1 1 SynthesisofNaturalProductsContainingMedium-size Carbocyclesby Ring-closingAlkeneMetathesis NicolasBlanchard and JacquesEustache 1.1 Introduction Thischapterdealswiththesynthesisofnaturallyoccurringmolecules(orrelated models)andfocusesontheconstructionofmedium-sizecarbocyclesbyring-closing metathesis(RCM).Wehavearbitrarilychosentoorganizethischapterbyincreasing ringsize.Strategicaspectsandpotentialproblemsarediscussed. 1.2 FormationofFive-memberedCarbocyclesbyRCM Strategicpositioningofthedoublebondsofa1,6-dienepriortoRCMcanbeeffi- cientlyaccomplishedvia[3,3]-sigmatropicrearrangements.Onlyselectedexamples arediscussedbelow,basedonoriginalityandefficiencycriteria.Catalyticasymmet- ricClaisenrearrangementwasreportedbyHiersemannetal.intheenantioselective synthesis of the C10–C18 segment of ecklonialactone B (1), a C18-oxylipin iso- lated from the brown algae Ecklonia stolonifera and Egregia menziessi [1]. The [3,3]-sigmatropicrearrangementof2usingcatalyst3ledtotheacyclicα-ketoester 4 that can be reduced and cyclized to the corresponding disubstituted cyclopen- tene5 using[Ru]-II.Furtherfunctionalgrouptransformationsled tothedesired C10–C18fragment6ofthenaturalproduct(Scheme1.1). A[3,3]-sigmatropicrearrangement/RCMsequence[2]wasalsousedasakeystep inthetotalsynthesisofabioactivespirobenzofuran7isolatedfromthemycelium culturesofAcremoniumsp.HKI0230[3].Thetwoconsecutivequaternarycenters embedded in the 1,6-diene 9 are worthy of note in the context of cyclopentene formation by RCM, and the five-membered ring compound 10 was obtained in high yield (97%) using catalyst [Ru]-I. The same type of strategy was applied for theefficientconstructionofthetwovicinalquaternarycarbonatomspresentinthe herbertanessesquiterpenes(Scheme1.2)[4]. Besides the Ireland–Claisen [3,3]-sigmatropic rearrangement/RCM sequence, someexamplesofJohnson–Claisen/RCMwerereportedbyGhoshandMaity[5]. MetathesisinNaturalProductSynthesis:Strategies,SubstratesandCatalysts.EditedbyJanineCossy, StelliosArseniyadis,andChristopheMeyer Copyright2010WILEY-VCHVerlagGmbH&Co.KGaA,Weinheim ISBN:978-3-527-32440-8 2 1 SynthesisofNaturalProductsContainingMedium-sizeCarbocycles 2+ O O 2 SbF − N N 6 CO Me Cu 2 t-Bu H OOH t-Bu H CO2Me O 2 2 1. K-selectride 3 (7.5 mol%) O (dr > 95 : 5) BnO OBn CF3CH2OH, CH2Cl2 H 2. [Ru]-II (1 mol%) rt, 3d Cl(CH ) Cl 2 92% 4 75% (22 s2teps) (dr > 95 : 5, ee = 92%) Et Et CO2Me H H O Steps OH 16 1 O OH 13 OBn ( ) OBn O O 7 H H 10 5 6 (−)-Ecklonialactone B (1) Scheme 1.1 O 1. LDA [Ru]-I TMSCl·Et3N (5 mol%) Steps HO OH Ar O 2. RHeCfllux then Ar CO2Me CH927C%l2, rt Ar CO2Me O O 3. CH2N2 Spirobenzofuran from 8 9 10 Acremonium sp. HKI Ar = 2,5-Dimethoxy-4-methylphenyl 0230 (7) Scheme 1.2 OH O O pCroHp3ioCn(Oic Eatc)3id O O Steps O O (4[ Rmuo]l-%I) O O Steps Xylene6s6,% 140 °C PMB CH821C%l2, rt PMB OH COEt HO 2 HO HO 12 13 14 15 Sequosempervirin A (11) Scheme 1.3 In the firsttotalsynthesis ofsequosempervirinA(11), anorlignan isolatedfrom Sequoiasempervirens,theγ,δ-unsaturatedcarbonylderivative13waspreparedfrom 12byJohnson–Claisenrearrangement.Furtherstepsledto14,theprecursorofthe keyRCMreactioncatalyzedby[Ru]-I,whichestablishedthedesiredspirostructure ofcompound15(Scheme1.3). An analogous Johnson–Claisen rearrangement/RCM sequence was used by Ghosh etal. in the synthesis of the carbocyclic core of the nucleoside (−)-BCA (16),apotentialinhibitorofHIVreversetranscriptase(Scheme1.4)[6].Thechiral cyclopentene 20 was obtained in excellent yield through a [Ru]-I-mediated RCM of1,6-diene19.Furtherepoxidationand functionalgrouptransformationsledto (−)-BCAcorestructure23. 1.2 FormationofFive-memberedCarbocyclesbyRCM 3 NH 2 HO N N N N HO Bis(hydroxymethyl)cyclopentenyl adenine, (−)-BCA (16) CHC(OEt) prop3ionic ac3id O Steps O O H [Ru]-I O O 140 °C, 6 h O C6H6, 60 °C, 20 h 68% 96% EtOC OH COEt 2 17 18 2 19 (dr = 1 : 1) (dr = 3 : 1) BnO BnO HO O O H Steps H m-CPBA H O Steps NH 2 BnO 85% BnO HO EtOC 2 20 21 22 23 Scheme 1.4 1. LDA Steps OH O MeO C 2 2. HCl O 3. CH N 2 2 25 26 27 OH [Ru]-II HO Moist (15 mol%) SiO Steps 2 p-Tol CH Cl 2 2 28 29 Laurokamurene B (24) Scheme 1.5 Another [3,3]-sigmatropic rearrangement/RCM sequence was developed by Srikrishna and coworkers in the first total synthesis of the aromatic sesquiter- pene(±)-laurokamureneB(24)(Scheme1.5)[7].RCMof27ledtocyclopentenol 28bearingalabilehydroxylmoiety,bothbenzylicandallylic.Thelattercompound wasfoundtobeunstableandwhentreatedwithsilicageldeliveredtherearranged alcohol29inaone-potoperation. Derivativesofnitiol(30),anovelcomplexsesterterpenoidthatactsasamodulator ofIL-2geneexpression,werepreparedusingRCMofvinylketone33asakeystep (Scheme1.6)[8].Worthyofnoteistheuseofcatalyst[Ru]-XIII[9]as[Ru]-IIwas found to increase intermolecular cross-metathesis at the expense of the desired 4 1 SynthesisofNaturalProductsContainingMedium-sizeCarbocycles OH H H HO HO Nitiol (30) 1,22-Dihydroxynitianes O O O [Ru]-XIII OPMB OPMB OPMB O ( )4 LDA HO ( )2 Steps ( )2 (5 mol%) TMSCl, Et3N CH2Cl2, 40 °C 81% 31 32 33 OTBS SnBu3 OPMB O 1. LiHB(s-Bu)3 OSO2CF3 36 CO2Me OTBS( )3 ( )2OPMB 2. PhNTf2 ( )2OPMB CaCt.u PCdl,( PLPiChl3)4 COMe 2 34 35 37 Scheme 1.6 RCM.Conjugatereductionofenone34usingl-selectridefollowedbytrappingof the resulting enolate with PhNTf delivered enol triflate 35. The latter was then 2 submittedtoaStillecross-couplingreactionwithvinylstannane36leadingtothe advancedintermediate37inthesynthesisof1,22-dihydroxynitianes. In the total synthesis of (−)-allosamizoline (38), the carbocyclic fragment of the chitinase inhibitor allosamidin, Donohoe and Rosa reported the efficient elaborationofthe cyclopentenylmoietyviathe RCM of a1,6-diene (Scheme 1.7) [10].Wittigolefinationofaldehyde39,readilyobtainedfromd-glucosamine,proved troublesomewhenbasicphosphorusylide40was usedand the1,6-diene42was isolated in 18% yield. Since the terminal substituents of the alkenes are not transferred into the cyclized products during RCM reactions, the reactivity of acrylate43wasevaluatedasthelatterwasobtainedinhighyield(91%)usingthe lessbasicylide41.RCMproceedsequallywell,deliveringcyclopentene44in88% yield. Formation of cyclopentenes through the RCM of 1,6-dienes can prove itself difficult in very crowded environment. During synthetic efforts toward the tetra- cyclic skeleton of the sesquiterpenoid tashironin (47), Mehta and Maity reported the efficient RCM of 50 using [Ru]-I that led to 51 in 86% yield [11]. However, theRCMof52havingamethylsubstituentinallylicpositionledto53inconsid- erably lower yield (25%) even in the presence of the more active [Ru]-II catalyst (Scheme1.8). ArapidelaborationoftheABCcorestructureofthetetranortriterpenedumsin (54)wasreportedbySrikrishnaetal.startingfromthereadilyavailable(R)-carvone [12]. Two independent efficient RCM reactions, catalyzed by [Ru]-I, were used as 1.2 FormationofFive-memberedCarbocyclesbyRCM 5 PhP=CHR 40:3 R = H [Ru]-II MMOOMMOO NHCO2OMe 4T1o:l uRe n=e C, O902 M°Ce MMOOMMOO NHCO2MeR (1T09o 0lmu °eoCnl%e) MOMO OMOMNHCO2Me 39 44 42: R = H (18%) 80% (from 48) 43: R = COMe (91%) 88% (from 49) 2 O O NMe2 O NMe2 Steps MOMO N NMe2 1. NIS N Steps HO N H OMOM 2. AllylSnBu3 MOMO HO AIBN OMOM OH 45 46 (−)-Allosamizoline (38) Scheme 1.7 OH OH O O [Ru]-I O MeO PhI(OCOCF3)2 MeO O [4+2] MeO O (10 mol%) MeO O THF, rt Toluene CH 6 6 40% reflux reflux 76% 86% 48 49 50 51 O O OH O MeO O [Ru]-II (20 mol%) MeO O BzO O RO O CH, reflux 25% OH O 6 6 O 52 53 Tashironin (47) Tetracylic core structure Scheme 1.8 O O [Ru]-I O Steps (5 mol%) 1. AllylZnBr Li, liq NH 3 CHCl 2. PCC Allyl bromide 2 2 O 99% THF/t-BuOH (R)-Carvone 55 56 57 O AcO RCM RCM O AcO [Ru]-I C (5 mol%) HO A D A C O C1H002C%l2 O OA′H BH OO H BH O 58 59 O iBu Dumsin (54) Dumsin ABC tricycle Scheme 1.9 keystepstocreatethespirocyclopenteneincompound56andthetrans-fusedBC ringsincompound59(Scheme1.9). In challenging cases, simple transformations of the allylic substituents may promote a productive RCM of 1,6-dienes to the corresponding cyclopentenes as shown by Eustache etal. in the stereoselective synthesis of spiroepoxide 61, a 6 1 SynthesisofNaturalProductsContainingMedium-sizeCarbocycles O O O OMe O CO2H OMe O Fumagillin (60) Spiroepoxide analog (61) PMPO PMPO O [Ru]-II O HO [Ru]-II HO i-Bu (15 mol%) i-Bu i-Bu(15 mol%) i-Bu OMe T7o0lu °eCne OMe OMOM C4H02 °CCl2 OMOM 30% 42% 62 63 66 67 Dess–Martin NaBH4, CeCl3·7H2O periodinane BF·SMe MeOH, 0 °C CH2Cl2, 20 °C CH32Cl2, −278 °C 55% (3 steps) PMPO PMPO OH [Ru]-II HO HO [Ru]-II HO i-Bu (15 mol%) i-Bu i-Bu (5 mol%) i-Bu CHCl OMe 402 °C2 OMe OH C4H02 °CCl2 OH 64 65 68 80% 69 Scheme 1.10 potential methionine aminopeptidase-2 inhibitor related to the natural product fumagillin (60) (Scheme 1.10) [13]. Actually, the RCM of vinyl ketone 62 was ◦ foundtobesluggishusingcatalyst[Ru]-II(toluene,70 C)yieldingonly30%ofthe cyclopentenone63.Theenhancedreactivityofthecorrespondingallylicalcohol64 allowedasignificantyieldincrease(55%,overthreestepsfrom62).However,the presenceofapotentialcoordinationsiteforthecatalystcouldalsobedetrimental totheefficiencyoftheRCM.Thus,RCMoftheMethoxymethyl(MOM)ether66 gave cyclopentene 67 in moderate yield (42%), whereas the corresponding free alcohol68cyclizedto69in80%yieldwithathreefolddecreaseincatalystloading (Scheme1.10). Cyclopentenesbearingatrisubstituteddoublebondcouldbeefficientlyprepared via the RCM of the corresponding 1,6-diene. Catalyst [Ru]-II is well suited for this transformation since [Ru]-I usually leads to inferior yields. The prochiral trisubstitutedolefincouldthenbefurtherreducedoroxidized,thuscreatinganew tertiaryorquaternarystereogeniccenter. Trauner etal. used RCM as a key step to elaborate the cyclopentyl core of (−)-guanacastepene E (70) and (−)-heptemerone B (71) (Scheme 1.11) [14]. The cyclizationprecursorwaspreparedviaanasymmetricenereactionofglyoxylate72. Furthertransformationsledto1,6-diene74thatcouldbecyclizedtocyclopentenone 75 in 86%yield using [Ru]-II (5mol%).Conjugateaddition ofthe organocuprate 76thenestablishedtheC11quaternarystereocenter.Thecentralseven-membered ringwasthenclosedwithanelectrochemicaloxidation. Fomannosin(79)isasesquiterpenemetaboliteisolatedfromthewood-destroying BasidiomycetesfungusFomesannonsus(Fr.)Karst.Itsinherentinstabilityandvery congested structure have elicited a great deal of interest from the synthetic 1.2 FormationofFive-memberedCarbocyclesbyRCM 7 O Steps [Ru]-II (5 mol%) R*O R*O SnCl, −78 °C OH OBn Toluene, reflux OBn 4 O O O 86% O 72 73 74 75 (dr = 10 : 1) R = (1S,2R)-2-Phenylcyclohexyl Cu(CN)(2-Th)Li 2 PO O 1. KHMDS 76: P = TBDPS 11 2. TBSOTf PO PO THBFF,3 ·−O4E0t 2°C O O OBn 3. oAxnidoadticion O HO OBn 77 78 Steps RO O H OAc O R = H: (−)-Guanacastepene E (70) R = Ac: Heptemerone B (71) Scheme 1.11 PO O OMe Cp2ZrBu2 Steps (5[ Rmuo]-l%II) OP OP CH OP OPMB PMBO OH re6flu6x PMBO OTBS 91% PMBO OTBS 80: P = TBDPS 81 82 83 (dr = 2.4 : 1) O O O Steps O SEt 1. IBX, DMSO O Steps O THF 2. Pd/C, EtSiH PMBO OH silica gel3 PMBO OH O O OH OH 84 85 (+)-Fomannosin (79) Scheme 1.12 community.Paquetteetal.reportedastraightforwardstrategyfortheelaboration of both antipodes of fomannosin. Compound 80 (prepared from α-d-glucose) underwentazirconium-promotedringcontractionprovidingthefour-membered ring81.ThechallengingRCMof82catalyzedby[Ru]-IIwasusedasakeystep,and ledtocyclopentenederivative83featuringatrisubstituteddoublebondadjacentto 8 1 SynthesisofNaturalProductsContainingMedium-sizeCarbocycles OH OH OMe HO OMe OHC Steps [Ru]-II Br2, OEt Br OBn CH2Cl2 OBn 91% reflux, 20 h OMe OMe 88% 87 88 89 EtO O OMe OBn EtO O OMe OBn O Br Bu3SnH Steps HO2C OH AIBN OMe 85% OMe O 90 91 (+)-Puraquinonic acid (86) Scheme 1.13 HO HO O OR OH HO HO HO OH HO OH Galactofuranosides (92) Carbagalactofuranose (93) BnO BnO [Ru]-II (10 mol%) OH BnO OH BnO Toluene, 60 °C, BnO OH BnO OH 24 h 24% 94 95 BnO BnO [Ru]-II (8 mol%) OAc BnO OAc BnO Toluene, 60 °C, BnO OAc BnO OAc 24 h 89% 96 97 Scheme 1.14 aquaternarystereocenter(Scheme1.12)[15].Thelactoneringwasthenelaborated byanintramolecularKnoevenagelreaction. RCM was used as a key step in the total synthesis of (+)-puraquinonic acid (86), afungalmetabolitethat inducesdifferentiation inHL-60 cells [16]. Starting from aromatic aldehyde 87, the RCM precursor 88 was prepared in a few steps. Following RCM leading to 89 (88%), the newly formedtrisubstitutedalkene was involved in a radical cyclization. Bromo acetal 90 was treated with Bu SnH and 3 AIBNthustriggeringastereoselective5-exotrigcyclizationreaction.Furthersteps ledtothenaturalproduct86(Scheme1.13). Carbahexofuranoses and carbapentofuranoses syntheses have been intensively investigated and RCM reaction emerged as one of the most practical and effi- cientmethodstothiseffect.Amongthenumeroussynthesesofsuchderivatives, 1.2 FormationofFive-memberedCarbocyclesbyRCM 9 the synthesis of 4α-carba-β-d-galactofuranose 93 is worthy of note [17]. A dra- matic protecting group effect was observed during the RCM of 94 and 96. Whereas free allylic alcohols are known to enhance reactivity, RCM of 94 leads to the five-membered ring 95 in poor yield (24%). Under the same con- ditions, the diacetate 96 undergoes an efficient RCM providing 97 in 89% yield (Scheme1.14). TwosimultaneousRCMhavebeenusedineffortstowardthecorestructureof theelisabethinditerpenoids[18].Trisallylcarveol(99),accessiblefrom(R)-carvone, canbetransformedinasinglestepundermildconditionsalbeitwithamoderate yieldintothetricycliccompound100possessingthecorestructureofthedesired targetmolecule(Scheme1.15). Tetrasubstituteddouble bonds embeddedin a five-memberedring can also be efficientlypreparedviaRCM.Inthetotalsynthesisof(±)-spirotenuipesinesA(101) H [Ru]-I Steps (5 mol%) CHCl O H O OH reflux2, 242 h OH O 40% Me OH (R)-Carvone 99 100 Elisabethin A (98) Scheme 1.15 OAc TBSO [Ru]-II HO (5 mol%) Steps Cu(II) cat O OH C6H6 OTBS reflux N2 O 82% 103 104 105 AcO MeS(S)CO BuSnH 3 Steps AIBN H H H H O O Toluene O O O O O O 106 107 108 HO HO I O O 1. KOH MeOH O Steps O O O OH O 2. HCl 3. I, KI 2 NaHCO3 HO HO 109 Spirotenuipesine B Spirotenuipesine A (102) (101) Scheme 1.16 10 1 SynthesisofNaturalProductsContainingMedium-sizeCarbocycles and B (102), Danishefsky etal. simplified the preparation of a key intermediate, compound 104, from nine steps [19] to three steps when an RCM strategy was adopted (Scheme 1.16) [20]. The resulting tetrasubstituted double bond in 104 was then submitted to an intramolecular diazoester cyclopropanation reaction. Radical opening of the resulting strained cyclopropyl group in 107 delivered bicyclic lactone 108, which was converted to 109 by iodolactonization. The latter compound could be further transformed to (±)-spirotenuipesines A (101) and B(102). Another example of elaboration of tetrasubstituted double bonds by RCM was disclosed by Kotora etal. in a formal total synthesis of estrone (Scheme 1.17). Starting from 110, two zirconium-mediated cyclizations enabled the preparation ◦ of compound 112 whose RCM catalyzed by [Ru]-II (20mol%) (toluene, 90 C) providedestroneprecursor113in82%yield[21]. MeO H F 1. Cp ZrBu 1. Cp ZrBu 2 2 2 2 2. CuCl 2. Methallyl chloride MeO (10 mol%) MeO CuCl (10 mol%) F 110 111 Cl [Ru]-II H H (20 mol%) Steps Estrone Toluene, 90 °C MeO MeO 82% 112 113 Scheme 1.17 1. LDA H O O 2. PhSe O O O N 3. Bu4NIO4 OPMB X * Steps N 55% Bn OH 115 OPMB 116 X * N O Ti[(ROui-]P-I,r)4 O Steps 82 O314O1′2′ 3′ 4′ 5′ CHCl, 55 °C 7 5 OMe 2 2 OMe 6 OMe OPMB 53% OPMB OH 117 118 Fumagillol (114) Scheme 1.18
Description: