ebook img

14: Power in AC Circuits - Electrical Engineering PDF

103 Pages·2015·2.2 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview 14: Power in AC Circuits - Electrical Engineering

14:PowerinACCircuits • AveragePower • CosineWaveRMS • PowerFactor + • ComplexPower • PowerinR,L,C • Tellegen’sTheorem • PowerFactorCorrection • IdealTransformer • TransformerApplications • Summary 14: Power in AC Circuits E1.1 Analysis of Circuits (2017-10213) AC Power: 14 – 1 / 11 Average Power 14:PowerinACCircuits • AveragePower • CosineWaveRMS • PowerFactor + • ComplexPower • PowerinR,L,C • Tellegen’sTheorem • PowerFactorCorrection • IdealTransformer • TransformerApplications • Summary E1.1 Analysis of Circuits (2017-10213) AC Power: 14 – 2 / 11 Average Power 14:PowerinACCircuits • AveragePower • CosineWaveRMS • PowerFactor + • ComplexPower • PowerinR,L,C • Tellegen’sTheorem • PowerFactorCorrection • 2 IdealTransformer v (t) Intantaneous Power dissipated in R: p(t) = • TransformerApplications R • Summary E1.1 Analysis of Circuits (2017-10213) AC Power: 14 – 2 / 11 Average Power 14:PowerinACCircuits • AveragePower • CosineWaveRMS • PowerFactor + • ComplexPower • PowerinR,L,C • Tellegen’sTheorem • PowerFactorCorrection • 2 IdealTransformer v (t) Intantaneous Power dissipated in R: p(t) = • TransformerApplications R • Summary E1.1 Analysis of Circuits (2017-10213) AC Power: 14 – 2 / 11 Average Power 14:PowerinACCircuits • AveragePower • CosineWaveRMS • PowerFactor + • ComplexPower • PowerinR,L,C • Tellegen’sTheorem • PowerFactorCorrection • 2 IdealTransformer v (t) Intantaneous Power dissipated in R: p(t) = • TransformerApplications R • Summary Average Power dissipated in R: T P = 1 p(t)dt T 0 R E1.1 Analysis of Circuits (2017-10213) AC Power: 14 – 2 / 11 Average Power 14:PowerinACCircuits • AveragePower • CosineWaveRMS • PowerFactor + • ComplexPower • PowerinR,L,C • Tellegen’sTheorem • PowerFactorCorrection • 2 IdealTransformer v (t) Intantaneous Power dissipated in R: p(t) = • TransformerApplications R • Summary Average Power dissipated in R: T T P = 1 p(t)dt = 1 1 v2(t)dt T R0 R × T R0 E1.1 Analysis of Circuits (2017-10213) AC Power: 14 – 2 / 11 Average Power 14:PowerinACCircuits • AveragePower • CosineWaveRMS • PowerFactor + • ComplexPower • PowerinR,L,C • Tellegen’sTheorem • PowerFactorCorrection • 2 IdealTransformer v (t) Intantaneous Power dissipated in R: p(t) = • TransformerApplications R • Summary Average Power dissipated in R: 2 T T v (t) P = 1 p(t)dt = 1 1 v2(t)dt = h i T R0 R × T R0 R E1.1 Analysis of Circuits (2017-10213) AC Power: 14 – 2 / 11 Average Power 14:PowerinACCircuits • AveragePower • CosineWaveRMS • PowerFactor + • ComplexPower • PowerinR,L,C • Tellegen’sTheorem • PowerFactorCorrection • 2 IdealTransformer v (t) Intantaneous Power dissipated in R: p(t) = • TransformerApplications R • Summary Average Power dissipated in R: 2 T T v (t) P = 1 p(t)dt = 1 1 v2(t)dt = h i T R0 R × T R0 R v2(t) is the value of v2(t) averaged over time (cid:10) (cid:11) E1.1 Analysis of Circuits (2017-10213) AC Power: 14 – 2 / 11 Average Power 14:PowerinACCircuits • AveragePower • CosineWaveRMS • PowerFactor + • ComplexPower • PowerinR,L,C • Tellegen’sTheorem • PowerFactorCorrection • 2 IdealTransformer v (t) Intantaneous Power dissipated in R: p(t) = • TransformerApplications R • Summary Average Power dissipated in R: 2 T T v (t) P = 1 p(t)dt = 1 1 v2(t)dt = h i T R0 R × T R0 R v2(t) is the value of v2(t) averaged over time (cid:10) (cid:11) , We define the RMS Voltage (Root Mean Square): V v2(t) rms ph i E1.1 Analysis of Circuits (2017-10213) AC Power: 14 – 2 / 11 Average Power 14:PowerinACCircuits • AveragePower • CosineWaveRMS • PowerFactor + • ComplexPower • PowerinR,L,C • Tellegen’sTheorem • PowerFactorCorrection • 2 IdealTransformer v (t) Intantaneous Power dissipated in R: p(t) = • TransformerApplications R • Summary Average Power dissipated in R: 2 T T v (t) P = 1 p(t)dt = 1 1 v2(t)dt = h i T R0 R × T R0 R v2(t) is the value of v2(t) averaged over time (cid:10) (cid:11) , We define the RMS Voltage (Root Mean Square): V v2(t) rms ph i The average power dissipated in R is P = hv2(t)i = (Vrms)2 R R V is the DC voltage that would cause R to dissipate the same power. rms E1.1 Analysis of Circuits (2017-10213) AC Power: 14 – 2 / 11

Description:
Power Factor. • Complex Power. • Power in R, L, C. • Tellegen's Theorem. • Power Factor Correction. • Ideal Transformer. • Transformer Applications. • Summary.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.