1 Thesenoteswerewrittentoaccompanyamini-courseattheEasterSchool on‘DynamicsandAnalyticNumberTheory’heldatDurhamUniversity,U.K., inApril2014. MultipleRecurrenceandFindingPatternsinDenseSets(‘theChapter’)was firstpublishedbyCambridgeUniversityPressaspartofamulti-volumework edited by Dzmitry Badziahin, Alexander Gorodnik and Norbert Peyerimhoff entitled“DynamicsandAnalyticNumberTheory”(‘theVolume’). T (cid:13)c intheChapter,TimAustin,2015 (cid:13)c intheVolume,CambridgeUniversityPress,2015 CambridgeUniversityPress’scatalogueentryfortheVolumecanbefound F atwww.cambridge.org/9781107552371. NB: The copy of the Chapter as displayed on this website is a draft, pre- publicationcopyonly.Thefinal,publishedversionoftheChaptercanbepur- chased through Cambridge University Press and other standard distribution channelsaspartofthewider,editedVolumAe.Thisdraftcopyismadeavailable forpersonaluseonlyandmustnotbesoldorre-distributed. R D Contents T F 1 Multiple Recurrence and Finding Patterns in Dense Sets T. Austin page3 1.1 Szemere´di’sTheoremanditsrelatives 3 1.2 Multiplerecurrence A 6 1.3 Backgroundfromergodictheory 11 1.4 Multiplerecurrenceintermsofself-joinings 25 1.5 Weakmixing 34 1.6 Roth’sTheorem 42 1.7 Towardsconvergenceingeneral 49 R 1.8 Satedsystemsandpleasantextensions 53 1.9 Furtherreading 60 Index 69 D 1 Multiple Recurrence and Finding Patterns in Dense Sets TimAustin(CourantInstitute,NYU) 251MercerSt,NewYork,NY10012,U.S.A. T Email:[email protected],URL:cims.nyu.edu/∼tim F Abstract Szemere´di’s Theorem asserts that any positive-density subset of theintegersmustcontainarbitrarilylongarithmeticprogressions.Itisoneof thecentralresultsofadditivecombinatorics.AfterSzemeredi’soriginalcom- binatorial proof, Furstenberg noticed theAequivalence of this result to a new phenomenon in ergodic theory that he called ‘multiple recurrence’. Fursten- berg then developed some quite general structural results about probability- preservingsystemstoprovetheMultipleRecurrenceTheoremdirectly.Fursten- berg’sideashavesincegivenrisetoalargebodyofworkaroundmultiplere- currenceandtheassociated‘non-conventional’ergodicaverages,andtofurther R connectionswithadditivecombinatorics. This course is an introduction to multiple recurrence and some of the er- godic theoretic structure that lies behind it. We begin by explaining the cor- respondence observed by Furstenberg, and then give an introduction to the necessarybackgroundfromergodictheory.Weemphasizetheformulationof multipDlerecurrenceintermsofjoiningsofprobability-preservingsystems.The nextstepisaproofofRoth’sTheorem(thefirstnontrivialcaseofSzemeredi’s Theorem), which illustrates the general approach. We finish with a proof of a more recent convergence theorem for some non-conventional ergodic aver- ages,showingsomeofthenewerideasinuseinthisarea. Theclassicintroductiontothisareaofcombinatoricsandergodictheoryis Furstenberg’sbook[Fur81],butthetreatmentbelowhasamoremodernpoint ofview. 1.1 Szemere´di’sTheoremanditsrelatives In1927,vanderWaerdengaveaclevercombinatorialproofofthefollowing surprisingfact: 4 T.Austin Theorem1.1(VanderWaerden’sTheorem[vdW27]) Foranyfixedintegers c,k ≥1, if the elements of Z are coloured using c colours, then there is a nontrivialk-termarithmeticprogressionwhichismonochromatic:thatis,there aresomea∈Zandn≥1suchthat a,a+n,...,a+(k−1)n. allhavethesamecolour. T ThisresultnowfitsintoawholeareaofcombinatoricscalledRamseyThe- ory.Theclassicaccountofthistheoryisthebook[GRS90]. Itiscrucialtoallowboththestartpointaandthecommondifferencen≥1 tobechosenfreely.Thistheoremhassomemoredifficultrelativeswhichallow F certainrestrictionsonthechoiceofn,butifonetriestofixasinglevalueofn apriorithentheconclusioniscertainlyfalse. In1936,Erdo˝sandTura´nrealizedthatadeeperphenomenonmightliebe- neathvanderWaerden’sTheorem.Observethatforanyc-colouringofZand foranyfinitesubintervalofZ,atleastoneoAfthecolour-classesmustoccupy at least a fraction 1/c of the points in that subinterval. In [ET36] they asked whetheranysubsetofZwhichhas‘positivedensity’inarbitrarilylongsubin- tervalsmustcontainarithmeticprogressionsofanyfinitelength. Thisturnsouttobetrue.Theformalstatementrequiresthefollowingdefi- nition.WegiveitforsubseRtsofZd,d≥1,forthesakeofacominggeneraliza- tion.Let[N]:={1,2,...,N}. Definition1.2(UpperBanachdensity) ForE ⊆Zd,itsupperBanachden- sityisthequantity |E∩(v+[N]d)| D d¯(E):=limsupsup . Nd N−→∞ v∈Zd Thatis,d¯(E)isthesupremumofthoseδ >0suchthatonecanfindcubical boxesinZdwitharbitrarilylongsidessuchthatEcontainsatleastaproportion δ ofthelatticepointsinthoseboxes. Exercise ProvethatDefinition1.2isequivalentto d¯(E)=limsup sup(cid:110)(cid:12)(cid:12)E∩∏di=1[Mi,Ni](cid:12)(cid:12) : N ≥M +L∀i=1,2,...,d(cid:111). L−→∞ ∏di=1(Ni−Mi) i i (cid:67) Theorem 1.3 (Szemere´di’s Theorem) If E ⊆Z has d¯(E)>0, then for any k≥1therearea∈Zandn≥1suchthat {a,a+n,...,a+(k−1)n}⊆E. MultipleRecurrenceandFindingPatternsinDenseSets 5 Thespecialcasek=3ofthistheoremwasprovedbyRothin[Rot53],soit is called Roth’s Theorem. The full theorem was finally proved by Szemere´di in[Sze75]. Asalreadyremarked,Szemere´di’sTheoremimpliesvanderWaerden’sThe- orem,becauseifZiscolouredusingccoloursthenatleastoneofthecolour- classesmusthaveupperBanachdensityatleast1/c. Szemere´di’s proof of Theorem 1.3 is one of the virtuoso feats of Tmodern combinatorics. It is also the earliest major application of several tools that have since become workhorses of that area, particularly the Szemere´di Reg- ularityLemmaingraphtheory.However,shortlyafterSzemere´di’sproofap- peared, Furstenberg gave a new and very different proof using ergodic the- F ory. In [Fur77], he showed the equivalence of Szemere´di’s Theorem to an ergodic-theoreticphenomenoncalled‘multiplerecurrence’,andprovedsome new structural results in ergodic theory which imply that multiple recurrence alwaysoccurs. MultiplerecurrenceisintroducedinthAenextsubsection.Firstwebringthe combinatorialsideofthestoryclosertothepresent.FurstenbergandKatznel- son quickly realized that Furstenberg’s ergodic-theoretic proof could be con- siderablygeneralized,andin[FK78]theyobtainedamultidimensionalversion ofSzemere´di’sTheoremasaconsequence: Theorem 1.4 (FurstenRberg-Katznelson Theorem) If E ⊆Zd has d¯(E)>0, andife ,...,e ,isthestandardbasisinZd,thentherearesomea∈Zd and 1 d n≥1suchthat {a+ne ,...,a+ne }⊆E 1 d (so‘deDnsesubsetscontainthesetofouterverticesofanuprightright-angled isoscelessimplex’). This easily implies Szemere´di’s Theorem, because if k ≥ 1, E ⊆ Z has d¯(E)>0,andwedefine Π:Zk−1−→Z:(a ,a ,...,a )(cid:55)→a +2a +···+(k−1)a , 1 2 k−1 1 2 k−1 thenthepre-imageΠ−1(E)hasd¯(Π−1(E))>0,andanuprightisoscelessim- plexfoundinΠ−1(E)projectsunderΠtoak-termprogressioninE.Similarly, byprojectingfromhigher-dimensionstolower,onecanprovethatTheorem1.4 actuallyimpliesthefollowing: Corollary 1.5 If F ⊂Zd is finite and E ⊆Zd has d¯(E)>0, then there are somea∈Zd andn≥1suchthat{a+nb: b∈F}⊆E. 6 T.Austin Forabouttwentyyears,theergodic-theoreticproofofFurstenbergandKatznel- sonwastheonlyknownproofofTheorem1.4.Thatchangedwhenanewap- proach using hypergraph theory was developed roughly in parallel by Gow- ers [Gow06], Nagle, Ro¨dl and Schacht [NRS06] and Tao [Tao06b]. These worksgavethefirst‘finitary’proofsofthistheorem,implyingsomewhateffec- tive bounds: unlike the ergodic-theoretic approach, the hypergraph approach gives an explicit value N =N(δ) such that any subset of [N]d containinTg at least δNd points must contain a whole simplex. (In principle, one could ex- tract such a bound from the Furstenberg-Katznelson proof, but it would be extremelypoor:seeTao[Tao06a]fortheone-dimensionalcase.) The success of Furstenberg and Katznelson’s approach gave rise to a new F sub-fieldofergodictheorysometimescalled‘ergodicRamseytheory’.Itnow contains several other results asserting that positive-density subsets of some kind of combinatorial structure must contain a copy of some special pattern. Someofthesehavebeenre-provenbypurelycombinatorialmeansonlyvery recently.WewillnotstatetheseindetailhereA,butonlymentionbynametheIP Szemere´diTheoremof[FK85],theDensityHales-JewettTheoremof[FK91] (finallygivenapurelycombinatorialproofbythemembersofthe‘Polymath 1’ project in [Pol09]), the Polynomial Szemere´di Theorem of Bergelson and Leibman[BL96]andtheNilpotentSzemere´diTheoremofLeibman[Lei98]. R 1.2 Multiplerecurrence 1.2.1 Thesettingofergodictheory Ergodic theory studies the ‘statistical’ properties of dynamical systems. The D following treatment is fairly self-contained, but does assume some standard facts from functional analysis and probability, at the level of advanced text- bookssuchasFolland[Fol99]orRoyden[Roy88]andBillingsley[Bil95]. Let G be a countable group; later we will focus on Z or Zd. A G-space is a pair (X,T) in which X is a compact metrizable topological space, and T =(Tg) is an action of G on X by Borel measurable transformations: g∈G thus, Te=id and Tg◦Th=Tgh ∀g,h∈G, X whereeistheidentityofG.AZ-actionT isspecifiedbythesingletransforma- tionT1whichgeneratesit.Similarly,aZd-actionT maybeidentifiedwiththe commuting d-tuple of transformations Tei, where e1, ..., ed are the standard basisvectorsofZd. The set of Borel probability measures on a compact metrizable space X is MultipleRecurrenceandFindingPatternsinDenseSets 7 denotedbyPr(X).Thissetiscompactintheweak(cid:63)topology:forinstance,this can be seen by the Riesz Representation Theorem ([Fol99, Theorem 7.17]), whichidentifiesPr(X)withaclosed,bounded,convexsubsetoftheBanach- spacedualC(X)(cid:63),followedbyanapplicationofAlaoglu’sTheorem([Fol99, Theorem5.18]). Next,let(X,S)and(Y,T)beanytwomeasurablespaces,letµ beaprob- ability measure on S, and let π :X −→Y be measurable. Then theTimage measureofµ underπ isthemeasureπ µ onT definedbysetting ∗ (π µ)(B):=µ(π−1(B)) ∀B∈T. ∗ If X andY are compact metrizable spaces, then π defines a map Pr(X)−→ ∗ F Pr(Y). If, in addition, π is continuous, then π is continuous for the weak(cid:63) ∗ topologies. Finally, a G-system is a triple (X,µ,T) in which (X,T) is a G-space and µ isaT-invariantmemberofPr(X),meaningthatTgµ =µ foreveryg∈G. ∗ When needed, the Borel σ-algebra of XAwill be denoted by B . We often X denoteaG-system(X,µ,T)byasingleboldfacelettersuchasX.AZ-system willsometimesbecalledjustasystem. The definitions above ignore a host of other possibilities, such as dynam- icswithaninfiniteinvariantmeasure,orwithanon-invertibletransformation. Ergodictheoryhasbranchesforthesetoo,buttheydonotappearinthiscourse. R Examples 1. LetX =T=R/Zwithitsusualtopology,letµ beLebesguemeasure,and letT betherotationbyafixedelementα ∈X: D Tx:=x+α. Thisiscalledacirclerotation. 2. Letp=(p ,...,p )beastochasticvector:thatis,aprobabilitydistribution 1 m ontheset{1,2,...,m}.LetX :={1,2,...,m}Z withtheproducttopology, letµ:=p⊗Z(thelawofani.i.d.randomsequenceofnumberseachchosen accordingtop),andletT betheleftwardcoordinate-shift: T((x ) ):=(x ) . n n n+1 n ThisiscalledtheBernoullishiftoverp. (cid:67) AnimportantsubtletyconcernsthetopologyonX.Inmostofergodicthe- ory, no particular compact topology on X is very important, except through theresultingBorelσ-algebra:itisthismeasurablestructurethatunderliesthe theory. This is why we allow arbitrary Borel measurable transformations Tg, 8 T.Austin ratherthanjusthomeomorphisms.However,generalmeasurablespacescanex- hibitcertainpathologieswhichBorelσ-algebrasofcompactmetrizablespaces cannot. The real assumption we need here is that our measurable spaces be ‘standardBorel’,buttheassumptionofacompactmetricisaconvenientway toguaranteethis. Havingexplainedthis,bewarethatmanyauthorsrestricttheconvenientterm ‘G-space’toactionsbyhomeomorphisms. T 1.2.2 Thephenomenonofmultiplerecurrence Inordertointroducemultiplerecurrence,itishelpfultostartwiththeprobability- F preservingversionofPoincare´’sclassicalRecurrenceTheorem. Theorem1.6(Poincare´Recurrence) If(X,µ,T)isasystemandA∈B has X µ(A)>0,thenthereissomen(cid:54)=0suchthatµ(A∩T−nA)>0. Proof The pre-images T−nA are all subseAts of the probability space X of equalpositivemeasure,sosometwoofthemmustoverlapinpositivemeasure. Oncewehaveµ(T−nA∩T−mA)>0forsomen(cid:54)=m,theinvarianceofµunder Tnimpliesthatalsoµ(A∩Tn−mA)>0. Furstenberg’smainresultfrom[Fur77]strengthensthisconclusion.Heshows thatinfactonemayfindsReveralofthesetsT−nA,n∈Z,thatsimultaneously overlapinapositive-measureset,wheretherelevanttimesnformanarithmetic progression. Theorem 1.7 (Multiple Recurrence Theorem) If (X,µ,T) is a system and A∈B hasµ(A)>0,thenforanyk≥1thereissomen≥1suchthat X D µ(T−nA∩···∩T−knA)>0. TheMultidimensionalMultipleRecurrenceTheoremfrom[FK78]provides ananalogofthisforseveralcommutingtransformations. Theorem1.8(MultidimensionalMultipleRecurrenceTheorem) If(X,µ,T) isaZd-systemandA∈B hasµ(A)>0,thenthereissomen≥1suchthat X µ(T−ne1A∩···∩T−nedA)>0. Notethatford=2,simplyapplyingthePoincare´ RecurrenceTheoremfor thetransformationTe1−e2 givestheconclusionofTheorem1.8. This course will include a proof of Theorem 1.7 in the first case beyond Poincare´ Recurrence:k=3.Twodifferentergodic-theoreticproofsofthefull Theorem1.8canbefoundin[Fur81]and[Aus10c].Thesearetoolongtobe MultipleRecurrenceandFindingPatternsinDenseSets 9 includedinthiscourse,butwewillformulateandprovearelatedconvergence resultwhichgivesanintroductiontosomeoftheideas. First, let us prove the equivalence of Theorem 1.8 and Theorem 1.4. This equivalence is often called the ‘Furstenberg correspondence principle’. Al- thougheasytoprove,ithasturnedouttobeahugelyfruitfulinsightintothe relationbetweenergodictheoryandcombinatorics.Theversionwegivehere essentiallyfollows[Ber87]. T Proposition1.9(Furstenbergcorrespondenceprinciple) IfE⊆Zd,thenthere areaZd-system(X,µ,T)andasetA∈B suchthatµ(A)=d¯(E),andsuch X thatforanyv ,v ,...,v ∈Zd onehas 1 2 k d¯((E−v )∩(E−v )∩···∩(E−v ))≥µ(T−v1FA∩···∩T−vkA). 1 2 k Inordertovisualizethis,observethat (E−v )∩(E−v )∩···∩(E−v ) 1 2 k A isthesetofthosea∈Zd suchthata+v ∈E foreachi≤k.Itsdensitymaybe i seen as the ‘density of the set of translates of the pattern {v ,v ,...,v } that 1 2 k lie entirely inside E’. In these terms, the above propositions asserts that one cansynthesizeaZd-systemwhichprovidesalowerboundonthisdensityfor anygivenpatternintermsoftheintersectionofthecorrespondingshiftsofthe subsetA. R Proof ChooseasequenceofboxesRj:=∏di=1[Mj,i,Nj,i]suchthat min (N −M )−→∞ as j−→∞ j,i j,i i∈{1,2,...,d} and D |E∩R | j −→d¯(E) as j−→∞. |R | j We can regard the set E as a point in the space X :=P(Zd) of subsets of Zd, on which Zd naturally acts by translation: TnB:=B−n. This X can be identifiedwiththeCartesianproduct{0,1}Zd byassociatingtoeachsubsetits indicatorfunction.Itthereforecarriesacompactmetrizableproducttopology whichmakes(X,T)aZd-space. Let 1 νj:= |R | ∑ δTn(E) foreach j, j n∈Rj theuniformmeasureonthepieceoftheT-orbitofE indexedbythelargebox R .Becausetheside-lengthsoftheseboxesalltendto∞,thesemeasuresare j 10 T.Austin approximately invariant: that is, (cid:107)T−mν −ν (cid:107) −→0 as j −→∞ for any ∗ j j TV fixed m∈Zd, where (cid:107)·(cid:107) is the total variation norm (see [Fol99, Section TV 7.3]). Since Pr(X) is weak(cid:63) compact, we may let µ ∈Pr(X) be a subsequential weak(cid:63) limitofthemeasuresν .Bypassingtoasubsequence,wemayassume j that in fact ν −→ µ (weak(cid:63)). Since the measures ν are approximately T- j j invariant,andeachT−mactscontinuouslyfortheweak(cid:63)topologyonPr(XT),µ ∗ itselfisstrictlyT-invariant. Finally, let A:={H ∈X : H (cid:51)0}. This corresponds to the cylinder set {(ω ) : ω =1}⊆{0,1}Zd. We will show that (X,µ,T) and A have the n n 0 desiredproperties.ByourinitialchoiceofthesequenceofboxesR ,wehave j F 1 |E∩R | µ(A)= j−li→m∞νj(A)= j−li→m∞|Rj|n∑∈Rj1Tn(E)(0)= j−li→m∞ |Rj|j =d¯(E). The first convergence here holds because 1 is a continuous function for the A producttopologyonX,andsoweak(cid:63)converAgenceappliestoit. Ontheotherhand,foranyv ,v ,...,v ∈Zd,theindicatorfunction1 1 2 k T−v1A∩···∩T−vkA isalsocontinuousonX,andso µ(T−v1A∩···∩T−vkA)= lim νj(T−v1A∩···∩T−vkA) j−→∞ 1 R= j−li→m∞|Rj|n∑∈Rj1Tn+v1E∩···∩Tn+vkE(0) 1 = j−li→m∞|Rj|n∑∈Rj1Tv1E∩···∩TvkE(n) ≤d¯(Tv1E∩···∩TvkE), D sincetheupperBanachdensityisdefinedbyalimsupoverallbox-sequences withincreasingside-lengths. Corollary1.10 Theorems1.4and1.8areequivalent. Proof (=⇒) Let(X,µ,T)beaZd-systemandA∈B withµ(A)>0.For X eachx∈X letE :={n∈Zd : Tnx∈A},andforeachN∈Nlet x Y :={x∈X : |E ∩[N]d|≥µ(A)Nd/2}. N x Asimplecalculationgives (cid:90) µ(Y )Nd+µ(X\Y )µ(A)Nd/2≥ |E ∩[N]d|µ(dx) N N x X (cid:90) (cid:90) = ∑ |Ex∩{n}|µ(dx)= ∑ 1T−n(A)dµ =µ(A)Nd, n∈[N]d X n∈[N]d X
Description: