ebook img

1 Statistical Arbitrage and Algorithmic Trading - e-Spacio - Uned PDF

302 Pages·2010·2.82 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview 1 Statistical Arbitrage and Algorithmic Trading - e-Spacio - Uned

Statistical Arbitrage and Algorithmic Trading : Overview and Applications Miquel Noguer Alonso - Licenciado y Master en Administración y Dirección de Empresas – Universitat Ramon Llull - ESADE Facultad de Ciencias Económicas y Empresariales Departamento de Economía Aplicada Cuantitativa II UNED 2010 1 Facultad de Ciencias Económicas y Empresariales Departamento de Economía Aplicada Cuantitativa II Statistical Arbitrage and Algorithmic Trading : Overview and Applications Miquel Noguer Alonso - Licenciado y Master en Administración y Dirección de Empresas – Universitat Ramon Llull – ESADE - UBS AG Director : Andreu Pacheco Pages IFAE/CERN Codirector : Manuel Jose Sanchez Sanchez UNED 2 This PhD Thesis is a tribute to my family. To my mother and brother, whose confidence, support in me has been a constant in my life, to my wife Mima, whose love, patience, and understanding have been the foundations of this work. To the memory of my father, wherever he is, I love him so much. To my son Jordi who came early this year to inspire my work, bringing to our family such happiness that cannot be imagined. 3 Acknowledgements This PhD thesis is the result of more than a decade of work with my talented colleagues in UBS, Andbanc as many other people in the financial industry. Thanks to my Thesis Director, Andreu Pacheco Pages, for his knowledge, patience, help with ideas and devoting his precious time to my work! Thanks to Alberto Alvarez and Jose Manuel Sanchez for their guidance, dedication and support through all my PhD time at their university. Thanks to Christian Mazza, Jean Pierre Gabriel and Ales Janka for their collaboration in the research in Fribourg University. I am greatly indebted to Yi-Chen-Zhang and Damien Challet for bringing me there. Thanks to Lorenzo Moneta from CERN for his collaboration in the machine learning chapter of this PhD thesis. Thanks to Jose Miguel Dominguez for his collaboration in the factor models section of this work and the interesting discussions we have on quantitative investing. Thanks to Stephen Wolfram and Jason Cawley from Wolfram Research for their support and the research we did together in the NKS summer school back in 2008. My discussions and research with Martin Schaden have extremely useful to explore new ideas like quantum finance. My work wouldn’t have been the same without my conversations with Jean-Phillipe Bouchaud, Conrad Perez Vicente and other econophysicists. Whose contribution to economics science is changing the foundations of Finance. I am highly indebted to the Fisica i Finances research group from the Physics department at Universitat de Barcelona for their inspiring papers and books. 4 1. Introduction................................................................................................................14 1.1. Scope....................................................................................................................................14 1.2. Definitions...........................................................................................................................16 1.2.1 Forecasting.................................................................................................................................16 1.2.2 The ultimate goal: achieving high Sharpe ratios...................................................................18 2. Algorithmic Trading strategies: track record, categories and disciplines18 2.1. The industry of systematic traders: Barclay Systematic Traders Index............18 2.2. Trading strategies categories : Mean reversion, momentum / Regime switching / Factor models..........................................................................................................20 2.2.1 Mean-reverting versus momentum strategies.......................................................................20 2.2.2 Regime switching......................................................................................................................25 2.2.3 Stationarity and cointegration..................................................................................................27 2.2.4 Factor models............................................................................................................................28 2.2.5 High-frequency trading strategies...........................................................................................30 2.2.6 What is your exit strategy?.......................................................................................................32 2.2.7 Event trading..............................................................................................................................33 2.2.8 Volatility arbitrage......................................................................................................................34 2.3. Statistics and Finance: Econophysics and behavioral finance............................43 2.3.1 Statistics, econophysics and behavioural finance................................................................43 2.3.2 Agent-Based Modelling of Financial Markets........................................................................46 2.3.3 Game theory..............................................................................................................................47 2.3.4 Microstructure – Are the dynamics of financial markets endogenous or exogenous ?..48 2.3.5 Endogenous-Exogenous Market model.................................................................................50 2.3.6 Statistics and Finance...............................................................................................................50 3. P: discrete-time processes....................................................................................52 3.1. Random walk......................................................................................................................53 3.1.1 Continuous invariants...............................................................................................................54 3.1.2 Discrete invariants.....................................................................................................................55 3.1.3 Generalized representations....................................................................................................56 3.1.4 Heavy tails..................................................................................................................................57 3.2. ARMA processes...............................................................................................................59 3.3. Long memory.....................................................................................................................61 3.4. Volatility clustering...........................................................................................................63 4. Part II Q: continuous-time processes..................................................................64 4.1. Levy processes..................................................................................................................65 4.1.1 Diffusion......................................................................................................................................65 4.1.2 Jumps..........................................................................................................................................66 4.1.3 Generalized representations....................................................................................................68 4.1.4 Notable examples......................................................................................................................69 4.2. Autocorrelated processes..............................................................................................71 4.3. Long memory.....................................................................................................................72 4.4. Volatility clustering...........................................................................................................74 4.4.1 Stochastic volatility....................................................................................................................74 4.4.2 Subordination.............................................................................................................................75 4.5. Markov Switching Models...............................................................................................77 4.6. Fractals and multifractals in finance............................................................................78 5 4.6.1 Basic definitions.........................................................................................................................78 4.6.2 Multifractals................................................................................................................................81 4.6.3 Multifractal model of asset returns..........................................................................................84 4.6.4 Markov switching multifractal...................................................................................................85 4.7. Quantum Finance..............................................................................................................86 4.8. State Space representation............................................................................................86 4.9. Bayesian statistics............................................................................................................89 4.9.1 The likelihood function..............................................................................................................91 4.9.2 The Poisson Distribution Likelihood Function.......................................................................91 4.9.3 Bayes theorem...........................................................................................................................92 5. Statistical Arbitrage, Cointegration, and Multivariate Ornstein-Uhlenbeck 93 5.1. The multivariate Ornstein-Uhlenbeck process..........................................................94 5.2. The geometry of the Ornstein-Uhlenbeck dynamics...............................................97 5.3. Cointegration....................................................................................................................101 5.4. Vector autoregressive model.......................................................................................103 5.4.1 Definition...................................................................................................................................103 5.5. Principal Components Analysis Statistical Arbitrage...........................................104 6. Statistical Model Estimation................................................................................107 6.1. Statistical Estimation and Testing..............................................................................107 6.2. Estimation Methods........................................................................................................108 6.2.1 The Least-Squares Estimation Method................................................................................109 6.2.2 The Maximum-Likelihood Estimation Method.....................................................................109 6.2.3 Bayesian Estimation Methods...............................................................................................109 6.2.4 Robust Estimation...................................................................................................................110 6.3. Estimation of Matrices...................................................................................................111 6.4. Estimation of Regression Models...............................................................................111 6.4.1 Linear regression is the workhorse of equity modelling....................................................111 6.5. Estimation of Vector Autoregressive Models..........................................................113 6.6. Estimation of Linear Hidden-Variable Models.........................................................114 6.7. Estimation of Nonlinear Hidden-Variable Models...................................................115 7. Nonlinear Dynamical Systems............................................................................115 7.1. Motivation..........................................................................................................................115 7.2. Discrete systems: the logistic map............................................................................117 7.3. Continuous systems......................................................................................................119 7.4. Lorenz model....................................................................................................................120 7.5. Pathways to chaos..........................................................................................................122 7.6. Measuring chaos.............................................................................................................123 8. Technical analysis..................................................................................................124 8.1. History................................................................................................................................124 8.2. General description........................................................................................................125 6 8.3. Characteristics.................................................................................................................126 8.4. Prices move in trends ?.................................................................................................127 8.5. Rule-based trading..........................................................................................................127 8.6. Indicators...........................................................................................................................128 9. Statistical Arbitrage Applications – Momentum and value analysis........129 9.1. The historical performance of value and price momentum.................................130 9.1.1 The big picture: Value and price momentum in the US.....................................................130 9.1.2 A closer look at historical performance Portfolio returns...................................................132 9.1.3 A formal test: Has alpha disappeared?................................................................................136 9.2. Systematic strategies and market risk: What has changed?..............................138 9.2.1 Correlation with market returns.............................................................................................138 9.2.2 Market neutrality beyond correlation....................................................................................141 9.2.3 The quest for market neutrality..............................................................................................144 9.3. Momentum in a multiasset class context.................................................................152 9.4. Moving average model SP500......................................................................................154 9.5. Moving Average + RSI bund 1 minute.......................................................................155 9.6. Statistical analysis..........................................................................................................156 9.6.1 SP500-Descriptive statistics + ACF + PACF + GARCH modelling..................................156 9.6.2 Single stock-Microsoft: Variance ratio test..........................................................................158 9.6.3 Time series analysis SP500..................................................................................................159 10. Machine Learning review......................................................................................160 10.1. Supervised, unsupervised and statistical learning............................................161 10.2. Artificial Neural Networks.........................................................................................161 10.2.1 Background..............................................................................................................................163 10.2.2 Models.......................................................................................................................................163 10.2.3 Choosing a cost function........................................................................................................165 10.2.4 Learning paradigms................................................................................................................166 10.2.5 Learning algorithms.................................................................................................................167 10.2.6 Applications..............................................................................................................................168 10.2.7 Types of neural networks.......................................................................................................168 10.2.8 Theoretical properties.............................................................................................................174 10.2.9 Support vector machines....................................................................................................175 10.3. Classification and regression trees........................................................................182 10.4. Genetic Algorithms.....................................................................................................182 10.4.1 Initialization...............................................................................................................................184 10.4.2 Selection...................................................................................................................................184 10.4.3 Reproduction............................................................................................................................184 10.4.4 Termination..............................................................................................................................185 10.4.5 Solutions...................................................................................................................................185 10.4.6 Variants.....................................................................................................................................187 10.4.7 Problem domains.....................................................................................................................188 11. Statistical analysis of genetic algorithms in discovering technical analysis trading strategies.............................................................................................188 11.1. Introduction...................................................................................................................189 11.2. Trading with gas..........................................................................................................190 7 11.3. Testing different models............................................................................................192 11.3.1 Linear Time Series..................................................................................................................193 11.3.2 Bilinear Process.......................................................................................................................194 11.3.3 ARCH Processes.....................................................................................................................194 11.3.4 GARCH Processes.................................................................................................................195 11.3.5 Threshold Processes..............................................................................................................196 11.3.6 Chaotic Processes..................................................................................................................197 11.4. Performance criteria and statistical tests.............................................................198 11.4.1 Winning Probability.................................................................................................................199 11.4.2 Sharpe Ratio............................................................................................................................199 11.4.3 Luck Coefficient.......................................................................................................................201 11.5. Monte carlo simulation..............................................................................................202 11.6. Test results...................................................................................................................203 11.6.1 ARMA Processes....................................................................................................................203 11.6.2 Bilinear Processes...................................................................................................................205 11.6.3 ARCH and GARCH Processes.............................................................................................206 11.6.4 Threshold Processes..............................................................................................................208 11.6.5 Chaotic Processes..................................................................................................................209 11.6.6 Summary..................................................................................................................................210 11.7. Empirical analysis.......................................................................................................210 11.7.1 Data Description and Analysis..............................................................................................210 11.7.2 Experimental Design...............................................................................................................215 11.7.3 Results of the Experiments....................................................................................................216 11.8. Concluding remarks...................................................................................................219 12. Using GA's + ANN's and SVM for financial time series forecasting – 2 applications.........................................................................................................................220 12.1. GAs for financial time series forecasting.............................................................221 12.1.1 ANNs for financial time series forecasting...........................................................................221 12.1.2 Multiple experts for financial time series forecasting.........................................................222 12.2. A hybrid approach for dealing with stock market forecasting........................222 12.2.1 Context-based identification of multistationary models.....................................................223 12.2.2 The guarded experts framework...........................................................................................223 12.2.3 Neural XCS..............................................................................................................................225 12.2.4 Handling a population of NXCS experts..............................................................................225 12.3. Generating and maintaining NXCS experts..........................................................226 12.3.1 NXCS mechanisms for experts selection and outputs blending......................................227 12.4. Customizing NXCS experts for stock market forecasting................................227 12.4.1 Embodying technical-analysis domain knowledge into NXCS guards............................228 12.4.2 Devising a feedforward ANN for stock market forecasting...............................................230 12.5. Experimental results...................................................................................................233 12.6. Forecasting stock market direction with Support Vector Machines.............234 12.6.1 Experiment design...................................................................................................................234 12.6.2 Model inputs selection............................................................................................................235 12.6.3 Comparisons with other forecasting methods.....................................................................235 12.6.4 Experiment results...................................................................................................................237 13. Other non-linear Techniques...............................................................................237 13.1. Takens' theorem - delay embedding theorem – State space...........................237 13.1.1 FX application - Takens' theorem - delay embedding theorem........................................239 8 13.2. Macroeconomics Forecasting – From VARMA to Reduced form VAR.........239 13.3. Markov switching SP500 / VIX 3 states..................................................................242 14. Asymmetric Algorithmic trading strategies....................................................245 14.1. Commodity Algo..........................................................................................................245 14.1.1 Commodity market characteristics........................................................................................245 15. Integrated Algorithmic Trading Strategy Theory - Putting it all together247 15.1. Integrated Algorithmic Trading Strategy Theory – Definitions and techniques 247 15.2. Modelling Framework.................................................................................................247 15.3. Techniques....................................................................................................................247 15.4. Perfomance measurement........................................................................................248 15.5. GOLD IATST..................................................................................................................248 15.6. Multi Strategy IATST...................................................................................................250 16. Conclusions.............................................................................................................251 17. Appendix...................................................................................................................253 17.1. Forecast error...............................................................................................................253 17.2. Analytical proof of the law of reversion................................................................254 17.3. The Ornstein-Uhlenbeck process...........................................................................255 17.4. Relation between CIR and OU processes.............................................................256 17.5. The Levy-Khintchine representation of a Levy process...................................257 17.6. Representation of compound Poisson process.................................................258 17.7. Deterministic linear dynamical system.................................................................259 17.8. OU (auto)covariance: general expression............................................................260 17.9. OU (auto)covariance: explicit solution..................................................................261 17.10. The sup-Wald test....................................................................................................264 17.11. Power of the stability test......................................................................................265 17.12. Hedge fund returns and market neutrality........................................................266 17.13. Akaike information criterion.................................................................................267 17.14. Genetic algorithms and technical analysis......................................................269 17.14.1 Coding Trading Strategies.................................................................................................269 17.14.2 Ordinary Genetic Algorithms.............................................................................................271 17.15. Notes on Advanced Maths for Quantitative Investment...............................272 17.15.1 Stochastic processes......................................................................................................272 17.15.2 Stochastic differential equation....................................................................................274 17.15.3 Stochastic integral............................................................................................................275 17.15.4 Martingales.........................................................................................................................275 17.15.5 Black-Scholes theory – Riskless portfolio.................................................................276 17.15.6 Optimization in finance....................................................................................................277 17.15.7 Black-Litterman.................................................................................................................279 17.15.8 Statistical Physics and Finance....................................................................................280 17.15.9 Probability distributions..................................................................................................281 17.15.10 Copulas................................................................................................................................284 9 17.15.11 Important distributions....................................................................................................285 18. Abbreviations and Acronyms..............................................................................289 19. Programming code.................................................................................................291 20. References................................................................................................................291 10

Description:
Statistical Arbitrage and Algorithmic Trading : Overview and Applications. Miquel Noguer . Statistics and Finance: Econophysics and behavioral finance.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.