ebook img

1 The Selective Aldol Reaction PDF

22 Pages·2005·1.47 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview 1 The Selective Aldol Reaction

The Selective Aldol Reaction O O OH O R3 R1 R2 R4 X R1R2 R3 R4 X Alan B. Northrup MacMillan Group Meeting September 18, 2002 A Brief Recent General Review: Palomo, C.; Oiarbide, M.; García, J. M. "The Aldol Addition Reaction: An Old Transformation at Constant Rebirth" Chem. Eur. J. 2002, 8, 36. Review Focusing on Enzymatic and other Catalytic Aldols: Machajewski, T. D.; Wong, C.- H. "The Catalytic Asymmetric Aldol Reaction" Angew. Chem. Int. Ed. 2000, 39, 1352. Classic Reviews Evans, D. A.; Nelson, J. V.; Taber, T. R. "Stereoselective Aldol Condensations," in Topics in Stereochemistry, New York, 1982; Vol. 13, p. 2. Mukaiyama, T. "The Directed Aldol Reaction," in Organic Reactions, New York, 1982; Vol. 28, p 203. Heathcock, C. H. Asymmetric Synthesis; Morrion, J. D., Ed.; Academic Press: New York, 1984; Vol. 3, part B, p 111. Aldol Reaction Time-Line OTMS O OH 2 O NaOH OH O TiCl4 H Ph OTMS 20 mol% cat O OH Me H rt Me H PhCHO EtS RCHO EtS R 50% yield Me Me 82%, 3:1 syn:anti ! 93:7 dr Aldol Reaction ! 91% ee Discovered Independently Mukaiyama Publishes Mukaiyama Describes By Charles Adolphe Wurtz in Germany "New Aldol Type Reaction" A Catalytic, Enantioselective and Aleksandr Borodin in Russia in Chem. Lett. Aldol Reaction 1957 1981 1997 1864 1973 1990 Zimmerman Proposed Evans Oxazolidone Shibasaki Claims Closed Chair-Like TS Chiral Auxiliary Aldol the First non-Enzymatic Led to Zimmerman-Traxler Models Described Enantioselective X Catalytic Direct Aldol H M OH O OBR2 O O R X N O LLB O OH R(Z'R)-Enolate syn -R A'ldol O O Ph Me RCHO Ph R X PhCHO up to 94% ee H OH O M O R' O R X O OH R R' (E)-Enolate anti - Aldol N Ph O Me O 88%, > 500 : 1 1 Racemic Aldol Technology OTMS O OH 2 O NaOH OH O TiCl4 H Ph OTMS 20 mol% cat O OH Me H rt Me H PhCHO EtS RCHO EtS R 50% yield Me Me 82%, 3:1 syn:anti ! 93:7 dr Aldol Reaction ! 91% ee Discovered Independently Mukaiyama Publishes Mukaiyama Describes By Charles Adolphe Wurtz in Germany "New Aldol Type Reaction" A Catalytic, Enantioselective and Aleksandr Borodin in Russia in Chem. Lett. Aldol Reaction 1957 1981 1997 1864 1973 1990 Zimmerman Proposed Evans Oxazolidone Kobayashi Claims Closed Chair-Like TS Chiral Auxiliary Aldol the First non-Enzymatic Led to Zimmerman-Traxler Models Described Enantioselective X Catalytic Direct Aldol H M OH O OBR2 O O R X N O LLB O OH R(Z'R)-Enolate syn -R A'ldol O O Ph Me RCHO Ph R X PhCHO up to 94% ee H OH O M O R' O R X O OH R R' (E)-Enolate anti - Aldol N Ph O Me O 88%, > 500 : 1 Enolate Geometry Correlates with Product Diastereoselectivity Under Kinetic Control ! The anti - Aldol Stereochemistry is Thermodynamically Favored: OLi PhCHO OH O OH O Subsequent cross-over experiments Ph OLi 25 ºC, 3d Ph OH Ph OH irmatphleicra tthea anl deopli-mreetrroiz-aatlidoonl equilibration Ph Ph 8% 92% Mulzer, et al. Tet. Lett., 1977, 4651. ! Zimmerman Proposed a Chair Transition State for Kinetic Selectivity of the Ivanov Reaction: OMgBr PhCHO OMHgBr OMHgBr OH O Ph OMgBr - 78 ºC Ph OOMgBr OOMgBr Ph OH Ph Ph Ph diequatorial favored Ph 3:1 anti:syn should lead to anti-aldol Zimmerman, H. E.; Traxler, M. D. J. Am. Chem. Soc. 1957, 79, 1920. ! Model Holds for a Variety of Enolates Both E and Z X OM PhCHO OH O HO M OH O X Me R' X O R X Me R'R R' M X Z:E anti:syn (Z)-Enolate syn - Aldol BLLii Miie--PPsirrtyl >>599:899::521 >9890:79::1230 R' XHOOM R OH O X B St-Bu 5:95 5:95 R R' Mg t-Bu >99:1 >97:3 (E)-Enolate anti - Aldol 2 Selective Enolization Can Be Achieved ! Kinteic vs. Thermodynamic Acidity: OLi OLi O OLi OLi Me Me LDA Me Ph3CLi Me Me – 78 ºC ! 99% 1% 10% 90% For other examples, see Evans 206 Kinetic Acidity ! Structure of Carbonyl Compound Can Influence Ratio of Enolates Formed under Kinetic Control: These result can be rationalized with the Ireland model: O LDA OLi OLi R R Me THF R R Me HO Me (E)-enolMatee (Z)-enolate O R NLiH (E) R R R E : Z R Me MeO H Li (Z) OR, SR 95 : 5 R N H Et 77: 23 R t-Bu 0 : 100 NR2 0 : 100 Ireland et al. J. Am. Chem. Soc., 1976, 98, 2868 Ireland, J. Org. Chem. 1991, 56, 650 ! Solvent Can Impact Enolate Ratios: R Solvent E : Z OMe THF 95 : 5 Difference due to Enolate Equilibration OMe THF/HMPA 16 : 84 The Mukaiyama Aldol Reaction ! Mukaiyama's Report of a New Aldol-Type Process: O OTMS O OH LDA, TMSCl 1.02 eq TiCl4 H Ph ••• BR50rao-n9ag3de% R o ayf niAegllddee ohfy Kdeet o+n Kee Ntouncele Eolpehcitlreosphiles 1.0 eq PhCHO • 1:1 to 3:1 syn:anti 1.0 eq – 78 ºC, CH2Cl2 •• OUspee no fT SraKnAs iotior nth Siot-aSteKA can increase the dr aq. TsOH workup Mukaiyama, T.; Narasaka, K.; Banno, K. Chem. Lett. 1973, 1011 Mukaiyama, T.; Banno, K.; Narasaka, K. J. Am. Chem. Soc. 1974, 96, 7503 ! Reaction is syn-Selective Regardless of Enolsilane Geometry OTMS TiCl4 O OH OTMS TiCl4 O OH Me PhCHO PhCHO EtO – 78 ºC EtO Ph EtO – 78 ºC EtO Ph Me Me Me 3:1 syn:anti 2:1 syn:anti ! Attractive Prospects for Catalysis...More on this Later R3Si O OMLn silyl transfer O OSiR3 MLn X R catalyst turnover R + MLn OSiR3 O Path A X R X H PathM BLn OMLn R3Si O R LnM O OSiR3R X H X metal readily transmetalation dissociates from product 3 Chiral Auxiliary Technology OTMS O OH 2 O NaOH OH O TiCl4 H Ph OTMS 20 mol% cat O OH Me H rt Me H PhCHO EtS RCHO EtS R 50% yield Me Me 82%, 3:1 syn:anti ! 93:7 dr Aldol Reaction ! 91% ee Discovered Independently Mukaiyama Publishes Mukaiyama Describes By Charles Adolphe Wurtz in Germany "New Aldol Type Reaction" A Catalytic, Enantioselective and Aleksandr Borodin in Russia in Chem. Lett. Aldol Reaction 1957 1981 1997 1864 1973 1990 Zimmerman Proposed Evans Oxazolidone Kobayashi Claims Closed Chair-Like TS Chiral Auxiliary Aldol the First non-Enzymatic Led to Zimmerman-Traxler Models Described Enantioselective X Catalytic Direct Aldol H M OH O OBR2 O O R X N O LLB O OH R(Z'R)-Enolate syn -R A'ldol O O Ph Me RCHO Ph R X PhCHO up to 94% ee H OH O M O R' O R X O OH R R' (E)-Enolate anti - Aldol N Ph O Me O 88%, > 500 : 1 The Evans Aldol Reaction ! Chelate Organization Allowed for Highly Diastereoselective Alkylations of Imide Enolates Li O O O O O O LDA R'–Br O N Me O N Me Re-face O N R' Rre'a–cBtriv me,u Rst' b"e i- Pr Me R R R ! 99 : 1 dr all cases Evans, D. A.; Ennis, M. D.; Mathre, D. J. J. Am. Chem. Soc. 1982, 104, 1737 ! Chelate Organization Precluded in Aldol Process Bu Bu H B O O OH O O O R Re-face Me O N R Bu Bu O N Me B R O O RCHO R free rotation Me O N Bu Bu H R R O B O R Si-face R O OH N R Me N O Me O O O ! Will this Reaction be Selective Given Lack of Chelate Control? 4 The Evans Aldol Reaction ! Surprisingly, This Reaction is Highly Enolate Face-Selective: Bu Bu Bu Bu O B O RCHO i-Pr O OH O B O RCHO Me O OH O N Me N R O N Me Ph N R O Me O Me i-Pr O Ph Me O Evans, D. A.; Bartroli, J.; Shih, T. L. ! Reaction is Highly Diastereoselective in all propionate cases (141 : 1 to > 500 : 1) J. Am. Chem. Soc. 1981, 103, 2127 ! Reaction is Tolerant of a Broad Range of Aldehydes; R = Alkyl, Aryl, hindered, unhindered ! Acetyl-done provides poor selectivity—1 : 1 for the two diastereomers; Acetate aldol product via desulfurization ! One of the most reliable and predictable reactions in organic synthesis; industrially useful ! Possible Model for Asymmetric Induction: O O O BR2 H OR O O OH Si-face i-Pr N disfavored O N Me R O B R O N R dipole maximized O Me i-Pr Me i-Pr O i-PrN O BR2Me dipolRe em-fiancimeized O NHOiO-PrRB R favored i-PrN O OHR O R O Me O Me O ! Model does not account for the impact of the acyl-done !-substituent on diastereoselectivity. Perhaps a boat TS should be considered for smaller acyl donors as a competitive pathway Heathcock's Modification to the Evans Aldol ! Chelated S-imides give Re-face attack and Non-Chelated Imides give Si-Face Attack Li Bu Bu H O O N O Me RRe'-–faBcre O O N O MeR' R N O B OMe R' Si-face R N O OHR' R R O O Me ! 99 : 1 dr all cases O O "Evans" syn ! Based on that Observation, Heathcock Developed a "non-Evans" syn or anti Aldol: J. Org. Chem. 1991, 56, 5747 O O OH Bu Bu Bu Bu O O OH B B O O O O O N R' H R' O N R' Me Me Me O NR' O LA O N H O Me R H H R LA "non-Evans" syn R R "non-Evans" anti Method R R' Lewis Acid equiv. syn: anti "non-Evans" : "Evans" A or C t-Bu i-Pr TiCl4 2.0 94 : 6 100 : 0 B t-Bu i-Pr SnCl4 2.0 93 : 7 100 : 0 C i-Pr i-Pr Et2AlCl 3.0 5 : 95 100 : 0 Method A: Lewis acid added to enolate at – 78ºC followed by slow addition of isobutyraldehyde Method B: Aldehyde added to enolate at – 78ºC followed by slow addition of Lewis acid Method C: Precomplexed aldehyde and Lewis acid cannulated into solution of enolate at – 78ºC ! "Size" of Lewis acid affects selectivity; propionaldehyde, isovaleraldehyde work well, benzaldehyde syn-only 5 Crimmins's Modification of the Evans Aldol ! Crimmins's Hypothesis for Observed Lower Selectivies with Titanium Imide Enolates (88-96% de): O O NHOBCnlTi CCll "Evans" syn BnN O OHR Ti has a hiTgihLner affinity for S TthiLann O e.g.: R O Cl O Me O S Me O + Cl- – Cl- S O O Fowles, et al. J. Chem. Soc. 1971, 1920. O O OH BnR HNO XTi CCll "non-Evans" syn O N R If X = S, then Ti chelate prefered O Cl Me Me Bn ! Evans vs non-Evans Path Dictated by Auxiliary and Stoichiometry of Amine Base: J. Org. Chem. 2001, 66, 894. X O Rc O OH X O OH Me 1. 1-2 eq TiCl4, Base Y N N R Y N R + anti isomers 2. 1-1.1 eq RCHO Y Me Me Rc X A: "Evans" Rc B: "Non-Evans" X, Y = O; Rc = Bn X, Y = S; Rc = i-Bu (X = S, Y = O, Rc = Bn gave similar) T (ºC) R yield A : B : anti Base equiv. R yield A : B : anti DIEA 2.5 i-Pr 86 86 : 14 : 0.3 0 Et 84 99 : 1 : 0 DIEA 1.1 i-Pr 75 5 : 95 : n.a. 0 MeCH=CH 89 97 : 3 : 0 TMEDA 2.5 i-Pr 57 96 : 4 : n.a. 0 i-Pr 89 98 : 2 : 0 TMEDA 1.1 i-Pr 50 <1 : >99 : n.a. 0 t-Bu 87 97 : 3 : 0 Sparteine 2.5 i-Pr 84 95 : 5 : 0 – 78 i-Pr 98 98 : 2 : 0 Sparteine 1.1 i-Pr 63 5 : 95 : n.a. Summary of Aldols with Imide Auxiliaries ! Syn Aldols: R O OH i-Bu O OH O O N O MeBuE2tB3ON,T fRCHEOvans,O J. Am.NO Chem. MSoec. !!19 998R891,%: 11 0sd3ye,n 2s:1ay2nn7ti S S N O Me Ti2.C5l 4e qR CSHpaOrteine S NS !! M9909e%:1 sdyeRn s:aynnti R 2. T1i.C Bl4u•2RBCOHTOf, Et3N O O N O OHR i-Bu 1.1 eTqi CSlp4a RrtCeiHneO S S N O OHR Me! 98% de syn Me R ! 87:13 syn:anti i-Bu! 90% de syn ! 99:1 syn:anti Heathcock J. Org. Chem. 1991, 56, 5747 Crimmins J. Org. Chem. 2001, 66, 894. ! Anti Aldols: O O BuB Bu O O OH O N Me 1. Bu2BOTf, NEt3 O O R'Me O N R' R 2. Et2AlCl•RCHO O NR H H OAlEt2 "noRn-EvaMnes" a!!n t98i86%:14 d aen atin:stiyn Heathcock J. Org. Chem. 1991, 56, 5747 ! Auxiliary can be converted to the corresponding alcohols, aldehydes, acids, esters, thioesters, Weinreb amides 6 Other Useful Chiral Auxiliaries ! Oppolzer's Sultam: Both Propionate and Acetate Aldols Possible Me Me Me Me O OH SO2 N O Me RE2Bt3ONTf SO2 N OBR2Me boRtatCottHmaOc fkace Xc Me R ! 95% de Oppolzer, J. Am. Chem. Soc. 1990, 112, 2767 Me Me Me Me O LDA TBS O OH SO2 N TBS-Cl SO2 N HOLnTiO Xc R 90 to 95% de R Oppolzer, Tet. Lett. 1992, 33, 2442 ! Abiko and Masamune's Norephedrine-Derived Auxiliary Gives anti Aldols Me PhO O Me (c-HeExt3)2NBOTf Me PhO BR2 cloRsCeHd OTS XcO O OHR !! 9908%:2 adnet ia:snytin BnN SO2Mes BnN SO2Mes Me Me E - enolate AJ.b Aikmo,. AC.h; eLmiu,. JS.o- cF.. ;1 M99a7s,a 1m1u9n, e2,5 S8.6 ! Masamune/Reetz Chiral Boron Enolates Give anti Aldols t-BuS O R 9125.. %MRe 'CeeHOBOTf MDeIEA RR' HSROMeOB Me R RS'RHOOB Me t-BuS O R OHR' R = Me, H Me R = Me, 93-96% ee disfavored favored R = H, 87-94% ee Masamune, J. Am. Chem. Soc. 1986, 108, 8279 Reetz, Tet. Lett. 1986, 4721 Chiral Ethyl Ketone Aldol Reactions (Z)-Enolates ! Even Simple !-Chiral (Z)-Ethyl Ketone Enolates Give High dr's: R dr O O OH O OP Ph 97 : 3 Bu2BOTf, Et3N Et 98 : 2 RCHO R HO R BnOCi-PHr2CH2 >9969 :: 4<1 OTBS TBSO Me Me Masamune J. Am. Che. Soc. 1981, 103, 1566 ! A "-Stereocenter Usually has Little Impact: OTBSO OTBSO OH Me Me TiCl4, Et3N Me Me i-PrCHO Me Me Me Me Me Me both 95:5 dr OTBSO OTBSO OH Me Me TiCl4, Et3N Me Me i-PrCHO Me Me Me Me Me Me Evans J. Am. Chem. Soc. 1991, 113, 1047 ! Stereochemical Model: Me R O O OH RL OM Me RCHO LFaMLvorOeHdH RRLMH RL RM maMjoer R RM MeR O OH H OO L RL R M RRLM DHisHfavorLed RM mMineor 7 Chiral Ethyl Ketone Aldol Reactions (E)-Enolates ! Simple !-Chiral (E)-Ethyl Ketone Enolates also Give High dr's: OTBSO OTBSO OH (c-Hex)2BCl, Et3N Me Me Me Me i-PrCHO 94:6 dr Me Me Me Me Me Me OTBSO OTBSO OH Me Me (c-Hex)2BCl, Et3N Me Me 96:4 dr i-PrCHO Me Me Me Me Me Me ! Stereochemical Model: H H OM O R R O O OH RL RCHO L M O Me Me O M L RL R RM Me DiLsfavRoLreHd RHM avoid A1,3 RHL HFRaMvorLed RMmaMjoer Evans, J. Am. Chem. Soc. 1991, 113, 1047 ! However, not all (E)-enolates are well-behaved O O OH (c-Hex)2BCl, Et3N Me BnO i-PrCHO BnO Me Me Me Me 95:5 dr Patterson, I.; Goodman, J. M.; Isaka, M. Tet. Lett. 1989, 30, 7121 Chiral Ethyl Ketone Aldol Reactions—!-Keto Imides ! Diastereomer Depends on Enolate Geometry and Lewis Acid Xp Me O Cl O O O OH TiCl4 H HO Ti Cl O N R DIEA R O Cl Me Me Z-EnoMlaete Chelation Control Bn 96:4 to 99:1 dr Xp Me O O O OH L O Sn(OTf)2 Sn OHH O N R Et3N L O Me Me O O O RMe Bn 89:11 to 95:5 dr Z-Enolate Dipole Minimized O N Xp Me Me O O O OH Bn (c-EHtNexM)2eB2Cl L BL OHH MOe O N Me Me R O RH Bn 84:16 to 97:3 dr E-Enolate Dipole Minimized Xp O O O OH Me ? O MeH HO MLn O N Me Me R R O Bn unknown H ABN: E-Enolate Chelation Control? Evans, J. Am. Chem. Soc. 1990, 112, 866 Open TS (Z)-enolate in anaolgy to Heathcock? Evans, Tetrahedron, 1992, 48, 2127 8 Chiral Ketone Aldol Reactions–1,5 Induction ! Evans and Patterson Independently Observed this Phenomenon: OR OM RCHO OR O OH Evans J. Org. Chem. 1997, 62, 788 R R R Patterson Tet. Lett. 1996, 8585 1,5 anti ! Levels of Induction Strongly Dependent on Metal, Protecting Group and Solvent: anti:syn PMBO OM Ph CHO PMBO O OH TBSO OBBu2 Bn Solvent – 78 ºC Bn Bn Bn 40:60 M solvent yield anti:syn Ph Li THF 79 40:60 TMS/BF3•Et2O CH2Cl2 85 50:50 O O OBBu2 >95:5 Cy2B CH2Cl2 85 82:18 TrO Bu2B CH2Cl2 80 87:13 Bu2B Et2O 85 98:02 ! Chiral Ethyl Ketones Exhibit 1,5-Syn Induction: t-Bu t-Bu t-Bu t-Bu Si Si O O OBPhCl i-PrCHO O O O OH Me Me Me >99:1 syn:anti CH2Cl2, – 78 ºC i-Pr Me 72% yield Me Me 1,5 syn ! No Good Models have been Presented to Account for the Observed Selectivities Chiral Methyl Ketone Aldol Reactions–1,5 Induction in Synthesis Long-Range Transmission of Stereochemical Information: 10 O OH No proposed model to account for the sense of diastereocontrol O HO For a detailed investigation, see Evans J. Org. Chem. 1997, 62, 788 29 15 25 21 Patterson Roxaticin Synthesis: C-10 to C-29 Fragment OH OH OH OH OH (+) Roxaticin OTBS 1,5 anti 29 25H 21 OTBS (c-Hex)2BCl 29 OTBS O O OPMB Et3N86, %Et2O 2O5H O 2O1PMB OTBS 95 : 5 dr OTBS 29 25 21 O 10 O O OPMB I OTIPS (c-Hex)2BCl OTBS PMBO 29 15 Et3N, Et2O 25 21 10 75% 15 O O OPMBOH O 1,5 anti I O OPMBOTIPS 75 : 25 dr Paterson, I.; Collett, L. A.; Tet. Lett., 2001, 42, 1187 ! The analogous ethyl ketone enolates give 1,5-syn selectivity 9 Chiral Aldehyde Aldol Reactions–!-Chiral Aldeyhdes ! (E) Enolates Give the Felkin Product Me H O OH Favored LnMOROLH HMe R Me MeRL R Felkin OMLn O Felkin Attack R H RL syn-pentane Me Me H H O OH Disfavored MeMe RHROLOMLn R Me MeRL Anti-Felkin Attack Anti-Felkin Evans Topics in Stereochemistry, 1982, 13, 1-115 Roush J. Org. Chem. 1991, 56, 4151 ! A Complex Case: Woodward's Erythromycin Synthesis Me Me Me Me Me Me Me Me OLi O O OAc O OMOM O OH O OAc O OMOM O O 85% yield O O Me Me t-BuS H one isomer t-BuS Me Me Me Me Me Me Me Me Me Me Me Me Felkin anti-aldol product Woodward, et al. J. Am. Chem. Soc., 1981, 103, 3210 Chiral Aldehyde Aldol Reactions–!-Chiral Aldeyhdes ! (Z) Enolates Give the Anti-Felkin Product: Li OLi O OBn O OH OBn Me Me Me H Me Me Me Me Me Initially rationalized via a Cram-Chelate Model... Anti-Felkin 98:2 dr Masamune J. Am. Chem. Soc. 1982, 104, 5526 However... O OH OTBS TMSO OLi O OTBS TMSO Me Me Me Me H MeMe Me Me Me Me Me Me Anti-Felkin 73:27 dr Brooks Tet. Lett. 1982, 23, 4991 ! Stereochemical Model: syn-pentane Me O OH ORL MHe R RL OMLn DiOsfavored LnM OHR H MFeelkinMe R Me H RL Felkin Attack Me H Me O OH Favored HMe RHROLOMLn R Me MeRL Anti-Felkin Attack Anti-Felkin 10

Description:
Sep 18, 2002 Mukaiyama, T. "The Directed Aldol Reaction," in Organic Reactions, New York, 1982; Vol. Effect of other 2 Stereocenters is Unknown.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.