cid:9)(cid:12)(cid:5)(cid:10)(cid:13)(cid:14)(cid:7)(cid:5)(cid:8)(cid:14)(cid:5)(cid:13)(cid:9)(cid:15)(cid:9)(cid:16)(cid:10)(cid:4)(cid:17)(cid:9)(cid:18)(cid:19)(cid:20)(cid:9)(cid:21)(cid:20)(cid:9)(cid:22)(cid:23)(cid:24)(cid:25) !(cid:12)(cid:15)(cid:10)(cid:11)(cid:15)(cid:15)(cid:12)(cid:6)(cid:21)(cid:9)(cid:6)(cid:16)(cid:9)(cid:4)(cid:5)(cid:14)(cid:9)(cid:20)(cid:3)(cid:4)(cid:5)(cid:3)(cid:6)(cid:7)(cid:6)(cid:8)(cid:9)(cid:10)(cid:11)(cid:4)(cid:12)(cid:10)(cid:13)(cid:14) rates(Fig.6B)andchilopods(Figs5Finlet,6C).Yet,simi- (cid:16)(cid:3)(cid:20)(cid:30)(cid:17)(cid:14)(cid:21)(cid:4)(cid:15) larstrongedgescanalsobefoundamongpterygoteinsects, for example orthopterans (Fig. 7A). Pterygote insects are While cuticle fragments can provide quite different data alsothebestexamplespossessingprominentandmovable compared to adpression fossils of arthropods, identifying setae, for example blattoids (Fig. 7B) and grasshoppers the taxonomic affinities of the cuticle fragments can be among the orthopterans (Fig. 7C). In blattoids, however, challenging.Inthiscasetheinvestigationofthefewcuticle thestrongedgesarelessdefinitethanthatseenonthecuti- fragmentsisanimportanttask,duetothestratigraphicori- cle fragment. Additionally the spines are not arranged ginofthespecimens.TheCarboniferousisacrucialperiod in strictly proximo-distally oriented rows in blattoids forthediversificationofterrestrialarthropodsinparticular, (Fig.7B).Thisisthecaseingrasshoppers(Fig.7C)andin including chelicerates, insects and myriapods (e.g., Rolfe general in orthopterans (Fig. 7A, D). Orthopterans also 1980,Rasnitsyn&Quicke2002,Grimaldi&Engel2005). have well defined edges, along which the spines arise Cheliceratesarerepresentedbyvariousalreadyspecialized (Fig.7A).Inconclusion,theelementcouldrepresentanap- groups such as true scorpions (Fig. 5A) and the once di- pendage element of a pterygote insect related to verse,butnowextinctTrigonotarbida(Fig.5B),butalsoby orthopterans, possibly the tibia of the metathoracic ap- lesswell-knowntaxasuchasThelyphonida,thewhipscor- pendage. These are usually quite elongate, the specimen pions(Fig.5C).WhiletheHainichenSubgroupalsoyiel- couldinthiscaserepresentonlythedistalpartofthisele- dedremainsofaquaticarthropods,i.e.Eurypterida,thecu- ment,whiletheproximalpartwouldbemissing.Theproxi- ticle fragments described here do not appear to represent malrimofthespecimencouldwellbeinterpretedasrepre- remains of eurypterids. Insects are well represented by senting an artificial rim caused by fragmentation. This non-flyingforms,suchasArchaeognatha(Fig.5E),butes- specimen, if indeed representing an orthopteran, would pecially by pterygote insects (Fig. 5D), which are an im- represent the first insect fossil from this locality. portantpartoftheCarboniferousfaunas.Myriapodsarere- Specimen“Glösa-ProfilKS11-099”(Fig.3B)isaclaw presented by in-groups of Chilopoda, such as with denticles. Similar tarsal or pre-tarsal claws occur in Scutigeromorpha(Fig.5F),butalsoDiplopodaarewellre- variousterrestrialarthropods,suchasdifferentchelicerate presented (Fig. 5G). Another terrestrial group of arthro- taxa (Fig. 6A, B), myriapods (Fig. 6C), and also insects pods,thewoodlice(Isopoda),anin-groupofEucrustacea, (Fig. 7B, D). Even the dactylus of a wood louse appears have not been found in the Carboniferous yet, although veryclawlike(Fig.6D).Yet,mostoftheseclawsappearto aquatic isopods make their appearance in the Carbonife- besimpleclawswithoutfurtherarmature.Theonlyexam- rous (Fig. 5H). plebearingadditionalsmallerspine-likestructureslikethe Accordingly, the Glösa cuticles could be remains of fossilcanbeseenonthetarsalclawoftheheredocumented any of the representatives of the terrestrial groups, al- scorpion (Brachistosternus sp.; Fig. 6B). This makes it though until now mainly chelicerates and myriapods are likelythatthefossilrepresentsthetarsalclawofascorpion, known from the same locality. Possible affinities are dis- yet other affinities cannot be excluded completely. cussed for each specimen in the following. Specimen“Glösa-ProfilKS27-101”(Fig.3C)isacuti- Specimen “Glösa-2324/2004-018” (Fig. 3A) could be cle fragment that provides the fewest prominent details. interpretedasrepresentingthesub-terminalelementofan Stillquitemanydetailsarepreservedsuchaspores,which appendagewithaputativeterminalclaw.Yet,itdoesnot originallyaccommodatedhairstructures.Theopeningson bearasingleterminalelement,buttherearethreemovable the surface are reminiscent of those developed in ones. This morphology would be unusual for a terminal trigonotarbidcuticles(Fig.5Binlet),andsimilarlylooking structure.Additionally,thedistalopeningofthelargeele- slitsensillaarecommononthecuticleofarachnidsingen- mentissignificantlylargerthanthethreesmallelements, eral.However,hairysurfaces–andthereforesurfaceswith and much more likely accommodated a further terminal holesafterthesetaearelost–areinfactcommonamong limbelement.Itisalsodifficulttojudgeifthethreesmall terrestrialarthropods(e.g.,Fig.5Einlet)andmakeanas- elements lie “inside” the large element, i.e. between two signment even more challenging than for the other speci- cuticlelayers,whichwouldpointtoatrueterminalclaw,or mens. whethertheylieoutside,representingequivalentsofstrong Specimen “Glösa-Profil KSgr.Pr.-056” (Fig. 3D) is a movable setal elements. possiblydistalsickle-shapedelementwithserrationsalong Besidesthisuncertaintyaboutthetruenatureofthese itsinneredge.Suchanelementcouldbeadactylus,e.g.,of supposed terminal structures, the specimen possesses an(terrestrial)isopod(Fig.6D),butitappearsratherlong strongproximo-distallyrunningedgesequippedwithlarge for such a structure. Elongate tarsal elements of insects triangular setae, which appear to be movable (Fig. 3A). (Fig. 7D, E) have also structural similarities to the fossil Strongedgesequippedwithprominentspinesorsetaeare, specimen.Suchstructurescontinueusuallyintoapre-tar- to some degree, also found on representatives of chelice- sus(Fig.7E,F),butnosuchstructurecanbediscernedon (cid:29)(cid:30). (cid:26)(cid:10)(cid:27)(cid:14)(cid:28)(cid:7)(cid:29)(cid:30)(cid:17)(cid:9)(cid:31)(cid:27)(cid:3) (cid:5)(cid:6)(cid:9)(cid:27)(cid:4)(cid:17)(cid:9)(cid:15)(cid:9)!"(cid:6)(cid:28)"(cid:10)#(cid:10)$(cid:9)(cid:14)(cid:3)(cid:6)(cid:7)(cid:14)(cid:4)(cid:5)(cid:13)(cid:9)(cid:11)"(cid:10)(cid:29)(cid:9)(cid:6)(cid:28)(cid:5)(cid:9)(cid:3)##(cid:5)"(cid:9)(cid:16)(cid:7)(cid:13)%(cid:27)(cid:8)(cid:9)(cid:10)(cid:11)(cid:9)(cid:5)(cid:27)(cid:13)(cid:6)(cid:5)"(cid:8)(cid:9)(cid:12)(cid:5)"(cid:29)(cid:27)(cid:8)& & % (cid:2) ! ’ (cid:29) ) (cid:25) (cid:29)(cid:12)(cid:30)(cid:11)(cid:3)(cid:14)(cid:9)( Differentarthropodsforcomparison.MainlyterrestrialformsfromtheCarboniferous,MazonCreek,USA.(cid:129)A–ROM45559.Scorpion, scalebar=2mm.(cid:129)B–ROM43581.Trigonotarbid,scalebar=3mm;Binlet.–RRC3702.Cuticleremainsofanappendageofatrigonotarbidfromthe DevonianRhynieChert,Scotland.(cid:129)C–ROM45545.Geralinuracarbonaria,thelyphonid(whipscorpion),scalebar=3mm.(cid:129)D–ROM61543. Pterygoteinsect,scalebar=3mm.(cid:129)E–ROM61541.Dasyleptussp.,archaeognath(winglessinsect),scalebar=3mm;Einlet.–ROM57075.Closeup ofalegofaDasyleptussp.specimenfromtheEarlyPermianofCarrizoArroyo,NewMexico,USA.(cid:129)F–ROM45571.Scutigeromorphcentipede Latzeliaprimordialis,scalebar=3mm;Finlet–closeupofalegofthecounterpartofF.(cid:129)G–ROM61608.Diplopod,scalebar=4mm.(cid:129)H–ROM 47504.Hesslerella shermani, aquatic isopod, scale bar = 2 mm. (cid:29)(cid:30)/ (cid:2)(cid:3)(cid:4)(cid:4)(cid:5)(cid:6)(cid:7)(cid:8)(cid:9)(cid:10)(cid:11)(cid:9)(cid:12)(cid:5)(cid:10)(cid:13)(cid:14)(cid:7)(cid:5)(cid:8)(cid:14)(cid:5)(cid:13)(cid:9)(cid:15)(cid:9)(cid:16)(cid:10)(cid:4)(cid:17)(cid:9)(cid:18)(cid:19)(cid:20)(cid:9)(cid:21)(cid:20)(cid:9)(cid:22)(cid:23)(cid:24)(cid:25) thefossil(Fig.3D).Thefossilcould,duetoitslength,either Interestingly,mostarachnidsfromtheBerthelsdorfForma- representthedactylusofachelipedofacrustacean,orthe tionhavebeenfoundinasandstonebedtogetherwithcom- “digitusmobilis”ofacheliceratancheliped.Asothercuti- monremainsoftheotherwiseraremesophilousplantfossil clefragmentsmightrepresentscorpionremains,itishighly Sphenopteris nindeliana (Rößler & Schneider 1997). It likely that this specimen represents the digitus mobilis of couldbeassumed,thatthosearachnidshavepreferreddrier the pedipalp (claw-bearing second appendage) of a scor- areas in this river landscape. pion. ThefossilrecordofEarlyCarboniferousterrestrialar- ArthropodCuticleType1(Fig.4A–D)bearsinitssur- thropods is very poor with only few localities, because face structure similarities to the scorpion cuticle depicted Lower Carboniferous strata are mostly marine (Shear & in Stankiewicz et al. (1998, fig. 2g) and also to that of Kukalová-Peck1990).Alsoplantlocalitiesareratherfew, Attercopus fimbriunguis (see Selden et al. 2008, their and their total number in central and northwest Europe fig. 1), an arachnid probably in the evolutionary lineage barelyexceedsafewdozens;mostareinthelateViséan. leadingtowardsmodernaraneans.AlsoArthropodCuticle Recently,twoTournaisian(Courceyan)localitieswithar- Type2(Fig.4E–G)canbecomparedwiththatofascor- thropods have been reported from southern Scotland pion, as depicted in Jeram (1994a, his pl. 7, figs 7, 8). (TweedBasin,ScottishBorders).Bothfossilassociations include myriapods and scorpions (Smithson et al. 2012), which,however,havenotbeendescribedindetailyet.The (cid:25)(cid:14)(cid:21)(cid:14)(cid:3)(cid:20)(cid:13)(cid:9)(cid:8)(cid:12)(cid:15)(cid:10)(cid:11)(cid:15)(cid:15)(cid:12)(cid:6)(cid:21)(cid:9)(cid:20)(cid:21)(cid:8)(cid:9)(cid:10)(cid:6)(cid:21)(cid:10)(cid:13)(cid:11)(cid:8)(cid:12)(cid:21)(cid:30)(cid:9)(cid:3)(cid:14)(cid:17)(cid:20)(cid:3)*(cid:15) other locality is East Kirkton also in southern Scotland (West Lothian) (Clarkson et al. 1994). The East Kirkton Theentirefining-upwardsequenceoftheupto800mthick depositsareBrigantianinageliketheGlösabedswhichare Ortelsdorf Formation is dominated by compositionally described here. immature terrigenous clastics, with subordinated thin Someinterestingcomparisonscanindeedbemadewith coalseams.Thelowerpartoftheformationformsthever- the East Kirkton lake deposits, even though this locality tical and lateral transition from a subaqueous near-shore hasyieldedmuchmoreandmuchlargerspecimensthanthe fandeltaenvironmentintoterrestrialdistalalluvialfande- heredescribedChemnitz-Glösalocality.Thelakewassur- posits.Theupperpart,yieldingtheheredescribedarthro- roundedbyagymnosperm-pteridospermforest(Galtier& pod cuticles, consists of floodplain and channel deposits Scott1994,Scottetal.1994),inhabitedbyavarietyofter- anddepositsoflocalswampsformingdecimetre-thickcoal restrial invertebrates and vertebrates (Clarkson et al. seamsandcarbonaceousshale.Theveryshallowbutwide 1994).Findsofterrestrialarthropodsaredominatedbydif- channelgeometryandbed-loadtransportpointtobraided ferentontogeneticstages(13mmto700mm)ofthegiant to anastomosing river systems. Vertically buried centi- Pulmonoscorpius kirktonensis, the top predator on land metre thick stems of lycopsids and Archaeocalamites, as (Jeram1994b).Severalmyriapods(Shear1994)areknown well as finely rooted horizons, are not rare. Layers with as well as one harvestman (Dunlop & Anderson 2005). current-oriented,inplaceschaotictrunksandtwigsofAr- Eurypteridsarerepresentedbytheupto1.5mlongsuppos- chaeocalamites, lycopsids and other plants may indicate edly amphibious-terrestrial Hibbertopterus scouleri flood events. Temporary flood plain ponds and lakes, re- (Jeram & Selden, 1994) (Whyte 2005). The fish fauna of mainingafterflash-floodevents,mayhavebeenspawning the lake consisted of different actinopterygians, acantho- placesoffemalexeanacanthidandhybodontsharksasindi- diansandarhizodontidsarcopterygianaswellashybodont catedbymass-occurrencesoftheireggcapsules.Thecom- andxenacanthsharks(Coates1994,Paton1994)–thelat- monnessofterrestrialadaptedarthropods,especiallyscor- ter fishes are the producers of the shark egg capsules pions,isindicatedbythecuticles;scorpioncuticlesappear known from the Hainichen Subgroup (Schneider et al. to be generally better preservable than those of other 2010). non-mineralisedarthropods,probablyduetometalsenclo- The Brigantian (late Viséan) marks the start of an in- sedinthecuticle(Jeram2001).Thisabundanceofremains creased radiation of terrestrial arthropods (Ward et al. ofterrestrialarthropodsfitswellinthepictureofanopen 2006)andtetrapods(Smithsonetal.2012)afteratimein- riverlandscapewithinstablevegetationofmainlyhygro- tervalreachingfromthelatestDevoniantotheHolkerian philous to mesophilous plants. Similarly, the adpression (~ middle Viséan) that is characterized by a general ab- fossilsofarthropodsfromtheBerthelsdorfFormationare senceofterrestrialarthropodsandtetrapods.Thisperiodis dominatedbyterrestrialforms.Mostcommonareremains generallyknownasRomer’sGap.Ithasbeenhypothesized of the gigantic arthropod Arthropleura (the so far oldest that the absence of terrestrial arthropods and tetrapods is known–Schneideretal.2010)followedbytrigonotarbid relatedtolowoxygenlevels,whichinhibitedtheseanimals andphalangiotarbidarachnids(Rößler&Schneider1997). withpoorlydevelopedrespiratorystructuresfromleaving The preferred habitat of Arthropleura were, most likely, thewater(Wardetal.2006).Whetherthishypothesiscan looselyvegetatedriverlandscapes(Schneideretal.2010). bemaintainedorwhethertheabsenceofterrestrialfaunais (cid:29)(cid:30), (cid:26)(cid:10)(cid:27)(cid:14)(cid:28)(cid:7)(cid:29)(cid:30)(cid:17)(cid:9)(cid:31)(cid:27)(cid:3) (cid:5)(cid:6)(cid:9)(cid:27)(cid:4)(cid:17)(cid:9)(cid:15)(cid:9)!"(cid:6)(cid:28)"(cid:10)#(cid:10)$(cid:9)(cid:14)(cid:3)(cid:6)(cid:7)(cid:14)(cid:4)(cid:5)(cid:13)(cid:9)(cid:11)"(cid:10)(cid:29)(cid:9)(cid:6)(cid:28)(cid:5)(cid:9)(cid:3)##(cid:5)"(cid:9)(cid:16)(cid:7)(cid:13)%(cid:27)(cid:8)(cid:9)(cid:10)(cid:11)(cid:9)(cid:5)(cid:27)(cid:13)(cid:6)(cid:5)"(cid:8)(cid:9)(cid:12)(cid:5)"(cid:29)(cid:27)(cid:8)& (cid:2) % & ! (cid:29)(cid:12)(cid:30)(cid:11)(cid:3)(cid:14)(cid:9)+ Macerated cuticles of extant arthropod appendages and details of their distal claws. (cid:129) A – pseudoscorpion, scale bar = 0.1 mm. (cid:129)B–Brachistosternussp.(Scorpiones,Chelicerata),scalebar=0.3mm.(cid:129)C–Scutigeracoleoptrata(Chilopoda,Myriapoda),scalebar=0.5mm. (cid:129) D –Oniscus asellus(Isopoda, Crustacea), scale bar = 0.4 mm. (cid:29)(cid:30)0 (cid:2)(cid:3)(cid:4)(cid:4)(cid:5)(cid:6)(cid:7)(cid:8)(cid:9)(cid:10)(cid:11)(cid:9)(cid:12)(cid:5)(cid:10)(cid:13)(cid:14)(cid:7)(cid:5)(cid:8)(cid:14)(cid:5)(cid:13)(cid:9)(cid:15)(cid:9)(cid:16)(cid:10)(cid:4)(cid:17)(cid:9)(cid:18)(cid:19)(cid:20)(cid:9)(cid:21)(cid:20)(cid:9)(cid:22)(cid:23)(cid:24)(cid:25) (cid:2) % & ! ’ (cid:29)(cid:12)(cid:30)(cid:11)(cid:3)(cid:14)(cid:9). Legsofdifferentinsectsforcomparison.AllspecimensfromtheCretaceousCratoFormation,Brazil.(cid:129)A–ROM63044.Tibiaofagrylloid. Smallspinesalongtheedgeappeartobemovable,scalebar=0.8mm.(cid:129)B–ROM63045.Tarsusanddistalpartoftibiaofablattoid.Tibiabearinglarge movablespines.Tarsuswithpairedpre-tarsalclaw,scalebar=0.4mm.(cid:129)C–ROM63046.Tibiaofatettigoniid(grasshopper)bearingverylargemovable spines,scalebar=0.5mm.(cid:129)D–ROM63047.Tarsusandpre-tarsusofanorthopteran.Tarsuselongateinwardcurvedwithaninnerserratededge.Pre-tar- sal claw well-developed, scale bar = 0.5 mm. (cid:129) E – ROM 63048. Tarsus and pre-tarsus of a possible notonectid bug, scale bar = 0.8 mm. ratheralackofappropriatedepositsandlocalitiesresulting fordiscussionsofstratigraphyandsedimentologyaswellastech- inabiasofthefossilrecordneedstobetested.Thefirstre- nicalsupport.JTHwasfundedbytheAlexandervonHumboldt portbySmithsonetal.(2012)suggeststhatmanytetrapod FoundationasaFeodor-LynenPostdocfellowandbyYaleUni- versity,andJTHandCHwereadditionallysupportedbyD.E.G. lineages have their origin much earlier than previously Briggs(NewHaven).J.-B.Caron,P.FentonandJ.Waddington thought. (all Toronto) spent a significant amount of time in making the Careful analyses of bulk-macerated samples from specimensfromtheRoyalOntarioMuseumavailabletoJTHand Chemnitz-Glösa resulted in the recognition of herba- CH,forwhichtheyareheartilythanked.Wearealsogratefulfor ceous lycopsids (Hübers et al. 2011) and the discovery thelong-lastingsupportofS.Liebau(Tübingen)providingaccess oftheoldestmosses(Hübers&Kerp2012,2013).This toaZeissAxioskop2attheUniversityofUlm.Wethankallpeo- contributionstressesthatthismethodmayalsorevealan ple involved in providing freely available software such as unexpected variety of terrestrial arthropods, and thus CombineZM/ZP,MicrosoftImageCompositeEditor,Gimpand clearlydemonstratesitsgreatpotentialofsedimentsthat OpenOffice. at first sight only seem to contain organic debris. Even though the preservation is fragmentary, the -(cid:14)(cid:16)(cid:14)(cid:3)(cid:14)(cid:21)(cid:10)(cid:14)(cid:15) taphocoenosisfromthelateViséanHainichenSubgroup isoneoftheveryfewoccurrencesofEarlyCarbonifer- ousterrestrialarthropodsandtoourknowledgetheonly BARTRAM,K.M.,JERAM,A.J.&SELDEN,P.A.1987.Arthropodcu- one from outside Scotland. Together with previously ticlesincoal.JournaloftheGeologicalSociety144,513–517. DOI 10.1144/gsjgs.144.3.0513 published reports on the biota of the Hainichen Sub- groupthesefindsprovideimportantinformationforthe BRAUN, A. 1997. Vorkommen, Untersuchungsmethoden und Bedeutung tierischer Cuticulae in kohligen Sediment- reconstruction of an Early Carboniferous terrestrial en- gesteinen des Devons und Karbons. Palaeontographica, vironment. Abteilung A 245, 83–156. CLARKSON,E.N.K.,MILNER,A.R.&COATES,M.I.1994.Palaeoec- ologyoftheViséanofEastKirkton,WestLothian,Scotland. (cid:2)(cid:10)*(cid:21)(cid:6),(cid:13)(cid:14)(cid:8)(cid:30)(cid:14)(cid:17)(cid:14)(cid:21)(cid:4)(cid:15) Transactions of the Royal Society of Edinburgh, Earth Sci- ences84, 417–425. DOI 10.1017/S0263593300006210 Financial support was provided by the Deutsche For- CLAYTON,G.,COQUEL,R.,DOUBINGER,J.,GUEINN,K.J.,LOBOZIAK, schungsgemeinschaft (DFG grant KE 584/17-1). We thank S.,OWENS,B.&STREEL,M.1977.Carboniferousmiosporesof S.Schultka(Berlin)andB.Gaitzsch(Freiberg)formakingpartof westernEurope:illustrationandzonation.MededelingenRijks theGlösamaterialavailable;additionallyB.Gaitzschisthanked Geologische Dienst 29, 1–71. (cid:29)(cid:29)

Description:
arachnids, myriapods, arthropleurids, eurypterids, shark the upper part of the Ortelsdorf Formation, Hainichen Sub- group isopod; ROM 61543 pterygote insect; ROM 61608 diplo- mented under polarized light with a Canon Rebel T3i cam- .. schungsgemeinschaft (DFG grant KE 584/17-1).
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.