ebook img

1 PERFORMANCE OF A GFRP REINFORCED CONCRETE BRIDGE DECK by AMY KATHERINE ... PDF

154 Pages·2011·15.29 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview 1 PERFORMANCE OF A GFRP REINFORCED CONCRETE BRIDGE DECK by AMY KATHERINE ...

PERFORMANCE OF A GFRP REINFORCED CONCRETE BRIDGE DECK by AMY KATHERINE EITEL Submitted in partial fulfillment of the requirements For the degree of Doctor of Philosophy Dissertation Advisor: Dr. Arthur Huckelbridge, Jr. D.Eng.,PE Department of Civil Engineering CASE WESTERN RESERVE UNIVERSITY January, 2005 1 CASE WESTERN RESERVE UNIVERSITY SCHOOL OF GRADUATE STUDIES We hereby approve the dissertation of ______________________________________________________ candidate for the Ph.D. degree *. (signed)_______________________________________________ (chair of the committee) Arthur A. Huckelbridge ________________________________________________ Dario Gasparini ________________________________________________ Robert Mullen ________________________________________________ Joseph Payer ________________________________________________ ________________________________________________ (date) _______________________ *We also certify that written approval has been obtained for any proprietary material contained therein. 2 TABLE OF CONTENTS LIST OF TABLES..............................................................................................................6 LIST OF FIGURES............................................................................................................7 ACKNOWLEDGEMENTS..............................................................................................12 LIST OF ABBREVIATIONS...........................................................................................13 Abstract.............................................................................................................................15 CHAPTER 1: INTRODUCTION................................................................................16 1.1 Motivation.........................................................................................................16 1.2 Organization of Thesis......................................................................................21 CHAPTER 2: BACKGROUND..................................................................................22 2.1 Corrosion in concrete bridges...........................................................................22 2.2 GFRP Material Properties.................................................................................25 2.2.1 GFRP Components...................................................................................25 2.2.2 GFRP Mechanical Properties....................................................................26 2.3 Current State-of-the-Art....................................................................................32 2.3.1 FRP Reinforced Concrete Bridges............................................................32 2.3.2 GFRP Reinforced Concrete Bridge Performance Monitoring..................34 CHAPTER 3: Rehabilitation of Miles Road Bridge No. 178......................................40 3.1 Original Structure..............................................................................................40 3.2 Construction of the deck...................................................................................42 CHAPTER 4: Bridge Design Methodology.................................................................47 4.1 Introduction to FRP Reinforced Concrete Design............................................47 4.2 Transverse Slab Design Computations.............................................................52 3 4.2.1 Design Moments.......................................................................................52 4.2.2 Flexural Strength:......................................................................................53 4.2.3 Serviceability - Crack Width....................................................................56 4.2.4 Serviceability - Deflection........................................................................58 4.2.5 Serviceability - Creep Rupture..................................................................59 4.3 Longitudinal Reinforcement Slab Design Computations.................................59 4.3.1 Design for Shrinkage and Temperature Reinforcement...........................59 4.3.2 Design for Shear.......................................................................................60 4.4 Summary of Proposed and As-Built Deck Design...........................................60 CHAPTER 5: LOAD TESTING..................................................................................62 5.1 Introduction.......................................................................................................62 5.2 Experimental Procedure....................................................................................62 5.2.1 Stress-strain behavior................................................................................66 5.3 Results and Discussion.....................................................................................67 5.3.1 Benchmark Test........................................................................................67 5.3.2 Preliminary Test of Replacement GFRP R/C deck...................................72 5.3.3 First Calibrated Live Load Test of GFRP Replacement Deck.................76 5.3.4 July 2003 Test...........................................................................................78 5.3.5 April 2004 Test.........................................................................................85 5.3.6 August 2004 Test......................................................................................95 5.4 Conclusions.....................................................................................................100 CHAPTER 6: THERMAL MONITORING..............................................................105 6.1 Introduction.....................................................................................................105 4 6.2 Experimental Procedure..................................................................................106 6.3 Results and Discussion.......................................................................................111 6.3.1 Summer Thermal Monitoring.................................................................112 6.3.2 Winter Thermal Monitoring....................................................................120 6.3.3 Annual Thermal Stresses........................................................................125 6.3.4 Finite element analyses...........................................................................130 6.4 Conclusions.....................................................................................................137 CHAPTER 7: Summary and Future Work.................................................................140 7.1 Summary.........................................................................................................140 7.1.1 Design Methodology...............................................................................140 7.1.2 Load Testing...........................................................................................142 7.1.3 Thermal Monitoring................................................................................144 7.1 Future Work....................................................................................................146 7.2 Conclusions.....................................................................................................148 REFERENCES...............................................................................................................150 5 LIST OF TABLES Table 2.1. Reinforcing bar material properties.................................................................28 Table 2.2. Material compatibility comparisons...............................................................29 Table 2.3. FRP grid/rebar utilization in the United States...............................................33 Table 4.1. Flexural design calculations............................................................................55 Table 4.2. Crack width calculations................................................................................57 Table 4.3. As-built and alternative design.......................................................................61 Table 5.1. Elastic modulus results for Aslan! bars.........................................................67 Table 6.1. Girder/slab composite properties.................................................................111 6 LIST OF FIGURES Figure 3.1. Original Structure in winter............................................................................40 Figure 3.2. Corrosion and deterioration of the original deck...........................................42 Figure 3.3. Removal of the deck......................................................................................43 Figure 3.4. Removal of the deck......................................................................................43 Figure 3.5. Bottom mat reinforcement............................................................................44 Figure 3.6. Placing top mat reinforcement.......................................................................44 Figure 3.7. Concrete pour on 30 August 2002..................................................................45 Figure 3.8. Concrete finishing.........................................................................................45 Figure 3.9. New FRP R/C deck......................................................................................46 Figure 4.1. Comparison of Flexural Behavior of Steel R/C to GFRP R/C......................51 Figure 5.1. Instrumentation layout...................................................................................63 Figure 5.2. Strain gage installation on upper and lower girder flanges...........................63 Figure 5.3. Typical strain gauge installation on FRP rebar.............................................64 Figure 5.4. Strain gages with protective coating system.................................................65 Figure 5.5. Typical DCDT installation for measurement of relative slab deflection....66 Figure 5.6. Test vehicle for live load test..........................................................................68 Figure 5.7. Typical bottom flange strains of original deck at 7/16 span and center pier.69 Figure 5.8. Predicted deflected shape of the original deck slab under wheel loads........69 Figure 5.9. Original deck slab deflections measured relative to the girders.....................70 Figure 5.11. Location of pier composite neutral axis of original deck............................71 Figure 5.12. Rehabilitated deck slab deflections measured relative to the girders..........73 7 Figure 5.13. Predicted vs. observed deflected shape under wheel loads.........................73 Figure 5.14. Longitudinal Bar Strain Time Histories at 7/16 Span w/64 kip test vehicle. ...................................................................................................................................74 Figure 5.15. Transverse bar strain time histories at center pier w/64 kip test vehicle.....75 Figure 5.16. Transverse bar strain time history at 7/16 Span w/64 kip test vehicle........75 Figure 5.17. Comparative Girder Strains – rehabilitated vs. original bridge...................77 Figure 5.18. Concrete mixer locations at various data sampling points..........................78 Figure 5.19. 7/16-span girder strain time history; 90 kip concrete mixer passage..........79 Figure 5.20. Deck slab deflections at interior pier location.............................................80 Figure 5.21. Transverse GFRP rebar strains at 7/16 span between C and NC girders....81 Figure 5.22. Top layer transverse rebar strains over NC girder at interior pier...............82 Figure 5.23. Longitudinal GFRP rebar strains at positive moment section.....................83 Figure 5.24. Longitudinal GFRP rebar strains at negative moment section....................83 Figure 5.25. 7/16 span top and bottom flange strains of rehabilitated bridge.................84 Figure 5.26. Interior pier top and bottom flange strains of rehabilitated bridge..............85 Figure 5.27. Vehicle positions for live load test of 5 April 2004....................................86 Figure 5.28. Girder strains at 7/16 span for differing vehicle positions..........................87 Figure 5.29. Girder strains interior pier for differing vehicle positions...........................88 Figure 5.30. Girder strains at differing test vehicle travel speeds...................................89 Figure 5.31. Relative slab deflections at differing test vehicle travel speeds..................89 Figure 5.32. GFRP transverse rebar strains at 7/16 span.................................................90 Figure 5.33. GFRP transverse rebar strains at pier..........................................................91 Figure 5.34. GFRP longitudinal rebar strains at 7/16 span..............................................91 8 Figure 5.35. Model results for eastbound wheel on centerline, unrestrained end abutments..................................................................................................................93 Figure 5.36. Model results for eastbound wheel on centerline, restrained end abutments. ...................................................................................................................................93 Figure 5.37. Model results for westbound lane centered, unrestrained end abutments...94 Figure 5.38. Model results for westbound lane centered, restrained end abutments.......94 Figure 5.39. Bottom flange girder strains for differing vehicle positions.......................95 Figure 5.40. Relative slab deflections at 5 months and 23 months of service.................96 Figure 5.41. GFRP transverse rebar strains for differing test vehicle travel speeds........97 Figure 5.42. Girder strains at differing test vehicle travel speeds..……..........................97 Figure 5.43. GFRP transverse rebar strains for differing vehicle positions.....................98 Figure 5.44. Top and bottom flange girder strains at 7/16 span......................................99 Figure 5.45. Top and bottom flange girder strains at pier...............................................99 Figure 5.46. Finite element analysis of service load......................................................101 Figure 6.1. GFRP bar thermal calibration......................................................................107 Figure 6.2. Typical thermistor (temperature probe) installation....................................108 Figure 6.3. Typical sliding expansion bearing...............................................................109 Figure 6.4. Simplified thermal model of the bridge.......................................................109 Figure 6.5. Summer slab and ambient temperatures....................................................112 Figure 6.6. Slab temperatures during period of 23ºF ambient variation........................113 Figure 6.7. Girder strains at 7/16 span corresponding to 23ºF ambient variation.........114 Figure 6.8. Slab temperatures during 24-hour period beginning 14 August 2003........115 Figure 6.9. Girder strains at 7/16 span during 24-hr period beginning 14 August 2003.116 9 Figure 6.10. Girder strains at pier during 24-hr period beginning 14 August 2003.......116 Figure 6.11. Top layer rebar strains during 9-12 August 2003.......................................117 Figure 6.12. Bottom layer rebar strains during 9-15 August 2003.................................117 Figure 6.13. Top layer rebar strains during increases in temperature.............................119 Figure 6.14. Bottom layer rebar strains during increases in temperature.......................119 Figure 6.15. Winter slab and ambient temperatures......................................................120 Figure 6.16. Slab temperatures during period of maximum diurnal variation...............121 Figure 6.17. Bottom flange strains between 18 January 2004 and 22 January 2004......122 Figure 6.18. Slab temperatures during 48-hr period beginning 15 February 2004........123 Figure 6.19. Upper Flange Girder strains during 48-hr period beginning 15 Feb 2004. 124 Figure 6.20. Bottom Flange strains at pier during 48-hr period beginning 15 Feb 2004. .................................................................................................................................124 Figure 6.21. Winter Season thermally induced upper flange strains..............................125 Figure 6.22. Winter Season thermally induced lower flange strains..............................126 Figure 6.23. Summer Season thermally induced lower flange strains............................126 Figure 6.24. Observed summer season horizontal thrust as a function of temperature..128 Figure 6.25. Observed winter season horizontal thrust as a function of temperature.....128 Figure 6.26. Observed summer season vertical thrust as a function of temperature......129 Figure 6.27. Observed winter season vertical thrust as a function of temperature.........129 Figure 6.28. Longitudinally free model stresses due to 48oF temperature increase.......132 Figure 6.29. Longitudinally fixed model stresses due to 48oF temperature increase.....133 Figure 6.30. Longitudinally free model stresses due to positive temperature gradient..134 10

Description:
4.1 Introduction to FRP Reinforced Concrete Design. The FRP products in bridge applications consist . high alkalinity - a pH of 12 to 13. Sufficient
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.