ebook img

1223 Aalborg University, Denmark 12 ABAQUS 768 - Wiley-VCH PDF

20 Pages·2012·0.11 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview 1223 Aalborg University, Denmark 12 ABAQUS 768 - Wiley-VCH

1223 Index a ––PTFE-bondedgasdiffusionelectrodes AalborgUniversity,Denmark 12 105 ABAQUS 768,769,770 ––stackdesignwithanion-exchange activeandpassivehybrids 1078–1080 membranes 104 activebrazealloys(ABAs) 324 ––traditionalstacks 100 adsorption 1017–1018,1024–1026 –electrolytesandseparators 113–114 AdventTechnologies 11 –historicalintroductionandprinciple AFCo 75,87 97–99 agglomeratemodels 809–810 analysisofvariance(ANOVA) 610 airbrazing 324–325 analyticalmodeling,offuelcells 648 alkalinedirectethanolfuelcells,assembled –catalystlayerperformancemodeling withnon-platinumcatalyst 104–105 ––basicequations 648–650 alkalineelectrolytes,electrodesfor ––CrpoisoningmodelSOFCcathode 226–227 654–657 –alkalineelectrolysis 227–228 ––criticalcurrentdensity 652–653 ––feedmoleculesidealtransport 650 –alkalinefuelcells(AFCs) 227 ––optimalcatalystloading 657–658 –alkalineURFCs 228–229 ––polarizationcurve 651–652 alkalinefuelcells(AFCs) 222,227,418 ––x-shapes 653–654 –carbondioxidebehavior 123–126 –PEMFCsandHT-PEMFCpolarizationcurve –degradation 658–659 ––gasdiffusionelectrodeswithRaney ––high-currentregime 661–662 nickelcatalysts 114–121 ––low-currentregime 660–661 ––gasdiffusionelectrodeswithsilver ––one-dimensionalcellpolarizationcurve catalysts 121–123 662 –designconcepts 99–100 ––oxygenconsumptioninchanneland ––alkalinedirectethanolfuelcells quasi-two-dimensionalpolarization assembledwithnon-platinumcatalyst curve 663–665 104–105 ––oxygentransportinGDL 659–660 ––bipolarstackconceptbyDLR 101–102 anion-exchangemembranes(AEMs) 104, ––cathodegasdiffusionelectrodes 151 production 113 anisotropyparameter 676 ––double-skeletonelectrodes 106–111 anodecatalyst.Seelow-temperaturefuelcells, ––Elofluxcelldesign 100–101 catalysisin ––fallingfilmcell 101 anodecatalystlayer(ACL) 132 ––Hydrocellconcept 102–103 anode-supportedsinglecells(ASCs) 452 ––NiOreduction 111–112 ANSYSsoftware 769,771 ––Ovonicsconcept 103 Apolloprogram 222,420 FuelCellScienceandEngineering:Materials,Processes,SystemsandTechnology, FirstEdition.EditedbyDetlefStoltenandBerndEmonts. ©2012Wiley-VCHVerlagGmbH&Co.KGaA.Published2012byWiley-VCHVerlagGmbH&Co.KGaA. 1224 Index ArmyPowerDivision(ATO) 1116 ––electrodematerials 149–151 Arrheniusequation 718 ––membrane 151 AsahiChemical 388 ––performancereporting 156–157 associativemechanism 393 –microbialcatalysts 157 atomicforcemicroscopy(AFM) 488 ––anodereactions 157–160 attenuationcoefficient 496 ––biologicallimitations 163 autothermalreforming(ATR) 428–429, ––cathodereactions 160–162 706,711,721,722,723,724,726–728 ––photosyntheticbiocatalysts 163 auxiliarypowerunits(APUs) 22,1011 ––pureculturesandmixedmicrobial –SOFC-based communities 162–163 ––foraircraft 994–996 –modeling 173 ––forautomobilesandtrucks 993–994 biofilm 150,152,156,158–159,159,162,163 biologicalfuelcells(BFCs) 147 b biologicaloxygendemand(BOD) 172 balanceequations 791,794,804,808 biologicalprocessesandselectiveoxidation balanceofplant(BOP) 73–74,953 1029–1030 Ballard 26,29,30,1132 biosensorsandenvironmentalmonitoring bariumstrontiumcobaltferrite 172–173 (BSCF) 49 bipolarplate(BP) 132–133,134,136,139 BASF 11 –metallic 363 batterychargers 27–29 ––bareplates 363–366 batteryelectricvehicles(BEVs) 20,21–22, ––coatedstainless-steelplates 368–370 1057–1058 ––lightalloys 366–367 BaxiGroup 25 bipolarstackconcept,byDLR 101–102 BaxiInnotech 25 blockdiagram.Seeflowdiagram BellaColla 1110 BloomEnergy 6,8 Bernoullifilling 673 bondedcompliantseals 323–324 bifunctionalmechanism 419 –bondedfoilsealconcept 327–328 bilinearelastic–plasticconstitutivemodel –brazing 324–327 770 bondedfoilsealconcept 327–328 bioanodes 157–158,163 Bosanquetequation 738 bioelectrochemicalsystems(BESs) b+wElectronics 29 147–148,148 brazing 210,324–327 –applicationsandconceptproofs 164 Brillouinlightscattering(BLS) 535 ––biosensorsandenvironmental Butler–Volmerequation 385,742,743,807, monitoring 172–173 830,846 ––causticsodaandhydrogenperoxide Butler–Volmer–Monodmodel 173 production 170 Butler–Volmer-typeequation 823,824,825, ––desalination 169–170 826 ––electro-assistedanaerobicdigestion buttoncells 251 168–169 ––greenhousegasmitigation 171–172 c ––heavymetalrecoveryandremoval 172 CaliforniaAirResourcesBoard 1132 ––organicalcoholsandacids 170–171 CaliforniaEnergyCommission 1132 ––recalcitrantcompounds 171 CaliforniaFuelCellPartnership(CaFCP) ––sediments,plants,andphotosynthesis 1132–1133,1204–1205 168 Calluxprogram 1142 ––wastewatertreatment 164–168 Canada 1136–1137 –internalresistancesin 154 CanadianHydrogenandFuelCellAssociation –materialsandmethods 149 (CHFCA) 1198–1200 ––biologicalmeasurements 152 carbonaceousenergycarriers 920,957 ––configurationsanddesign 151–152 carbondioxidebehavior 123–126 ––electrochemicalmeasurements carbonnanotubes(CNTs) 416,422 152–156 CaseWesternReserveUniversity 12 Index 1225 catalysisin 420–421 China 1137 catalystislanding 545 –BeijingOlympicsandShanghaiWorldExpo catalystmaterial 221,227,228,230,231 1138 catalystpoisoning 409,417,418,419 –GEF/UNDP-ChinaFCBdemonstration catalystpoisoning,bysulfur-containing 1138 substancesincrudeoilfractions classicalrandomgraphmodels 690–691 1015–1016 Clausius-Clapeyronequation 341 catalystsupports,forelectronconduction Clausprocess 1022 397–402 cleanenergypartnership(CEP)(Germany) catalyticpartialoxidation(CPO) 427–428 1122–1124 catalyticsteamreforming(SR) 426 –stationarypowerandearlymarket –carbonformation 427 applications 1142–1143 –desulfurization 426–427 ––regionalactivities 1143 cathodecatalyst.Seelow-temperaturefuel CO2evolution,visualizedbymeansof cells,catalysisin synchrotronX-rayradiography 508–509 cathodecatalystlayer(CCL) 132,133 coefficientofthermalexpansion(CTE) 309, cathodecurrent-collectorlayer(CCCL) 310–311,312–313,319 253,254–255 colorintrusionmethod 476 cathodefunctionallayer(CFL) 254,255 combinedheat,hydrogen,andpower(CHHP) causticsodaandhydrogenperoxide 89 production 170 combinedheatandpower(CHP) 86,89,90 Celanese 11 combustionreactions 68 CelleraTechnologies 392 combustor 984 cell-levelmodeling 755–758,821–825 complexnonlinearleast-squares(CNLS)fit –coldstartoperation 893–898 447–449,452,458,464 –dimensionality 882–884 compressiveseals 319–320 –flowmaladjustment 900 –hybridmicaseals 321–323 –large-scalefuel-cellsimulation 898–899 –metalgaskets 320 –modelvalidation 903,905 –mica-basedseals 320–321,322 –nonisothermalmodeling 888,890–891 computationalfluiddynamic(CFD) 703–705 –single-phaseflow 901 –analysis 779–781 –transientoperation 884–888 –baseddesign 728–730 –two-phaseflow 891–893,902–903 –high-performancecomputing,forfuelcells cellreversal 554 705–711 cell-to-edgedesign 304 –high-performancecomputing-based cell-to-framedesign 304–305 modelingforfuel-cellsystems 711–712 cellvoltage 546 ––CFDprinciples 712–715 CenterforSolarEnergyandHydrogen ––corecomponentmodelingofHT-PEFC Research[Zentrumfu¨rSonnenenergie auxiliarypowerunit 721–728 -undWasserstoff-Forschung(ZSW)] 15 ––heattransfer 717 CentreforSolarEnergyandHydrogen ––mixturesandreactions 717–719 ResearchBaden-Wu¨rttemberg 12 ––multiphaseflows 719–720 CeramicFuelCellLimited(CFCL) 25 ––porousmedia 720–721 ceramicseals 318–319 ––turbulence 715–716 CeramTec 8 computer-aideddesign(CAD) 947 chemicalfuelcells(CFCs) 147 COMSOLsoftware 772 chemicaloxygendemand(COD) confocalmicroscopy 488 165,169 confounding 610 chemisorption 1018 ConocoPhillips 1020 –hydrofining 1021–1022 conventionalexternalreformingMCFC –H2Sremoval 1018–1020 71–72 –SO2removal 1020–1021 coplanarelectrodes,SC-SOFCswith 52 –S-Zorbprocess 1020 –cellperformance 52–53 ChevronTexaco 1132 ––cellstacks 55 1226 Index coplanarelectrodes,SC-SOFCswith(contd.) ––dynamicoperationatstandardconditions ––electrodeshape 54–55 550–553 ––electrodethickness 54 ––referenceelectrode 546–548 ––electrodewidth 53 –starvationconditions 553 ––electrolytesurfaceroughness 54 ––hydrogenstarvationduring ––electrolytethickness 54 start-up/shut-down 555–558 ––fuelchoiceandloweroperating ––localhydrogenstarvation 558–561 temperatures 55–56 ––materialsanddesigns 563 ––gasflowdirection 55 ––mitigation 562 ––gasmixturecomposition(fuel-to-oxygen ––operationstrategies 563–565 ratio) 55 ––overallhydrogenstarvation 553–555 ––inter-electrodegap 53 ––oxygenstarvation 561–562 –limitationsandchallenges 57–58 DelphiandPNNL 7 ––cellefficiency 59 demonstrationprojects 1119–1120 ––chemicalinteractionbetweencoplanar –stationarypowerandearlymarket electrodes 58 applications 1139–1140 ––currentcollection 59 ––Denmark 1142 ––gasintermixing 58 ––EuropeanUnion 1143–1144 ––microscaleelectrodes 59 ––Germany 1142–1143 ––miniaturizationlimits 58 ––Japan 1140–1141 ––nickelinstability 59 ––SouthKorea 1145 –miniaturization 56–57 ––UnitedStates 1144–1145 core-shellnanostructure 395 –transportationdemonstrations 1120–1122 corrosion 551,554,555,557,558,559,560, ––automakerdemonstrationprograms 562,563,564 1138–1139 CrpoisoningmodelSOFCcathode ––Canada 1136–1137 654–657 ––China 1137–1138 crudeoil 1011–1012 ––EuropeanUnion 1133–1136 –catalystpoisoningbysulfur-containing ––Germany 1122–1125 substancesinfractionsof 1015–1016 ––Japan 1126–1129 –chemicalclassesofsulfur-containing ––SouthKorea 1137 substancesin 1013–1015 ––UnitedStates 1130–1133 –routesforinsertingsulfurintomolecules Denmark 1142 1012–1013 densityfunctionaltheory(DFT) 386 Cummins 23 DepartmentofDefense(DOD),US currentdensitydistribution 548–549 1108–1109 currentinterruptmethod 156 DepartmentofEnergy(DOE)hydrogen–air cyclicvoltammetry(CV) 112,156,549–550 fuelcellsystem 381 desalination 169–170 d designofexperiments(DOE) 598–599 DaimlerChrysler 15,1132 –22factorialdesign 599–601 DaisAnalyticCorporation(DAC) 25 –23factorialdesign 604–609 DalianInstituteofChemicalPhysics 12 –2n-kfractionalfactorialdesigns 609–610 DanishPowerSystems 11 –32factorialdesign 601–604 Dantherm 29 Desulfovibriomicroorganisms 1012 Dapozol.Seemembraneelectrodeassembly desulfurization,forfuel-cellsystems 1011 (MEAs) –application 1034–1038 Darcy–Forchheimerlaw 721 –ingasphase 1016–1017 d-bandtheory 387 ––absorption 1017 degradation,causedbydynamicoperation ––adsorption 1017–1018 andstarvationconditions 543–546 ––chemisorption 1018–1022 –measurementtechniques 546 ––sulfurrecovery 1022 ––currentdensitydistribution 548–549 –inliquidphase ––cyclicvoltammetry 549–550 ––adsorption 1024–1026 Index 1227 ––desulfurizationwithovercriticalfluids durability 220,221,223,226,230,231,233, 1030–1031 236,240 ––distillation 1031–1032 dustygasmodel(DGM) 757 ––hydrodesulfurizationwithpresaturator dynamichydrogenelectrode(DHE) 547,548 1022–1024 dynamicloadcyclingagingtest ––ionicliquids 1026–1028 –datapostprocessing 586–587 ––processeswithnonporousmembranes –settingoftestconditions(testinputs) 585 1032–1034 –testoutputmeasurement 585–586 ––processeswithporousmembranes dynamicmechanicalanalysis(DMA) 534 1032 dynariosystem 27 ––selectiveoxidation 1028–1030 –sulfur-containingmolecules e ––catalystpoisoningbysulfur-containing ECTOS(EcologicalTranspOrtSystem) substancesincrudeoilfractions 1220 1015–1016 edges,stochasticmodelingof 688 ––chemicalclassesofsulfur-containing –MCMCsimulationforedgerearrangement substancesincrudeoil 1013–1015 689–690 ––crudeoil 1011–1012 educationandpublicawareness 1211–1212 ––routesforinsertingsulfurintomolecules –clarificationassistanceinpoliticalarena incrudeoil 1012–1013 1219–1220 diffusionbonding 210 –educationandtraininginthescientificarea directcarbonfuelcells(DCFCs) 89 1218–1219 directethanolfuelcells(DEFCs) 136–137 –educationforschoolstudentsanduniversity directfuelcells 417–418 students 1213–1215 directinternalreforming(DIR) 73 –electrolyzersandfuelcellsineducationand directmethanolfuelcells(DMFCs) 12–13, training 1215–1216 131,134,135–136,507–508 –informationforinterestedlaypeople –batterychargers 27–29 1212,1213 –CO2evolutionvisualizedbymeansof –publicawarenessanalysis 1220–1221 synchrotronX-rayradiography 508–509 –trainingandqualificationfortradeand –combinedapproachofneutronradiography industry 1216–1218 andlocalcurrentdensitymeasurements efficiency 220,221,224–225,226,228,229, 509–510 230,231,236,239,240 –forlighttraction 14–17 elastoplasticity 770,771,777,782 –miniaturized 141 Elcomax 11 –passivelyoperating 142 ElectraGensystems 29 –forportableapplications 13–14 electro-assistedanaerobicdigestion 168–169 directnumericalsimulations(DNSs) electrocatalysis,infuelcells 408–410 847,848 –alkalinefuelcells 418 directoxidation 979 –catalysisindirectfuelcells 420–421 dissociativemechanism 393 –directfuelcells 417–418 distributioncoefficient 1027 –electrocatalystdegradation 421 distributionfunctionofrelaxationtimes –hydrogenoxidationandCOpoisoning (DRT) 449,450–452 418–419 diverseenergy 1112,1144 –oxygenreduction,inPEMFCs 410–417 DLR 8 electrocatalyst DoosanHeavyIndustriesandConstruction –degradation 421 (DHI) 75 –foroxygenreduction 393–397 double-skeletonelectrodes 106 electrochemicalimpedancespectroscopy(EIS) –preparationandelectrodematerials 156,441,534,820 106–108 –principlesof 443–445 –PTFE-bondedgasdiffusionelectrodesdry ––frequencyresponseanalyzers 445–446 preparation 108–111 electrochemicallyactiveplatinumsurfacearea DuPont 388 (ECA) 552 1228 Index electrochemistry 740–741 –stationarypowerandearlymarket –contimuum-levelapproach 741–742 applications 1143–1144 –mesoscaleapproach 742–744 –StrategicEnergyTechnology(SET) 1133 electrodemodels 804–806 EWW 25 –agglomeratemodels 809–810 exchangeprograms 1218–1219 –spatiallylumpedmodels 806–808 exergyanalysis 930–932 –thin-filmmodels 808–809 externalreformer 979,980 –volume-averagedmodels 810–811 extracellularelectrontransfer(EET) 157 electrodes,forhydrogenoxidation 384–388 f electrolytetypes 221 22factorialdesign 599–601 electrolyzerefficiency 224 23factorialdesign 604–609 electronbeamwelding 209 32factorialdesign 601–604 electron-transfermechanisms 159 failuremodeandeffectanalysis(FMEA) 946 –direct 160,162 fallingfilmcell 101 –indirect 160,162 Faraday’slaw 756,808 electroosmoticdrag 389 fastmarchingmethod 693 Elofluxcelldesign 100–101 FederalMinistryofEducationandResearch embossing 208 [Bundesministeriumfu¨rBildungund EnBW 25 Forschung(BMBF)],Germany 13 ENE-FARMprogram 1140 Fick’slaw 737 energystorage 220,226,236,240 finiteelementmethod(FEM) 769 –seasonal 237–239 flooding 389,851 energysupply 1154 flowdiagram 931,939,940,941,947 EngineeringAdvancementAssociation (ENAA),Japan 1126 flowrule 777 environmentalengineering 157,159 FLUENTpackage 713,714,717,719,725, E.ONRuhrgas 25 727 EPlus 1112 fluorescentinsituhybridization(FISH) 152 equivalentcircuitmodel(ECM) 447,449, focusedionbeam(FIB) 488 452,453–455 Ford 1132 –definitionandvalidation 458–465 FordFocusFCVHybrid 1059 ––anodicwaterpartialpressuredependence ForschungszentrumJu¨lich(FZJ) 7,8,12,15, 461–462 249,270,469 ––cathodicoxygenpartialpressure Fouriertransforminfrared(FTIR) dependence 460–461 spectroscopy 625 ––thermalactivation 462–464 FraunhoferIKTS 6,6 Erasmusexchangeprogram 1218–1219 FraunhoferInstituteforSolarEnergySystems etchingtechniques 207 (FhG-ISE) 12,13 ethanol 420 FuelCellAndHydrogenEnergyAssociation Euler–Eulerapproach 719 (FCHEA),USA 1196–1197,1198 EuropeanFuelCellGmbH(EFC) 25 –resources 1197–1198 EuropeanHydrogenAssociation(EHA) 1193 –workinggroupsandcommittees 1197 –members 1195–1196 fuelcellandhydrogenorganizationsand EuropeanRegionsandMunicipalities worldwideinitiatives 1181 PartnershipforHydrogenandFuelCells –Europeanlevel (HyRaMP) 1201–1202,1136 ––EuropeanHydrogenAssociation(EHA) EuropeanUnion 1133 1193–1196 –fuelcellbusprojects 1134–1135 ––FuelCellsandHydrogenJoint –H2movesScandinavia 1135–1136 Undertaking(FCHJU) 1187, –JointUndertakingonFuelCellsand 1189–1193 Hydrogen(FCHJU) 1133 –internationallevel 1181–1182 –regionalandmembercountryactivities ––InternationalEnergyAgency(IEA) 1136 1183–1187 Index 1229 ––InternationalPartnershipforHydrogen ––energyconversionanddrivingcycles andFuelCellsintheEconomy(IPHE) 1046–1049 1182–1183 fuelcellprocessengineeringmethodologies –nationallevel 597 ––CanadianHydrogenandFuelCell –analysismethods 628 Association(CHFCA) 1198–1200 ––nonlinearsystemsofequationsmodel ––NationalOrganizationforHydrogenand evaluation 637–639 FuelCellTechnology(NOW) ––pinch-pointanalysis 639–641 1200–1201 ––predictivemethodforvapor–liquidand ––USFuelCellandHydrogenEnergy liquid–liquidequilibriadetermination Association(FCHEA) 1196–1198 630–637 –partnerships,initiatives,andnetworkswith ––systemanalysisviastatisticalmethods specificagenda 628–630 ––CaliforniaFuelCellPartnership(CaFCP) –parameteroptimization 604,628,638 1204–1205 –verificationmethods 597–598 ––InitiativeBrennstoffzelle(IBZ) ––conversiondeterminationinreforming 1206–1207 processes 616–628 ––UKHydrogenEnergyNetwork(H2NET) ––designofexperiments(DOE) 598–610 1206 ––measurementuncertaintyevaluation –regionallevel 610–616 ––EuropeanRegionsandMunicipalities FuelCellResearchCenter,Duisburg 12 PartnershipforHydrogenandFuel FuelCellSystemsTesting,SafetyandQuality Cells 1201–1202 Assurance(FCTESQA) 79,573 ––hydrogenandfuel-cellactivities,in FuelCellTutorial 1218 Germany’sfederalstates 1202–1204 fuelcellvehicles(FCVs) 1121,1125,1127, FuelCellEnergy(FCE) 8,75 1132 fuel-cellhybridelectricvehicles(FCHVs) fuelprocessing 706,709,714,718,720 18,20,21 fuelprocessor 706–708 FuelCellInstituteofShanghaiJiaotong fuelutilization 45 University 75 Fumatech 11,12 fuelcellpowertrains 1045 functionallayer 654 –buses 1092 FutureEFuelCellSolutions 29 –components ––electricalstorage 1065–1067 g ––electricmachines 1067–1069 gadolinium-dopedceria(GDC) 280,287,291 ––fuelcellsystemsforautomotive gadolinium-dopedceriumoxide(CGO) 259, applications 1063–1065 260–261,265 ––hydrogenstorage 1061–1063 gasdiffusionelectrodes(GDEs) 100,101, ––vehicledrivetraincostcomparison 105,106,109,422 1070–1072 –withRaneynickelcatalysts 114–121 –passengercars 1089 –withsilvercatalysts 121–123 –vehiclepowertrainspotentialsand gasdiffusionlayer(GDL) 132,135,381,493, challenges 503,505,507,508,509–510,515,523,524, ––hybridelectricfuelcellvehicles 659–660,669,678,691,850–859,890 1058–1059 –andgasflowchannelinterface 864–868 ––non-hybridfuelcellpowertrains 1058 –multi-layermodelforpaper-type 670 ––powertraincomparison 1055–1058 ––bindermodeling 672–673 ––propulsionsystems 1049–1050, ––fibermodeling 671–672 1052–1054 ––modelparameterfitting 674–675 ––triple-hybridfuelcellvehicles ––results 675–676 1060–1061 ––time-seriesmodelsfornon-wovenGDLs –vehiclerequirements 676–677 ––drivingresistance 1045–1046,1047, –optimization 138–139 1048 ––carbondioxidedischarge 141–142 1230 Index gasdiffusionlayer(GDL)(contd.) –processoptimization 932–940 ––flow-fielddesign 139–141 –systemset-up 926–927 ––miniaturizedDMFC 141 heavymetalrecoveryandremoval 172 ––passivelyoperatingDMFC 142 HeliocentrisFuelCells 1215 –structuralcharacterizationofporous 692 Hexis 25 ––connectivity 695–696 high-performancecomputing ––graphmodelvalidation 698 –basedmodelingforfuel-cellsystems ––multi-layermodelvalidation 696–698 711–712 ––poresizedistributions 694–695 ––CFDprinciples 712–715 ––tortuosity 692–693 ––corecomponentmodelingofHT-PEFC gasphase,desulfurizationin 1016–1017 auxiliarypowerunit 721–728 –absorption 1017 ––heattransfer 717 –adsorption 1017–1018 ––mixturesandreactions 717–719 –chemisorption 1018–1022 ––multiphaseflows 719–720 –sulfurrecovery 1022 ––porousmedia 720–721 gasturbine(GT)–MCFCsystemintegration ––turbulence 715–716 73–74,74 –forfuelcells 705–711 GDOS(glowdischargeopticalemission high-resolutiontransmissionelectron spectroscopy) 488 microscopy(HRTEM) 398 Geminiprogram 222,380,383,420 high-temperaturepolymerelectrolytefuelcell GeneralMotors(GM)ResearchLaboratories (HT-PEFC) 11,511–512,658–665,706, 364 819 Geobacterspp. 158,160 –actorsanddevelopmentareas 11–12 Geobactersulfurreducens 160,172 –cell-levelmodeling 821–825 geometrictortuosity 692 –phosphoricacidaselectrolyte 827–829 Germany –polarizationcurvemodeling 829–830 –cleanenergypartnership 1122–1124 ––activationoverpotential 830–831 –H2Mobility 1125 ––masstransport 833–834 –NorthRhine-Westphaliaactivities ––ohmicresistance 831–833 1124–1125 –stack-levelmodeling 825–827 –stationarypowerandearlymarket hoppingmechanism 843 applications 1142–1143 Hu¨ckel’slaw 1014 Gibbsenergyfunction 927–928 humidificationsensitivitytest glassandglass–ceramicsealants 309–318, –datapostprocessing 578 312,316 –settingoftestconditions(testinputs) Gore 388 574–577 greenhousegases(GHGs) 3,21 –testoutputmeasurement 577–578 –mitigation 171–172 hybridelectricfuelcellvehicles 1058–1059 Griffithcrackmodel 308–309 Grotthusmechanism 344,389 hybridization,forfuelcells 1075–1076 GSMA 1111,1112 –components 1081 GuidetotheExpressionofUncertaintyin ––controlunit 1084–1085 Measurement(GUM) 610–611 ––energystorage 1082–1083 ––fuelcell 1082 h ––powerelectronics 1083–1084 Hakimi–Havelalgorithm 688,689 –concepts hardeningrule 777 ––overview 1085 H.C.Starck 8 ––possibleconcepts 1087–1088 heatexchanger 985–986 ––types 1085,1087,1088 heatmanagementanalyticalmethods –hybridizationdegree 1081 926 –reasons 1076–1077 –exergyanalysis 930–932 –systemsanalysis 1096–1097 –Gibbsenergyfunction 927–928 –technicaloverview 1088 –Pinchpointanalysis 928–930 ––applications 1096 Index 1231 ––fuel-cellpowertrains 1088–1089, indirectinternalreforming(IIR) 73 1091–1092 infiltration 275 ––lighttractionapplications 1092–1096 –applications 282–284 –types ––activeandpassivehybrids 1078–1080 ––anodesproducedby 284–290 ––seriesandparallelhybrids 1077–1078 ––cathodesproducedby 290–295 hybridmicaseals 321–323 –motivationfor 281–282 Hydrocellconcept 102–103 Hydrogen-AssistedRenewablePowerSystem informationdisseminationportfolio (HARP)project 1110 1162–1163 hydrogenevolutionreaction(HER) 384, infrastructureportfoliointegration 385–386 hydrogen-fedmicrofuelcells 134–135 1160–1161 HydrogenHyWayProgram,North InitiativeBrennstoffzelle(IBZ) 1206–1207 Rhine-Westphalia 1124 insituimaging,atlarge-scalefacilities 493 Hydrogenics 29,30 H2Mobility 1125 –applications hydrogenoxidationandCOpoisoning ––neutrontomography 513–514 418–419 ––synchrotronX-raytomography 514–517 hydrogenoxidationreaction(HOR) 384–387,845,846,850 –DMFCs 507–508 hydrogenstarvation 553 ––CO2evolutionvisualizedbymeansof –duringstart-up/shut-down 555–558 synchrotronX-rayradiography HydrogenSupply/UtilizationTechnology (HySUT) 1129 508–509 hydromechanicsmodel,formica-basedseals ––combinedapproachofneutron 323 radiographyandlocalcurrentdensity Hy-Lifeproject 1129 measurements 509–510 i –HT-PEFCs 511–512 IdaTech 30 –PEFCs 500 IMM(Germany) 23 impedancespectroscopy 441–443 ––neutronradiography 504–507 –dataanalysis ––X-rays 500–504 ––complexnonlinearleast-squares(CNLS) –X-raysandneutrons fit 447–449 ––dataqualityanalysis 446–447 ––complementarity 494–495 ––distributionfunctionofrelaxationtimes ––radiographyandtomographyprinciples (DRT) 450–452 496–499 –electrochemical 443–446 –equivalentcircuitmodeldefinitionand InstituteofChemicalProcessEngineering validation 458–465 [Institutfu¨rChemische ––anodicwaterpartialpressuredependence Verfahrenstechnik(ICVT)] 15 461–462 ––cathodicoxygenpartialpressure integratedgasificationfuelcell(IGFC) 1001, dependence 460–461 1003–1006 ––thermalactivation 462–464 integratedgasifiercombinedcycle(IGCC) 90 –processidentification 453–458 ––anodicwaterpartialpressurevariation IntelligentEnergy 389,1033 455 –schematicdiagramfordesulfurization ––cathodicoxygenpartialpressurevariation processfrom 1034 456–457 internalreforming 979 ––temperaturevariation 454 impregnation.Seeinfiltration –MCFC 72–73 1232 Index internationalcollaboration.SeeInternational –stationarypowerandearlymarket EnergyAgency(IEA)Hydrogen applications 1140–1141 ImplementingAgreement(IEAHIA) ––regionalactivities 1141 InternationalElectrotechnicalCommission JapaneseAutomobileResearchInstitute 27 (JARI) 1126 InternationalEnergyAgency(IEA) JapaneseHydrogenandFuelCellProgram 1183–1184 1214 –CommitteeonEnergyResearchand JapanGasAssociation(JGA) 1126 Technology(CERT) 1184 JapanPetroleumEnergyCenter(JPEC) 1126 –HydrogenImplementingAgreement JohnsonMatthey 14 1185–1187,1188 JointCommitteeforGuidesinMetrology –ImplementingAgreementonAdvanced (JCGM) 598 FuelCells 1184–1185 JointUndertakingonFuelCellsand InternationalEnergyAgency(IEA)Hydrogen Hydrogen(FCHJU),EuropeanUnion ImplementingAgreement(IEAHIA) 1133,1187,1189 1153–1154 –governancestructure 1190–1193 –collaborativeRD&D 1155–1161 –members 1189–1190 ––integratedsystemsportfolio 1159–1160 Ju¨lichsubstrateconcept 252 ––integrationinexistinginfrastructure portfolio 1160–1161 k ––productionportfolio 1157–1158 KansaiElectricPowerCompany(KEPCO) 9 ––storageportfolio 1158–1159 KarlsruheResearchCenter(KTI) 210 –hydrogen,analysispositioning 1161 Knudsendiffusion 737,738 ––marketportfolio 1162 KoreaInstituteofEnergyResearch(KIER) ––politicaldecision-makingportfolio 15 support 1162 KoreaInstituteofScienceandTechnology ––technicalportfolio 1161–1162 12 –hydrogenawareness,understanding,and KoreanElectricPowerResearchInstitute acceptance 1162 (KEPRI) 87 KoreanInstituteofEnergyResearch 12 ––informationdisseminationportfolio Kramers–Kronigvalidation 447 1162–1163 Kyocera 6,9 ––outreachportfolio 1164–1166 ––safetyportfolio 1163–1164 l –pastasprolog 1166,1173,1174–1177 lanthanumstrontiumchromitemanganite –2009–2015workprogramtimeline (LSCM) 289 1173,1178 lanthanumstrontiumcobaltferrite(LSCF) –workprogram 1166,1167–1173 49,293,295,484 InternationalPartnershipforHydrogenand lanthanumstrontiumcobaltite(LSC) 49,268 FuelCellsintheEconomy(IPHE) 1181 lanthanumstrontiumcobaltiteferrite(LSC(F)) InternationalSocietyofAutomation 947 249 IonAmerica 8 lanthanumstrontiummanganite(LSM) 49, IRDFuelCells 14,16 249,254,257,290–292 Ishikawajima-HarimaHeavyIndustries lanthanumstrontiumscandiummanganite (IHI) 75 (LSSM) 49 isotropichardening 777 lanthanumstrontiumtitanate(LST) 286 largeeddysimulations(LESs) 716,726 j laserablation 208 Japan 1126 laserwelding 209 –Fukuokaprefectureactivities 1129 LatticeBoltzmannmethods(LBM) 851,854 –HydrogenHighwayProject 1129 leadacidbatteries 237 –JapanHydrogenandFuelCell Leverettfunction 855 DemonstrationProject(JHFC) LIBraryforProcessFlowsheeting(LIBPF) 1126–1129 technology 78

Description:
ABAQUS 768, 769, 770 active and passive . computational fluid dynamic (CFD) 703–705. – analysis .. Lattice Boltzmann methods (LBM) 851, 854 lead acid
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.