ebook img

1 STATISTICAL ESTIMATION OF WAVE CLIMATES IN A MONSOON REGION Akira Kimura1 and ... PDF

15 PagesΒ·2012Β·0.93 MBΒ·English
by Β 
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview 1 STATISTICAL ESTIMATION OF WAVE CLIMATES IN A MONSOON REGION Akira Kimura1 and ...

STATISTICAL ESTIMATION OF WAVE CLIMATES IN A MONSOON REGION Akira Kimura1 and Takao Ota2 This paper deals with a statistics of wave climate. NOWPHAS data from 7 observatories along the Sea of Japan coast are investigated. Fourier spectrum of one year time series of significant wave height shows inherent characteristic to the monsoon region. It can be divided into three frequency regions; (A) , (B) and (C) where . Simple but 𝐻apπŸ‘pβ„πŸ‘ropriate spπŸ‘eπŸ‘ctrum modelinπŸ‘gπŸ‘ for the regionπŸ‘ πŸ‘is proposed in thπŸ‘iπŸ‘s study. It isπŸ‘ πŸ‘possible to πŸ‘mπŸ‘ake Monte-Carlo simulatio𝑓ns< of0 w.0a0v6e 𝑑climates a0p.0p0ly6i𝑑ng th<e 𝑓m<od0el. 2v 𝑑ery easily. All 0st.a2t𝑑istica<l 𝑓pr<ope2r𝑑ties can be c𝑑alcu=late1d⁄ 𝑑frπ‘Žo𝑦m the simulated data. No formulation for the frequency distribution of wave properties such as annual maximum wave height is necessary. Some useful applications of the present study are shown in the last. Keywords: wave climate, spectrum of a time series of , simulation of wave statistics, Monte-Carlo method π»πŸ‘β„πŸ‘ INTRODUCTION Design manual for public structures revised in Japan in 2007. The new manual adopts a concept of performance based design. Slight failures of a structure are allowed as far as the structure keeps the demanded performance. In the former manual, a specification based design was used so that damage must not occur during the lifetime. Design wave conditions were determined applying an extreme value statistics (Goda, 2000). After the revision, it becomes necessary to estimate all waves which may damage the structure during its lifetime. For better design and management of structures after the revision, statistics of wave climate become necessary. However the number of relating researches is very limited. Hirose et al., (1982) showed that a frequency distribution of a daily averaged is very close to the Weibull distribution. A difficult point in wave climate study is that some data in the population have correlations. However statistic theory demands the data independency. On the other hand, it is necessar𝐻yπŸ‘ ⁄toπŸ‘ show the wave climates in a simple form for its better application to the life cycle management (LCM) of the structure. The present study aims to overcome the restriction of the theory and to clarify statistical characteristics of the wave climates. A spectrum concept is introduced. W data from 7 observatories (NOWPHAS) along the Sea of Japan coast from 1991 to 2008 (18 years) were investigated and showed one year time series of have a inherent spectral characteristic to the monsoon regiona vreegardless of the observatories and years. The spectrum can be divided into three frequency regions, (A) , (B) and (C𝐻) πŸ‘β„πŸ‘ where . The spectrum in the regionπŸ‘ (πŸ‘A) decides theπŸ‘ sπŸ‘easonal changπŸ‘eπŸ‘ of with aπŸ‘ sπŸ‘mall numbeπŸ‘rπŸ‘ of Fourier πŸ‘cπŸ‘omponents. Very simple m𝑓od<el0in.0g 0f6or 𝑑 the region0s.0 (0B6) 𝑑and <(c)𝑓 ar<e p0o.2s s𝑑ible. Statistica0l. 2p𝑑rope<rti𝑓es< of2 𝑑wave climat𝑑es a=re 1s⁄im𝑑uπ‘Žl𝑦ated by Monte-Carlo method using the models. The present stud𝐻yπŸ‘ ⁄iπŸ‘s applicable to study not only wave climates but also extreme wave statistics. Some applications which may be useful in the LCM are shown in the last. STATISTICAL PROPERTIES OF THE OBSERVED DATA The present method bases on the observed data from 7 observatories. Figure 1 shows the locations of the observatories. Figures 2(a) and 2(b) show examples of one year data (observed every 2 hours). These figures show the data from the coast in the north and center of the Sea of Japan (Fig.1). The numbers in the horizontal axis are the days counted from Jan. 1st. Here after the same horizonta𝐻l πŸ‘a⁄xπŸ‘is is used. Data in the both ends of the figures (winter) are large, and small in the center part (summer). The term β€œmonsoon” in the title of the present study means that data (wave climate) show seasonal characteristics like Fig.2. Figures 3(a) and 3(b) show spectra (absolute value) of one year time series of . The spectrum is given by π»πŸ‘β„πŸ‘ exp 𝐹′(π‘“πŸ‘) πŸ‘πŸ‘πŸ‘πŸ‘ in which = , 𝐹′( 𝑓iπŸ‘s) a= dπŸ‘iscre𝐻teπŸ‘β„ πŸ‘f(re𝑑qπŸ‘)uenc(yβˆ’ 𝑗w2iπœ‹th𝑓 πŸ‘aπ‘‘πŸ‘n) , i n t e r v(a𝑛l =of0 ,1,2,β‹―,2190 )w h e r e (1) πŸ‘πŸ‘πŸ‘ , is aπŸ‘ tπŸ‘ime sequence with 2 hours interval, data number of one yπŸ‘eπŸ‘ar total is πŸ‘43πŸ‘80 ( 𝑗 √). βˆ’1 π‘“πŸ‘ = i𝑛n⁄ F3i6gs5. βˆ™3𝑑(a) and 3(b) show the shape that looks like very we1ll⁄. 3F6ig5uβˆ™re𝑑 4 shows a p𝑑atter=n d1i⁄a𝑑gπ‘Žra𝑦m 𝑑oπŸ‘ f( 𝑖th=e 1s,h2a,pβ‹―e., 4T3h8e0 s)pectrum can be divided into 3 frequency regions. Their frequency region and c=ha1ra2ctΓ—er3is6ti5c are|𝐹 lβ€²i(s𝑓teπŸ‘d) |in Table 1. The upper bound of the region in (C) is set to avoid aliasing effect. In this study, totally 128 years (7 observatories are inveπŸ‘sπŸ‘tigated. Due to space limitation, only limited number of results is shown here after. However there are no 𝑓sig<ni2fi𝑑cant differences between the shown and other cases. π»πŸ‘β„πŸ‘ Γ—18 years) 1 NEWJEC, Koyama Kita 6-448-69, Tottori, 680-0941, Japan 2 Tottori Univ., Faculty of Eng., Koyama Minami 4-101, Tottori, 680-8552, Japan 1 2 COASTAL ENGINEERING 2012 Rumoi Setana Sea of Japan ta Akita Niigata Wajima Tottori Hamadaa Figure 1. Locations of observatories. 7 6 5 m) 4 Rumoi 1994 ( 1/3 3 H 2 1 0 0 50 100 150 200 250 300 350 days (a) Rumoi (1994) 7 6 5 4 Niigata 1998 1/3 H 3 2 1 0 0 50 100 150 200 250 300 350 days (b) Niigata (1998) Figure 2. Observed one year time series of , (a) Rumoi (1994) and (b) Niigata (1998) π»πŸ‘β„πŸ‘ COMPONENTS FROM 3 FREQUENCY REGIONS Seasonal characteristics can be written as sum of components from 3 regions. π»πŸ‘β„πŸ‘(𝑑) COASTAL ENGINEERING 2012 3 in which , and are wave forms fr𝐻oπŸ‘mβ„πŸ‘ e(a𝑑)ch= re𝐻gπŸ‘i(o𝑑n) A+, 𝐻BπŸ‘ β€²a(n𝑑)d +C 𝐻rπŸ‘esβ€²(p𝑑e)c t i v e l y . T h e y a r e g i v e n b y (th2e) inverse Fourier transformations. π»πŸ‘ π»πŸ‘β€² π»πŸ‘β€² exp πŸ‘ π»πŸ‘(π‘‘πŸ‘)=πŸ‘ 𝐹′(π‘“πŸ‘) (𝑗2πœ‹π‘“πŸ‘π‘‘πŸ‘)⎫ πŸ‘πŸ‘πŸ‘ βŽͺ πŸ‘πŸ‘ exp βŽͺ βŽͺ π»πŸ‘β€²(π‘‘πŸ‘)=πŸ‘ 𝐹′(π‘“πŸ‘) (𝑗2πœ‹π‘“πŸ‘π‘‘πŸ‘) (𝑖=1,2,β‹―,4380 ) (3) πŸ‘πŸ‘πŸ‘ exp ⎬ πŸ‘πŸ‘πŸ‘ βŽͺ βŽͺ π»πŸ‘β€²(π‘‘πŸ‘)= πŸ‘ 𝐹′(π‘“πŸ‘) (𝑗2πœ‹π‘“πŸ‘π‘‘πŸ‘)βŽͺ in which is the time (NOWPHAS dataπŸ‘ πŸ‘eπŸ‘vπŸ‘ery 2 hours), , and ⎭ (Table 1). Figures show the examples : , πŸ‘πŸ‘ , 5(c) πŸ‘πŸ‘ and 5(d) πŸ‘πŸ‘ (Tottori, 20𝑑0πŸ‘0). π‘“πŸ‘β‰ˆ0.006𝑑 π‘“πŸ‘πŸ‘=0.2𝑑 π‘“πŸ‘πŸ‘πŸ‘β‰ˆ2𝑑 5(a)~5(d) 5(a) π»πŸ‘β„πŸ‘(π‘‘πŸ‘) 5(b) π»πŸ‘(π‘‘πŸ‘) π»πŸ‘β€²(π‘‘πŸ‘) π»πŸ‘β€²(π‘‘πŸ‘) 1 6 Setana 1991 4 2 ) 0.1 (m 6 )| 4 πŸ‘πŸ‘ fn π‘“πŸ‘ ( 2 ' F 0.01 | 6 4 2 0.001 0.001 0.01 0.1 1 fn (d-1) (a) Setana (1991) 1 6 4 Hamada 2007 2 ) 0.1 m ( 6 )| 4 n πŸ‘πŸ‘ (f 2 π‘“πŸ‘ ' F 0.01 | 6 4 2 0.001 0.001 0.01 0.1 1 fn (d-1) (b) Hamada (2007) Figure 3. Spectrum of the observed one year time series of |𝐹′(𝑓)| π»πŸ‘β„πŸ‘ 4 COASTAL ENGINEERING 2012 A B C 1 6 4 2 m) 0.1 ( 6 | ) 4 πŸ‘πŸ‘ (fn 2 π‘“πŸ‘ ' F 0.01 | 6 4 Rumoi 2001 2 0.001 0.001 0.01 0.1 1 fn (d-1) Figure 4. Pattern diagram of the spectrum Table 1 Frequency regions and characteristics Region A 0.0πŸ‘0πŸ‘6 quick decrease with B 0𝑓.πŸ‘0 0 (6𝑑 0).2 almost constant 𝐹(π‘“πŸ‘) C ~0. 2 decrease in proportio𝑓nπŸ‘ to ~ πŸ‘πŸ‘ 7 ~ 2 π‘“πŸ‘ 6 5 (m) 4 Tottori 2000 H 1/33 2 1 0 0 50 100 150 200 250 300 350 days Figure 5(a) (Tottori, 2000) 2.5 π»πŸ‘β„πŸ‘(π‘‘πŸ‘) 2.0 1.5 m) Tottotttoorrii 22000000 ( HA1.0 0.5 0.0 0 50 100 150 200 250 300 350 days Figure 5(b) (Tottori, 2000) 3 π»πŸ‘(π‘‘πŸ‘) 2 Tottori 2000 ) 1 (m H'B 0 -1 -2 0 50 100 150 200 250 300 350 days Figure 5 (c) β€² (Tottori, 2000) π»πŸ‘(π‘‘πŸ‘) COASTAL ENGINEERING 2012 5 3 2 Tottori 2000 H' (m)C 10 -1 -2 0 50 100 150 200 250 300 350 days Figure 5 (d) β€² (Tottori, 2000) π»πŸ‘(π‘‘πŸ‘) 2.0 Tottori 2000 0.6 1.5 HA HA (m) 1.0 H'Bsm 0.4' (m)sBm H 0.5 0.2 0.0 0.0 0 50 100 150 200 250 300 350 days (a) and 2.0 πŸ‘ π»πŸ‘(π‘‘πŸ‘) π»πŸ‘πŸ‘πŸ‘(π‘‘πŸ‘) Setana 2003 1.5 0.6 (m) 1.0 HH'ACsm 0.4 (m)sm HA 'C H 0.5 0.2 0.0 0.0 0 50 100 150 200 250 300 350 days (b) and πŸ‘ Figure 6. Comparison between (solid line ; 𝐻leπŸ‘ft( 𝑑aπŸ‘)xis) and𝐻 mπŸ‘πŸ‘oπŸ‘nt(h𝑑lπŸ‘y) standard deviation (black circle ; right axis) of (a) β€² (Tottori, 2000) and (b) β€² (Setana,2003) π»πŸ‘(π‘‘πŸ‘) Figures 6(a) and 6(b) show co𝐻mπŸ‘p(a𝑑r)isons between (l𝐻eπŸ‘ft( 𝑑a)xis) and the standard deviation of (a) and (b) (right axis), respectively. and are the monthly standard deviation of and . is a dayπŸ‘ at ce𝐻ntπŸ‘e(r𝑑 eπŸ‘)veryπŸ‘ month. In the both figures, good agreeme𝐻nπŸ‘tsβ€² (a𝑑rπŸ‘e) observed.𝐻 TπŸ‘β€²h(i𝑑sπŸ‘ )means that seasonal characte𝐻rπŸ‘isπŸ‘tiπŸ‘cs( π‘‘πŸ‘o)f π»πŸ‘ πŸ‘aπŸ‘nd(𝑑 πŸ‘) are almost proportional to . 𝐻ThπŸ‘eβ€²(reπ‘‘πŸ‘f)ore the 𝐻seπŸ‘aβ€²(s𝑑oπŸ‘n)al 𝑑cπŸ‘ha(r𝑙a=cte1ri,sβ‹―tic,1s 2ca)n be removed by dividing and by . π»πŸ‘β€²(𝑑) π»πŸ‘β€²(𝑑) π»πŸ‘(π‘‘πŸ‘) π»πŸ‘β€²(𝑑) π»πŸ‘β€²(𝑑) π»πŸ‘(π‘‘πŸ‘) Figures 7(a) and𝐻 7πŸ‘((b𝑑)πŸ‘ )sh=ow𝐻 πŸ‘β€²(π‘‘πŸ‘)⁄𝐻 πŸ‘an(𝑑dπŸ‘ ) 𝐻,πŸ‘ r(e𝑑sπŸ‘p)e=cti𝐻veπŸ‘lβ€²y(.𝑑 πŸ‘C)⁄or𝐻rπŸ‘es(pπ‘‘πŸ‘o)n d i n g (𝑖=1, β‹―an,d4 380) a r e s h o (w4n) in Figs. 5(c) and 5(d). Seasonal characteristics of Figs. 5(c) and 5(d) are not seen in the figures. Since the spectrum width of and ar𝐻e πŸ‘v(e𝑑rπŸ‘y) narrow𝐻 πŸ‘a(n𝑑dπŸ‘ )their monthly standard deviatio𝐻nsπŸ‘ β€²a(r𝑑eπŸ‘ )almost 𝐻coπŸ‘nβ€²(s𝑑tπŸ‘a)nt, it can be assumed that these wave forms are stationary. π»πŸ‘(π‘‘πŸ‘) π»πŸ‘(π‘‘πŸ‘) 6 COASTAL ENGINEERING 2012 3 2 Tottori 2000 1 ) m ( HB 0 -1 -2 0 50 100 150 200 250 300 350 days (a) 3 π»πŸ‘(π‘‘πŸ‘) 2 Tottori 2000 1 ) m ( HC 0 -1 -2 0 50 100 150 200 250 300 350 days (b) Figure 7. Seasonal characteristics are removed from data in Figs. 5(c) and 5(d) using eq.(4) (Tottori, 2000). π»πŸ‘(π‘‘πŸ‘) 0.1 | 8 ) 6 n (f 4 F | 2 , |) 0.01 Setana 2006 n 8 (f 6 F' 4 | |F'(fn)|: with seasonal change 2 |F(fn)|: without seasonal change 0.001 2 3 4 5 6 7 8 9 2 0.01 0.1 fn (d-1) (a) Comparison of the spectrum of and 2 π»πŸ‘β€²(π‘‘πŸ‘) π»πŸ‘(π‘‘πŸ‘) 0.1 8 | 6 ) fn 4 ( F | 2 , |) 0.01 fn 8 Setana 2006 ( 6 ' F 4 | |F'(fn)|: with seasonal change 2 |F(fn)|: without seasonal change 0.001 2 3 4 5 6 7 8 9 -1 1 fn(d ) (b) Comparison of the spectrum of and Figure 8. Comparison of the spectrum with and without seasonal characteristics (Setana,2006). π»πŸ‘β€²(π‘‘πŸ‘) π»πŸ‘(π‘‘πŸ‘) New spectrum for and are given as π»πŸ‘(π‘‘πŸ‘) π»πŸ‘(π‘‘πŸ‘) COASTAL ENGINEERING 2012 7 exp πŸ‘πŸ‘πŸ‘πŸ‘ 𝐹(π‘“πŸ‘)= πŸ‘ π»πŸ‘(π‘‘πŸ‘) (βˆ’π‘—2πœ‹π‘“πŸ‘π‘‘πŸ‘), (𝑛=3,β‹―,73) ⎫ βŽͺ πŸ‘πŸ‘πŸ‘  πŸ‘πŸ‘πŸ‘πŸ‘ exp (5) ⎬ Figures 8(a) and 8(b) show com𝐹p(aπ‘“πŸ‘ri)so=nsπŸ‘ betw𝐻eπŸ‘e(n𝑑 πŸ‘t)he sp(βˆ’ec𝑗t2raπœ‹ f𝑓oπŸ‘r𝑑 πŸ‘()a,) (𝑛= a7n4d, β‹―,731) βŽͺand (b) and (Setana, 2006). There are no significπŸ‘aπŸ‘nπŸ‘t changes in the spectra before and after the rem⎭oval of the seasonal characteristics. π»πŸ‘β€²(π‘‘πŸ‘) π»πŸ‘(π‘‘πŸ‘) π»πŸ‘β€²(π‘‘πŸ‘) 𝐻 πŸ‘(π‘‘πŸ‘) Phase of From eq.(5), phase spectrum of is given as 𝑭(𝒇𝒏) 𝐹(π‘“πŸ‘) πŸ‘πŸ‘ ImπŸ‘πΉ(π‘“πŸ‘)πŸ‘ πœ€πŸ‘=tan πŸ‘βˆ’ πŸ‘ (𝑛=3,4,β‹―,731) (6) in which and mean the real and imagRineaπŸ‘r𝐹y( 𝑓pπŸ‘a)rπŸ‘ts, respectively. Figures 9(a) and 9(b) show frequency distributions of every year for (a) (Hamada) and (b) (Wajima). The distributionRse a(re )almost Iumni(for)ms. 𝐹0.𝑅4(πœ€πŸ‘) πœ€πŸ‘ π»πŸ‘(π‘‘πŸ‘) π»πŸ‘(π‘‘πŸ‘) Hamada 1991-2008 0.3 ) (en0.2 R F 0.1 0.0 1 2 3 4 5 6 en (a) 0.30 πœ€πŸ‘ (𝑛=3,β‹―,73) Wajima 1991-2008 0.25 0.20 ) (en0.15 R F 0.10 0.05 0.00 1 2 3 4 5 6 en (b) Figure 9. Frequency distributions of the phase of (a) (Hamada) and (b) (Wajima) πœ€πŸ‘ (𝑛=74,β‹―,731) π»πŸ‘ π»πŸ‘ MODELING OF Equation (2) is rewritten as, π‘―πŸβ„πŸ‘(𝒕) Spectrum of 𝐻anπŸ‘β„dπŸ‘ (π‘‘πŸ‘)=𝐻 aπŸ‘r(e𝑑 πŸ‘a)p{p1r+ox𝐻imπŸ‘a(t𝑑eπŸ‘d) +sim 𝐻pπŸ‘ly( 𝑑aπŸ‘s) }( F i g . 4 ) (, 𝑖 =1,β‹―,4380) (7) π»πŸ‘(π‘‘πŸ‘) π»πŸ‘(π‘‘πŸ‘) |𝐹(π‘“πŸ‘)|πŸ‘ =π›ΌπŸ‘ in which and are the abso|lu𝐹t(e𝑓 πŸ‘va)|luπŸ‘e=s o𝛼f πŸ‘t𝑓heπŸ‘ πŸ‘m o d e lπŸ‘ s p e c t r u m i n t h e r e g i o n s A a n d B (8) respectively, and are constants determined by the least square principle. |𝐹(π‘“πŸ‘)|πŸ‘ |𝐹(π‘“πŸ‘)|πŸ‘ π›ΌπŸ‘ π›ΌπŸ‘ 8 COASTAL ENGINEERING 2012 πŸ‘πŸ‘ πŸ‘ {|𝐹(π‘“πŸ‘)|βˆ’π›ΌπŸ‘}πŸ‘ β†’ min ⎫ βŽͺ πŸ‘πŸ‘πŸ‘ πŸ‘πŸ‘πŸ‘ (9) πŸ‘πŸ‘ πŸ‘ ⎬ πŸ‘ {|𝐹(π‘“πŸ‘)|βˆ’π›ΌπŸ‘π‘“πŸ‘ } β†’ min βŽͺ Calculated and show almπŸ‘πŸ‘oπŸ‘sπŸ‘t constant value with small fl⎭uctuations. Figure 10 shows an example of the values (Akita, 1991 - 2008). π›ΌπŸ‘ 0.𝛼12πŸ‘ 0.10 0.08 Akita a 20.06 a1 a1 a 0.04 2 0.02 0.00 1992 1994 1996 1998 2000 2002 2004 2006 2008 year Figure 10. Yearly change of and Normal distributions for the fluctuation of and a𝛼rπŸ‘e assu𝛼mπŸ‘ed. Their means and standard deviations , and , are calculated from the observed data. π›ΌπŸ‘ π›ΌπŸ‘ π›ΌπŸ‘ π›ΌπŸ‘ π›ΌπŸ‘πŸ‘ π›ΌπŸ‘πŸ‘ SIMULATION OF From eq.(7), is approximated as π‘―πŸβ„πŸ‘(𝒕) π»πŸ‘β„πŸ‘(𝑑) cos πŸ‘πŸ‘ π»πŸ‘β„πŸ‘(π‘‘πŸ‘)=π»πŸ‘(π‘‘πŸ‘)πŸ‘1+ πŸ‘ (π›ΌπŸ‘+π›ΌπŸ‘πŸ‘π‘…πŸ‘πŸ‘) (2πœ‹π‘“πŸ‘πŸ‘π‘‘πŸ‘+πœ€πŸ‘πŸ‘) πŸ‘πŸ‘πŸ‘πŸ‘ cos πŸ‘πŸ‘πŸ‘ πŸ‘πŸ‘ +  πŸ‘ (π›ΌπŸ‘+π›ΌπŸ‘πŸ‘π‘…πŸ‘πŸ‘)π‘“πŸ‘πŸ‘ (2πœ‹π‘“πŸ‘πŸ‘π‘‘πŸ‘+πœ€πŸ‘πŸ‘)πŸ‘ πŸ‘πŸ‘πŸ‘πŸ‘πŸ‘ π‘‘πŸ‘=𝑖𝑑𝑑 (𝑖=0,1,β‹―) (10) where and are independent normal raπœ€nπŸ‘dπŸ‘o=m 2nπœ‹umπ‘…πŸ‘bπŸ‘erπŸ‘s, w πœ€itπŸ‘hπŸ‘ 0= m2eπœ‹a𝑅n πŸ‘aπŸ‘nπŸ‘d 1 . 0 s t a n d a r d d e v i a t i o n , (1an1d) are also independent uniform random number . If , any value can be used for in eq.(10).𝑅 HπŸ‘πŸ‘owever𝑅, iπŸ‘tπŸ‘ is preferable to use the same value as the observed data interval. is approxima𝑅tπŸ‘edπŸ‘πŸ‘ as π‘…πŸ‘πŸ‘πŸ‘ (0 ~1) 𝑑𝑑<𝑑⁄4 𝑑𝑑 π»πŸ‘(𝑑) π»πŸ‘(π‘‘πŸ‘)β‰ˆπ»πŸ‘(π‘‘πŸ‘)+π»πŸ‘(π‘‘πŸ‘)π‘…πŸ‘πŸ‘ (12π‘Ž) πŸ‘ 1 π»πŸ‘(π‘‘πŸ‘)= π‘ŽπŸ‘+πŸ‘ πŸ‘π‘ŽπŸ‘sin(2πœ‹π‘“πŸ‘π‘‘πŸ‘)+π‘πŸ‘cos(2πœ‹π‘“πŸ‘π‘‘πŸ‘)πŸ‘ (13) 2 πŸ‘πŸ‘πŸ‘ πŸ‘πŸ‘πŸ‘πŸ‘ πŸ‘β„πŸ‘ πŸ‘ 1 π»πŸ‘(π‘‘πŸ‘)=πŸ‘ πŸ‘ πŸ‘π»πŸ‘πŸ‘(π‘‘πŸ‘)βˆ’π»πŸ‘(π‘‘πŸ‘)πŸ‘πŸ‘ ( 𝑖=1,2,β‹―,4380) (14) in which , 18πŸ‘πŸ‘, πŸ‘πŸ‘πŸ‘πŸ‘ and is an average of 18 years . is an average of 18 years . is the -th year (1991 2008) value of . π‘ŽπŸ‘=ReπŸ‘πΉβ€²(π‘“πŸ‘)πŸ‘ π‘πŸ‘=ImπŸ‘πΉβ€²(π‘“πŸ‘)πŸ‘ (𝑛=0,1,2) 𝐹′(π‘“πŸ‘) 𝐹′(π‘“πŸ‘) is a standard deviation of 18 years . is a normal random number with 0 mean and 1.0 s{etaqn.d(a1r)d} de𝐻vπŸ‘ia(t𝑑iπŸ‘o)n. One year uses the value of s𝐻aπŸ‘m(e𝑑 πŸ‘) 𝐻.πŸ‘ πŸ‘(π‘‘πŸ‘) π‘š ~ π»πŸ‘(π‘‘πŸ‘) π»πŸ‘(I𝑑fπŸ‘ )the observation years are not sufficien𝐻tlπŸ‘yπŸ‘ l(o𝑑nπŸ‘)g, 𝑅foπŸ‘lπŸ‘lowing definition for can be used instead of eq.(12a). π‘…πŸ‘πŸ‘ π»πŸ‘(π‘‘πŸ‘) in which is an average of . One year uses also the value of same . Since itself and its fluctuation are small, there are no𝐻 bπŸ‘ig(𝑑 dπŸ‘)ifβ‰ˆfer𝐻enπŸ‘c(e𝑑sπŸ‘) b+etw𝐻eπŸ‘e𝑅nπŸ‘ eπŸ‘q s . ( 1 2 a ) a n d ( 1 2 b ) . (12b) Consta𝐻nπŸ‘ts for the simulation𝐻 aπŸ‘t (e𝑑aπŸ‘c)h,( oib=se1rv,β‹―ato,3ry8 a4r0e) listed in the Table 2. π‘…πŸ‘πŸ‘ π»πŸ‘(π‘‘πŸ‘) COASTAL ENGINEERING 2012 9 Table 2 Constants for the simulation Rumoi Setana Akita Niigata Wajima Tottori Hamada 1.119 1.188 1.088 1.000 1.197 1.093 1.119 0.777 0.805 0.680 0.726 0.777 0.650 0.597 π‘ŽπŸ‘ π‘ŽπŸ‘ 0.093 0.088 0.144 0.106 0.093 0.062 0.081 0.150 0.057 0.120 0.142 0.150 0.101 0.091 π‘πŸ‘ π‘ŽπŸ‘ 0.067 -0.022 0.020 0.077 0.067 0.078 0.083 0.107 0.120 0.138 0.108 0.129 0.111 0.123 π‘πŸ‘ 0.0818 0.0817 0.1000 0.0824 0.0741 0.0777 0.0778 π»πŸ‘ 0.00718 0.00594 0.00860 0.00634 0.00462 0.00557 0.00722 π›ΌπŸ‘ 0.0155 0.0150 0.0184 0.0157 0.0130 0.0134 0.0137 π›ΌπŸ‘πŸ‘ 0.00093 0.00085 0.00150 0.00107 0.00101 0.00105 0.00128 π›ΌπŸ‘ Uinit: : , , : otherwise. π›ΌπŸ‘πŸ‘ π‘šβ„π‘‘ π›ΌπŸ‘ π›ΌπŸ‘πŸ‘ π‘š CORRECTION AND RESULTS Figures 11(a) and 11(b) show observed and simulated one year (Hamada). 7 π»πŸ‘β„πŸ‘(𝑑) 6 5 m) 4 Hamada 2000 ( 3 1/ 3 H 2 1 0 0 50 100 150 200 250 300 350 days (a) (observed) π»πŸ‘β„πŸ‘(𝑑) 6 4 ) m ( 3 / H1 2 0 0 50 100 150 200 250 300 350 days (b) (simulated) Figure 11. Observed (Hamada, 2000) and simulated one year (Hamada) π»πŸ‘β„πŸ‘(𝑑) Correction π»πŸ‘β„πŸ‘(𝑑) Simulated in Fig.11(b) shows a similar seasonal characteristic to Fig.11(a). However some data show negative value. Figure 12 shows frequency distributions of the observed { ; solid line, Wajima π»πŸ‘β„πŸ‘(𝑑) 1991-2008} and simulated { ; dotted line WajimaοΌ›10000 years simulation} . π‘ƒπŸ‘πŸ‘πŸ‘πŸ‘π»πŸ‘β„πŸ‘πŸ‘ π‘ƒπŸ‘πŸ‘πŸ‘πŸ‘π»πŸ‘β„πŸ‘πŸ‘ π»πŸ‘β„πŸ‘(𝑑) 10 COASTAL ENGINEERING 2012 0.8 Wajima 0.6 Observed (1991-2008) Psim Simulated , 0.4 Pobs 0.2 0.0 -1 0 1 2 3 4 5 H1/3 (m) Figure 12. Frequency distributions of observed (solid line) and simulated (dotted line) π»πŸ‘β„πŸ‘(𝑑) There is a difference between and in the area of . About 2% in all the simulated values are negative. However and show good agreement in the area of π‘ƒπŸ‘πŸ‘πŸ‘πŸ‘π»πŸ‘β„πŸ‘πŸ‘ π‘ƒπŸ‘πŸ‘πŸ‘πŸ‘π»πŸ‘β„πŸ‘πŸ‘ π»πŸ‘β„πŸ‘(𝑑)<1.0 π‘š . In this study, data are corrected applying frequency distribution conversion method. The conversion is made using the cumulative distrib𝑃uπŸ‘tπŸ‘iπŸ‘oπŸ‘n𝐻s πŸ‘wβ„πŸ‘hπŸ‘ich are 𝑃cπŸ‘aπŸ‘lπŸ‘cuπŸ‘l𝐻aπŸ‘te⁄dπŸ‘ πŸ‘as, π»πŸ‘β„πŸ‘(𝑑)>1.0 π‘š πŸ‘πŸ‘β„πŸ‘ πΉπŸ‘πŸ‘πŸ‘πŸ‘π»πŸ‘β„πŸ‘πŸ‘= πŸ‘ π‘ƒπŸ‘πŸ‘πŸ‘(𝐻)𝑑𝐻 ⎫ βŽͺ πŸ‘πŸ‘πŸ‘  πŸ‘πŸ‘β„πŸ‘ (15) ⎬ πΉπŸ‘πŸ‘πŸ‘πŸ‘π»πŸ‘β„πŸ‘πŸ‘= πŸ‘ π‘ƒπŸ‘πŸ‘πŸ‘(𝐻)𝑑𝐻βŽͺ in which and are the cumulative distributionsπŸ‘ πŸ‘oπŸ‘fπŸ‘ and ⎭ respectively. Data are converted using the following relation. πΉπŸ‘πŸ‘πŸ‘ πΉπŸ‘πŸ‘πŸ‘ π‘ƒπŸ‘πŸ‘πŸ‘ π‘ƒπŸ‘πŸ‘πŸ‘ βˆ— in which is a target cumulative distribu𝐹tπŸ‘iπŸ‘oπŸ‘n πŸ‘tπŸ‘o𝐻 cπŸ‘oβ„πŸ‘nπŸ‘vπŸ‘eπŸ‘rπŸ‘te=d 𝐹theπŸ‘ πŸ‘d𝐻atπŸ‘a⁄ πŸ‘fπŸ‘rπŸ‘oπŸ‘mπŸ‘πŸ‘ t h e s i m u l a t e d d a t a . F o r t h e t a(r1g6e)t distribution,βˆ— must be 0 and very close to . However if the observation period is not sufficie𝐹ntlyβˆ— long, uneven properties appear on the . In that case, modified cumulative distribution of can be used. 𝐹Figure 13 showπŸ‘s𝐻 aπŸ‘ ⁄mπŸ‘o≀di0fiπŸ‘cation of the frequen𝐹cπŸ‘yπŸ‘πŸ‘ diπŸ‘s𝐻trπŸ‘ibβ„πŸ‘ut>ion0.πŸ‘ Dotted line shows . Solid line shows the function to modify . 𝐹isπŸ‘ πŸ‘gπŸ‘iven as πΉπŸ‘πŸ‘πŸ‘ π‘ƒπŸ‘πŸ‘πŸ‘βˆ’π‘ƒπŸ‘πŸ‘πŸ‘ πΈπŸ‘πŸ‘πŸ‘ π‘ƒπŸ‘πŸ‘πŸ‘ πΈπŸ‘πŸ‘πŸ‘ βˆ’π‘ƒπŸ‘πŸ‘πŸ‘πŸ‘π»πŸ‘β„πŸ‘πŸ‘ A: π»πŸ‘β„πŸ‘β‰€πΌπŸ‘ ⎧ βŽͺ π»πŸ‘β„πŸ‘βˆ’πΌπŸ‘ πΈπŸ‘πŸ‘πŸ‘πŸ‘π»πŸ‘β„πŸ‘πŸ‘= πŸ‘2 βˆ’1πŸ‘π‘ƒπŸ‘πŸ‘πŸ‘(πΌπŸ‘) πΌπŸ‘β‰€π»πŸ‘β„πŸ‘β‰€πΌπŸ‘ (17) ⎨ πΌπŸ‘βˆ’πΌπŸ‘ 30x10-3 ⎩βŽͺ π‘ƒπŸ‘πŸ‘πŸ‘πŸ‘πΌπŸ‘+πΌπŸ‘βˆ’π»πŸ‘β„πŸ‘πŸ‘ B∢ π»πŸ‘β„πŸ‘β‰₯πΌπŸ‘ B Approximation 20 Pobs-Psim 10 Emod 0 C -10 -20 A -1.0 -0.5 0.0 0.5 1.0 1.5 2.0 H1/3 (m) Figure 13. Modification of the frequency distribution is a straight line between the points A and B (Fig.13). is point symmetric for C : . and are determined so that difference between and becomes minimum . In F𝐸igπŸ‘.1πŸ‘3πŸ‘, and . Modified frequency distrib𝐸uπŸ‘tioπŸ‘nπŸ‘ is given by (πΌπŸ‘βˆ’πΌπŸ‘)⁄2,0 πΌπŸ‘ πΌπŸ‘ π‘ƒπŸ‘πŸ‘πŸ‘βˆ’π‘ƒπŸ‘πŸ‘πŸ‘ βˆ—πΈπŸ‘πŸ‘πŸ‘ πŸ‘ π»πŸ‘β„πŸ‘β‰₯πΌπŸ‘πŸ‘ SubstitutingπΌπŸ‘ =0. 1iπ‘šn eq.(15𝐼)πŸ‘, i=ts 0cu.3mπ‘šuβˆ—lative distribution is calculat𝑃eπŸ‘dπŸ‘πŸ‘. βˆ— π‘ƒπ‘ π‘–π‘šπŸ‘π»1⁄3πŸ‘=π‘ƒπ‘ π‘–π‘šπŸ‘π»βˆ—1⁄3πŸ‘+πΈπ‘šπ‘œπ‘‘πŸ‘π»1⁄3πŸ‘ (18) π‘ƒπŸ‘πŸ‘πŸ‘ πΉπŸ‘πŸ‘πŸ‘

Description:
(NOWPHAS) along the Sea of Japan coast from 1991 to 2008 (18 years) were investigated and The term β€œmonsoon” in the title of the present study.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.