ebook img

0.54 {\mu}m resolution two-photon interference with dispersion cancellation for quantum optical coherence tomography PDF

0.82 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview 0.54 {\mu}m resolution two-photon interference with dispersion cancellation for quantum optical coherence tomography

m 0.54 m resolution two-photon interference with dispersion cancellation for quantum optical coherence tomography Masayuki Okano1,2,3, Hwan Hong Lim4, Ryo Okamoto1,2,3, Norihiko Nishizawa5, Sunao Kurimura4, and Shigeki Takeuchi1,2,3,* 1DepartmentofElectronicScienceandEngineering,KyotoUniversity,Kyotodaigaku-katsura,Nishikyo-ku,Kyoto, 6 1 Kyoto,Japan 0 2ResearchInstituteforElectronicScience,HokkaidoUniversity,Sapporo,Hokkaido,Japan 2 3TheInstituteofScientificandIndustrialResearch,OsakaUniversity,Mihogaoka8-1,Ibaraki,Osaka,Japan n 4NationalInstituteforMaterialsScience,1-1Namiki,Tsukuba,Ibaraki,Japan a 5DepartmentofQuantumEngineering, NagoyaUniversity,Furo-cho,Chikusa-ku,Nagoya,Aichi,Japan J *[email protected] 8 ] ABSTRACT h p - t Quantum information technologies harness the intrinsic nature of quantum theory to beat the limitations of the classical n methods for information processing and communication. Recently, the application of quantum features to metrology has a attractedmuch attention. Quantumopticalcoherencetomography(QOCT), whichutilizestwo-photoninterferencebetween u q entangled photon pairs, is a promising approach to overcome the problem with optical coherence tomography (OCT): As [ the resolution of OCT becomes higher, degradation of the resolution due to dispersion within the medium becomes more critical. Herewereportontherealizationof0.54m mresolutiontwo-photoninterference,whichsurpassesthecurrentrecord 1 resolution0.75 m m of low-coherenceinterferencefor OCT. In addition, the resolutionfor QOCT showed almost no change v againstthedispersionofa1mmthicknessofwaterinsertedintheopticalpath,whereastheresolutionforOCTdramatically 4 degrades.Forthisexperiment,ahighly-efficientchirpedquasi-phase-matchedlithiumtantalatedevicewasdevelopedusinga 3 7 novel‘nano-electrode-poling′technique.Theresultspresentedhererepresentabreakthroughfortherealizationofquantum 1 protocols, including QOCT, quantumclock synchronization, and more. Our work will open up possibilitiesfor medical and 0 biologicalapplications. . 1 0 6 Introduction 1 : v One of the mostdistinct featureof quantumphysicsis quantumentanglement. Entanglementattractedattention first in the i test of nonlocality of quantum mechanics,1–3 and started to be considered as an essential resource for quantum informa- X tion protocols,4 including quantum key distribution,5,6 quantum teleportation,7,8 and quantum computation.9–11 Recently, ar the application of quantum entanglement for metrology and sensing is attracting attention.12,13 One recent example is an entanglement-enhancedmicroscope, where a photon-numberentangled state is used as probe light to enhance the sensitiv- ity.14 Here we focuson anotherexample: an applicationof the frequencyentangledstate of photonsfor opticalcoherence tomography(OCT).15,16 OCTbasedonlow-coherenceinterference(LCI)17hasbeenwidelyusedinvariousfields,includingmedicalapplications suchasimagingoftheretinaandcardiovascularsystem.15,16 Figure1ashowsaschematicdiagramofOCT.Broadbandlight fromasourceisdividedatabeamsplitter(BS).Onebeamisincidentonasampleafterpassingthroughadispersivemedium, whiletheotherbeamisreflectedfromamirrorwithatemporaldelayt . TheOCTinterferencefringeI(t )isobtainedbythe detectionoftheinterferedlightintensitywithvaryingdelayt (Figure1ainset). Whenthebandwidthofthesourceismade broadertoachievehigherresolution,theresolution,farfrombeingimproved,degradesduetodispersioninthemedium.This constitutesasevereprobleminOCT.18 Althoughdispersioneffectcanbecompensatedbyinsertinga‘phantom′,amedium with the same dispersion, in the reference path,19 it requires a priori knowledge of both the structure and the frequency- dependentrefractiveindexofthetargetobject.Furthermore,astheresolutionbecomeshigher,aslightdifferencebetweenthe targetobjectandthe‘phantom′becomesacrucialproblem. As an alternative method, quantum optical coherence tomography (QOCT)20–24 based on the two-photon interference (TPI) of frequency-entangled photon pairs25 has been proposed20 (Figure 1b). Broadband entangled photon pairs can be generated via a spontaneous parametric down-conversion process from a nonlinear crystal. Signal photons reflected at a samplethroughadispersivemediumandidlerphotonswithatemporaldelayt ,interferequantummechanicallyataBS,and coincidencedetectioneventsarecountedattwosinglephotondetectors.TheQOCTinterferencedipC(t ),whichissocalled Hong-Ou-Mandel(HOM)dip,25isobtainedbythecoincidencecountratewithvaryingdelayt (Figure1binset). Duetothe frequencycorrelationofentangledphotonpairs, theresolutionofQOCT(thewidthoftheHOM dip)doesnotchangeeven withgroupvelocitydispersion(GVD)inthemedium.26,27 This‘dispersioncancellation′ ofTPIwasfirstdemonstratedwith 19m mresolution21andveryrecentlywith3m mresolution,wheretheGVDeffectbecomessignificant.28 Inthiswork,we report0.54 m mresolutionTPIwithdispersioncancellationforultra-highresolutionQOCT.Forhighly efficientgenerationofultra-broadband(166THz,l =660-1040nm)frequency-entangledphotonpairs,wedevelopeda1st- orderchirpedquasi-phase-matched(QPM)29lithiumtantalate30deviceusingthenanofabricationtechnologyforfineelectrode patterns. Thedevicewaspumpedusinganarrowband(∼100kHz)pumplasertoensurethedispersioncancellationofTPI.28 Wealsoconstructedstableinterferometersetupwithhybridultra-broadbanddetectionsystems(HUBDeS)operatedatroom temperature. Inaddition,dispersioncancellationinTPIwasdemonstratedagainsta1mmthicknessofwaterinsertedinthe opticalpath. AlmostnodegradationinresolutionwasobservedforTPI(from0.54m mto0.56 m m),whichisincontrastto thesignificantdegradationinLCIresolution(from1.5m mto7.8m m). The0.54m mresolutioninair,whichcorrespondsto theresolutionof0.40m minwater,isthebestamongthepreviouslyachievedLCIresolution0.75m m31forOCTandalsoTPI resolutionsforQOCT,includingthat(0.85m m23)wheredispersioncancellationwasnotverified. Results The 1st-orderQPM devicewasdevelopedusinga ‘nano-electrode-poling′technique. Notethattheconversionefficiencyof the 1st-order QPM32 is supposed to be almost one order magnitude (9 times) larger than that of the 3rd-order QPM;22,23 however,itisimpossibletorealizeusingconventionalphotolithographytechniques.Forhigh-powerultravioletpumping,Mg- doped stoichiometriclithium tantalate (Mg:SLT)30,33 was selected because it has a short absorptionedge around270 nm34 and high thermal conductivity.35,36 Furthermore, Mg:SLT is free from visible-light-inducednonlinear infrared absorption, which is observedin Mg:LiNbO .37 The new device fabrication process that was employedis shown in Figure 2a. A 500 3 m m thick Mg:SLT wafer doped with 1.0 mol% Mg was used to suppress photorefractive damage and a 100 nm thick Al film was evaporatedonto the wafer surface. A nanoscaleresist pattern was definedusing electronbeam lithography(EBL) and then transferred to an Al pattern by dry etching on the surface of the Mg:SLT wafer. EBL free from the diffraction limit of light provides over 10 times higher accuracy than photolithography, but special care is required to avoid charge- up in the ferroelectric Mg:SLT substrate. The width of the Al electrode was 400 nm and the duty ratio of the period was approximately10%totheperiodassumingreasonablesidewiseexpansion(scanningelectronmicroscopy(SEM)imagesare showninFigure2b). Anelectricfieldof2kV/mmwasthenappliedinthevacuumchambertoachieveahighelectricfield contrastbysuppressionofthesurfacescreeningchargeforprecisecontrolofthedomaindutyratio. Domainsidewisemotion was successfully controlledover6,000domainsalongthe 20 mm devicelength with a 6.7%chirpedpoling periodvarying from3.12to3.34m m(opticalmicroscopyimagesareshowninFigure2c). AlthougheachEBLscanningareaislimitedtoa widthof200m m(≪20mmdevicelength),theextremelyaccuratetranslationstageenablesa20nmconnectionerror,which resultsinalowphaseslipbetweenscannedareas. Thefluctuationinthedomaindutyratio(typically0.65)waslessthan10% totheperiod(Figure2c),whichsuggestsuniformconversionefficiencyalongtheentirespectralrange. TheexperimentalsetupfortheTPIisshowninFigure3a(DetailsaregiveninMethods).ThechirpedQPMMg:SLTdevice is setina temperaturecontrolledmetalholder(Figure3a upperinset). ThetemperatureT iscontrolledbya thermoelectric coolerwithanaccuracyof0.1K.Wehavefoundthatinultra-highresolutionregimethelinewidthofapumplaserdegradesthe dispersiontolerance.28 Toensurethedispersiontolerance,weusedanarrowbandpumplaser(∼100kHz)withawavelength of 401 nm. The pump beam is focused to a diameter of 80 m m with a lens; this diameter is sufficiently smaller than the cross-section of the device (500 m m (vertical)× 800 m m (horizontal)),and then cut by filters after the device. Collinearly emittedphotonshadultra-broadbandwidthwithadevicetemperatureT =351KasshowninFigure3b. Thespectrumspans from 660 nm with a sharp rise. We think that the offset in the shorter wavelengthregion(≤ 650 nm) is stray fluorescence fromthedevice.Consideringthefrequencycorrelationwiththecenterwavelengthof802nm,thespectrumshouldspanupto 1040nmwithabandwidthof166THz. Thelowintensityinthelongerwavelengthregion(≥950nm)maybeduetothelow couplingefficiencyto the opticalfiber for the spectrometerwe used. Figure3c showsnon-collinearlyemitted photonpairs (signalphotonsandidlerphotons)withanemissionangleof1.5degreesrelativetothepumpbeamwithadevicetemperature T =353K.Withthedetectioneventofasignalphotonasatrigger,thecoincidencecountrateoftheidlerphotonswastypically 5%(5×105Hz)thatofthesinglephotoncountrate(∼1×107Hz). Signalandidlerphotonscoupledtofibercouplers(FCs) aretransferredtotheTPIinterferometerthroughpolarization-maintainingfibers. Thedelayt isdeterminedbythephysical positionoftheFC.ThecoincidencecountrateC(t )isobtainedbytwoHUBDeSs,whichconsistofaSiavalanchephotodiode (APD)withadetectionbandwidthspanningfrom400to1060nmandanInGaAsAPDwithabandwidthspanningfrom950to 2/10 1150nm. FortheLCIexperiments,weusedsignalphotonsasalow-coherencelightsourcewiththeexactlysamebandwidth ofthesourceforTPIandtheHUBDeS1fordetection(Figure3alowerinset). Forthecheckofthedispersioneffect,a1mm thicknessofwaterenclosedbytwothinglasscoverplatesisinsertedintheopticalpathsofbothTPIandLCIinterferometers. NotethataccordingtotheconventionaldefinitionforOCT,16 theinterferogramsbelowareexpressedinunitsofthe‘delay′ ct /2, where c is the speed of light, consideringthe physicaldisplacementof the delay mirrorsin OCT and QOCT systems (Figure1). TheexperimentalresultsareshowninFigure4. First,theLCIsignalwasobtainedasplottedbythereddotsinFigure4a. Thefullwidthathalfmaximum(FWHM)oftheinterferencefringeis1.5m m,whichisslightlylargerthantheFWHMof1.1 m mfortheoreticalcalculation(bluelineinFigure4a)assumingarectangularspectralshapewitha166THzbandwidth. We thinkthatthisdegradationisinducedbytheGVD:WhenthethicknessesoftheglassofBSintheopticalpathsoftheprobe beamandthereferencebeam(Figure3alowerinset)aredifferent,thedegradationoccursbytheGVDoftheglass. Wehave foundthatthedifferenceoftheFWHMscanbeexplainedwhenweassumethatthedifferenceofthethicknessesoftheglass isjust150m m. Figure4bshowstheLCIsignalwhena1mmthicknessofwaterisinsertedintheopticalpath. DuetotheGVDofthe1 mmthicknessofwater,38 theinterferencefringebecomesmuchbroader. TheFWHMofthefringeis7.8m m,whichismore than5timeslargerthanthatwithoutthe1mmthicknessofwatersample. TheseresultsillustratehowGVDeffectbecomes crucialinultra-highresolutionregime. ThemainresultsofthispaperareshowninFigures. 4cand4d. Figure4cshowstheTPIsignalwithoutthewatersample. TheFWHMoftheobservedHOMdipis0.54±0.05m m,whichsurpasses0.75m mofLCI31forOCTusingabroadbandlaser lightwithacenterwavelengthof725nm,whichisthecurrentbestrecordresolutionasfarasweknow.Theresolutionof0.54 m minaircorrespondstotheresolutionof0.40m minwaterorbiologicaltissue. Thetheoreticalcurve(bluelineinFigure4c) assumingtheobservedspectrumofthesignalphotons(Figure3c)fitswellwiththeexperimentaldata. Notethatforthesame bandwidthofthephotonsourcewith arectangularshapedspectrum,theFWHM oftheTPIisa halfoftheLCI,28 whichis alsoanadvantageofQOCTespeciallywhenthebandwidthoftheopticalwindowislimited. Finally,experimentaldemonstrationofthedispersioncancellationofanultra-highresolutionTPIforQOCTisshownin Figure4d. TheHOMdipisalmostunchangedfromFigure4cevenwhena1mmthicknessofwaterisinsertedintheoptical path, which is in striking contrastto the case of LCI (Figures. 4a and 4b). The FWHM of the HOM dip is 0.56±0.04m m and the difference between the FWHMs with and without the 1 mm thickness of water is 0.02 m m, which is smaller than the margins of errors. The theoretical curve (blue line in Figure 4d) calculated taking the higher-orderdispersion of the 1 mmthicknessofwater38 intoaccountfitsalsowellwiththeexperimentaldata. NotethattheasymmetricityoftheHOMdip observedintheexperimentaldataisduetothehigherodd-orderdispersion,28,39whichcanbealsoobservedinthetheoretical curve. Our theoreticalcalculation suggeststhat the resolutionwill be still kept0.60 m m even when a thicknessof water is increasedto3mm.Forthickermedium,‘phantom′canalsobeusedtocompensatethedispersioneffectforQOCT,similarto OCT.IncaseofQOCT,thethicknessofthephantomdoesnothavetobeexactlythesamewiththemediumduetotheinherit dispersion cancellationby frequencyentanglementdemonstratedhere. In case of OCT, on the other hand, the thicknessor theGVDofthephantomhastobeexactlythesamewiththemediumaswediscussedonFigure4a,whichistechnicallyvery difficult. ThedetailofthetheoreticalestimationofFWHMsandthecalculationaregiveninMethods. Conclusion Inconclusion,wehaveachieved0.54m mresolutionTPIwithdispersioncancellationforultra-highresolutionQOCT,which surpassesthecurrentrecordresolution0.75m mofLCIforOCT.Wedevelopeda1st-orderchirpedQPMMg:SLTdeviceusing a‘nano-electrode-poling′techniquewithEBLforultra-broadbandentangledphotonpairgeneration(166THz,l =660-1040 nm). A6.7%chirpedpolingperiodvaryingfrom3.12to3.34m mwasfabricatedinover6,000domainsalonga20mmlong device. WeconstructedstableinterferometerswithHUBDeSsthatconsistofcommerciallyavailablesinglephotondetectors operatedatroomtemperature.Inaddition,dispersioncancellationwasdemonstratedinTPIagainsta1mmthicknessofwater insertedintheopticalpath.AlmostnodegradationinresolutionwasobservedinTPI(from0.54m mto0.56m m),whereasthe LCIresolutionwassignificantlydegraded(from1.5m mto7.8m m). Theseresultswillopenthedoortoultra-highresolution QOCT imaging with depth resolution less than half a micrometer. Such ultra-high resolution QOCT will be beneficial for manydifferentareas,forexample,followingupthechangeoftheretinalthicknesswiththeultra-highresolutionwillgreatly help the early detection of glaucoma.40 For this end, the increase in the flux of entangled photonsis very important. The flux of 0.3 m W has already been realized using bulk QPM devices.41–43 Further increase in flux up to tens of m W can be expected using slab or ridge type waveguide structures.44,45 A promising direction may be an OCT/QOCT hybrid system whereOCTisusedforaquickwide-rangescanandQOCTisusedwhenultra-highresolution/highprecisionobservationis required.Wealsonotethattheultra-highresolutionTPIwithdispersioncancellationdemonstratedhereisusefulforquantum protocols,includingnotonlyQOCTbutalsoquantumclocksynchronization,46time-frequencyentanglementmeasurement47 3/10 andmultimodefrequencyentanglement.48 Methods Detailsofexperimentalsetup Thepumplasersystemconsistsofasingle-frequencycontinuouswaveTi:sapphirelaser(MBR-110,Coherent)excitedbya diode-pumpedsolid state laser (VerdiG-10, Coherent)and a resonantfrequencydoublingunit(MBD-200, Coherent). The output of the Ti:sapphire laser (wavelength: 802 nm; linewidth: approximately 100 kHz) is frequencydoubled by second- harmonicgeneration. Itisusedasthepumpbeamwithapowerof100mW.Thisnarrowlinewidth(∼100kHz)ensuresthe dispersion tolerance of TPI in ultra-high resolution regime.28 We treated the narrowbandpump beam as a monochromatic pumpfornumericalcalculationsbasedonthetheory.28,39 Thefocusedpumpbeamatthechirpedquasi-phase-matcheddevice hasaconfocalparameter(i.e.,twicetheRayleighlength)of18mm. Forthemeasurementsoffrequencyspectra,generatedentangledphotonsfromthedevicearecoupledtothethepolarization- maintainingfiberandsenttoa300-mmspectrometerwitha150-grooves/mmgratingblazedat800nm(SP-2358,Princeton Instruments)andachargecoupleddevice(CCD)camera(Pixis:100BRX,PrincetonInstruments).Thetransmissionefficiency ofthespectrometerandthequantumefficiencyoftheCCDcamerawerecalibratedinFigures3band3c. Each of HUBDeS shown in Figure 3a consists of a Si APD (SPCM-AQRH-14, Perkin Elmer) and an InGaAs APD (id401, idQuantique). The coincidencecount rateC between two HUBDeSs is obtained by the sum of coincidence counts betweentwoAPDsasC=C +C +C +C ,whereforexampleC isthe Si-1/Si-2 Si-1/InGaAs-2 Si-2/InGaAs-1 InGaAs-1/InGaAs-2 Si-1/InGaAs-2 coincidencecountratebetweenSiAPD1inHUBDeS1andInGaAsAPD2inHUBDeS2. Thecoincidencetimewindowof thecoincidencecounter(id800,idQuantique)was2ns. Analysisofinterferencesignals ForLCIexperimentaldata(plottedbyreddotsinFigures4aand4b),aFWHMofinterferencefringeisdeterminedbythefull widthatthemiddlebetweenabaselineandapeakheight.Thebaselineistheaverageofthewholeinterferencefringealong thedelay.Thepeakheightiscalculatedusingthesmallestorlargestdatapoint.IntheoreticalcalculationsforLCI(bluelines inFigures4aand4b),wecalculatedbasedonthetheory28assumingarectangularspectralshapewithacenterwavelengthof 802nmandabandwidthof166THzforthelightsource. Inthecasewitha1mmthicknessofwaterinsertedintheoptical path,weassumedthe2nd-orderdispersionandthe3rd-orderdispersionofthewater.38 ForTPIexperimentaldata(reddotsin Figures4cand4d),aFWHMofinterferencedipisdeterminedbytheFWHMofaGaussianfittingcurve(blackdashedlines inFigures4cand4d).TheGaussianfitusesthewholerangeofthedipalongthedelayandassumestheexperimentalvisibility. The experimentalvisibilities of dips with and without the water dispersion are 0.67±0.05and 0.73±0.04, respectively. In theoreticalcalculationsfor TPI (blue lines in Figures 4c and 4d), we assumed the observedspectrumof the signal photons (Figure3c),experimentalcoincidencecountrateandexperimentalvisibilities. WealsoassumedtheGVDandthe3rd-order dispersionofthewater38forthecasewiththe1mmthicknessofwaterinserted. References 1. Einstein,A.,Podolsky,B.&Rosen,N.Canquantum-mechanicaldescriptionofphysicalrealitybeconsideredcomplete? Phys.Rev.47,777–780(1935). 2. Bell,J.S.OntheEinstein-Podolsky-Rosenparadox.Physics1,195–200(1964). 3. Aspect,A.,Dalibard,J.&Roger,G.ExperimentaltestofBell’sinequalitiesusingtime-varyinganalyzers.Phys.Rev.Lett. 49,1804–1807(1982). 4. Kimble,H.J.Thequantuminternet.Nature453,1023–1030(2008). 5. Ekert,A.K.QuantumcryptographybasedonBell’stheorem.Phys.Rev.Lett.67,661–663(1991). 6. Gisin,N.&Thew,R.Quantumcommunication.Nat.Photonics1,165–171(2007). 7. Bennett,C.H.,Brassard,G.,Cre´peau,C.,Jozsa,R.,Peres,A.&Wootters,W.K.Teleportinganunknownquantumstate viadualclassicalandEinstein-Podolsky-Rosenchannels.Phys.Rev.Lett.70,1895–1899(1993). 8. Bouwmeester,D.,Pan,J.-W.,Mattle,K.,Eibl,M.,Experimentalquantumteleportation.Nature390,575–579(1997). 9. Knill, E., Laflamme, R. & Milburn, G. J. A scheme for efficient quantum computation with linear optics. Nature 409, 46–52(2001). 10. Ladd, T. D., Jelezko, F., Laflamme, R., Nakamura, Y., Monroe, C. & O’Brien, J. L. Quantum computers. Nature 464, 45–53(2010). 4/10 11. Okamoto,R., O’Brien,J.L., Hofmann,H.F. &Takeuchi,S.RealizationofaKnill-Laflamme-Milburncontrolled-NOT photonicquantumcircuitcombiningeffectiveopticalnonlinearities..Proc.Natl.Acad.Sci.108,10067–10071(2010). 12. Giovannetti,V.,Lloyd,S.&Maccone,L.Quantum-enhancedmeasurements:beatingthestandardquantumlimit.Science 306,1330–1336(2004). 13. Nagata,T.,Okamoto,R.,O’Brien,J.L.,Sasaki,K.&Takeuchi,S.Beatingthestandardquantumlimitwithfour-entangled photons.Science316,726–729(2007). 14. Ono,T.,Okamoto,R.&Takeuchi,S.Anentanglement-enhancedmicroscope.Nat.Commun.4,2426(2013). 15. Huang,D., Swanson, E.A., Lin.C. P., Schuman,J. S., Stinson, W. G., Chang, W., Hee, M. R., Flotte, T., Gregory,K., Puliafito,C.A.,&Fujimoto,J.G.Opticalcoherencetomography.Science254,1178–1181(1991). 16. Brezinski,M.OpticalCoherenceTomography.(AcademicPress,2006). 17. Born,M.&Wolf,E.PrinciplesofOptics.(CambridgeUniversityPress,1999). 18. Hitzenberger,C.K.,Baumgartner,A.,Drexler,W.&Fercher,A.F.Dispersioneffectsinpartialcoherenceinterferometry: implicationsforintraocularranging.J.Biomed.Opt.4,144–151(1999). 19. Drexler,W,Morgner,U,Ghanta,R.K,Ka¨rtner,F.X,Schuman,J.S,&Fujimoto,J.G.Ultrahigh-resolutionophthalmic opticalcoherencetomography.Nat.Med.7,502–507(2001). 20. Abouraddy,A.F.,Nasr,M.B.,Saleh,B.E.A.,Sergienko,A.V.,&Teich,M.C.Quantum-opticalcoherencetomography withdispersioncancellation.Phys.Rev.A65,053817(2002). 21. Nasr, M. B., Saleh, B. E. A., Sergienko, A. V., & Teich, M. C. Demonstrationof dispersion-canceledquantum-optical coherencetomography.Phys.Rev.Lett.91,083601(2003). 22. Nasr, M. B, Carrasco, S, Saleh, B. E. A, Sergienko, A. V, Teich, M. C, Torres, J. P, Torner, L, Hum, D. S, & Fejer, M.M.Ultrabroadbandbiphotonsgeneratedviachirpedquasi-phase-matchedopticalparametricdown-conversion.Phys. Rev.Lett.100,183601(2008). 23. Nasr,M.B,Minaeva,O,Goltsman,G.N,Sergienko,A.V,Saleh,B.E,&Teich,M.C.Submicronaxialresolutioninan ultrabroadbandtwo-photoninterferometerusingsuperconductingsingle-photondetectors.Opt.Express16,15104–15108 (2008). 24. Nasr,M.B., Goode,D.P.,Nguyen,N., Rong,G., Yang,L., Reinhard,B.M., Saleh, B.E.A.&Teich,M.C. Quantum opticalcoherencetomographyofabiologicalsample.Opt.Comm.282,1154–1159(2009). 25. Hong,C.K,Ou,Z.Y,&Mandel,L.Measurementofsubpicosecondtimeintervalsbetweentwophotonsbyinterference. Phys.Rev.Lett.59,2044–2046(1987). 26. Steinberg,A.M,Kwiat,P.G,&Chiao,R.Y.Dispersioncancellationinameasurementofthesingle-photonpropagation velocityinglass.Phys.Rev.Lett.68,2421–2424(1992). 27. Steinberg,A.M,Kwiat,P.G,&Chiao,R.Y.Dispersioncancellationandhigh-resolutiontimemeasurementsinafourth- orderopticalinterferometer.Phys.Rev.A45,6659–6665(1992). 28. Okano,M,Okamoto,R, Tanaka,A, Ishida,S, Nishizawa,N, &Takeuchi,S. Dispersioncancellationinhigh-resolution two-photoninterference.Phys.Rev.A88,043845(2013). 29. Harris,S.E.Chirpandcompress:Towardsingle-cyclebiphotons.Phys.Rev.Lett.98,063602(2007). 30. Yu,N.E,Kurimura,S,Nomura,Y,&Kitamura,K.Stablehigh-powergreenlightgenerationwiththermallyconductive periodicallypoledstoichiometriclithiumtantalate.Jpn.J.Appl.Phys.43,L1265(2004). 31. Povazay,B,Bizheva,K,Unterhuber,A,Hermann,B,Sattmann,H,Fercher,A.F,Drexler,W,Apolonski,A,Wadsworth, W. J, Knight, J. C, Russell, P. S. J, Vetterlein, M, & Scherzer, E. Submicrometer axial resolution optical coherence tomography.Opt.Lett.27,1800–1802(2002). 32. Fejer,M,Magel,G,Jundt,D,&Byer,R.Quasi-phase-matchedsecondharmonicgeneration:tuningandtolerances.IEEE J.QuantumElectron.28,2631–2654(1992). 33. Lim, H.H., Kurimura,S., Katagai,T.&Shoji, I.Temperature-dependentSellmeierequationforrefractiveindexof1.0 mol%Mg-dopedstoichiometriclithiumtantalate.Jpn.J.Appl.Phys.52,032601(2013). 34. Nalwa,H.S.(Eds.)Volume4: FerroelectricsandDielectrics,HandbookofAdvanceElectronicandPhotonicMaterials andDevices.(AcademicPress,2001). 5/10 35. Tovstonog,S.V,Kurimura,S,Suzuki,I,Takeno,K,Moriwaki,S,Ohmae,N,Mio,N,&Katagai,T.Thermaleffectsin high-powercwsecondharmonicgenerationinmg-dopedstoichiometriclithiumtantalate.Opt.Express16,11294–11299 (2008). 36. Lim, H. H, Katagai, T, Kurimura,S, Shimizu, T, Noguchi, K, Ohmae, N, Mio, N, & Shoji, I. Thermalperformancein highpowerSHGcharacterizedbyphase-matchedcalorimetry.Opt.Express19,22588–22593(2011). 37. Hirohashi,J.,Tago,T.,Nakamura,O.,Miyamoto,A.&Furukawa,Y.CharacterizationofGRIIRApropertiesinLiNbO 3 andLiTaO withdifferentcompositionsanddoping.Proc.SPIE6875,687516(2008). 3 38. VanEngen, A. G, Diddams, S. A, & Clement, T. S. Dispersionmeasurementsof water with white-lightinterferometry. Appl.Opt.37,5679–5686(1998). 39. Okamoto,R,Takeuchi,S,&Sasaki,K.Tailoringtwo-photoninterferencewithphasedispersion.Phys.Rev.A74,011801 (2006). 40. Asrani, S., Challa, P., Herndon,L., Lee, P., Stinnett, S. & Allingham, R. R. Correlation amongretinalthickness, optic disc,andvisualfieldinglaucomapatientsandsuspects:Apilotstudy.J.Glaucoma12,119–128(2003). 41. Dayan,B.,Pe’er,A.,Friesem,A.A.&Silberberg,Y.Nonlinearinteractionswithanultrahighfluxofbroadbandentangled photons.Phys.Rev.Lett.94,043602(2005). 42. Sensarn, S, Ali-Khan, I, Yin, G. Y, & Harris, S. E. Resonant sum frequency generation with time-energy entangled photons.Phys.Rev.Lett.102,053602(2009). 43. Tanaka, A, Okamoto, R, Lim, H. H, Subashchandran, S, Okano, M, Zhang, L, Kang, L, Chen, J, Wu, P, Hirohata, T, Kurimura, S, & Takeuchi, S. Noncollinear parametric fluorescence by chirped quasi-phase matching for monocycle temporalentanglement.Opt.Express20,25228–25238(2012). 44. Kurimura, S., Kato, Y., Maruyama, M., Usui, Y. & Nakajima, H. Quasi-phase-matched adhered ridge waveguide in LiNbO3.Appl.Phys.Lett.89,191123(2006). 45. Kou, R., Kurimura, S., Kikuchi, K., Terasaki, A., Nakajima, H., Kondou, K. & Ichikawa, J. High-gain, wide-dynamic- range parametric interaction in Mg-doped LiNbO3 quasi-phase-matched adhered ridge waveguide. Opt. Express 19, 11867–11872(2011). 46. Giovannetti,V,Lloyd,S,Maccone,L,&Wong,F.N.C.Clocksynchronizationwithdispersioncancellation.Phys.Rev. Lett.87,117902(2001). 47. Hofmann,H.F&Ren,C.Directobservationoftemporalcoherencebyweakprojectivemeasurementsofphotonarrival time.Phys.Rev.A87,062109(2013). 48. Mikhailova,Y.M,Volkov,P.A,&Fedorov,M.V.Biphotonwavepacketsinparametricdown-conversion: Spectraland temporalstructureanddegreeofentanglement.Phys.Rev.A78,062327(2008). Acknowledgements The authors thank Shoichi Sakakihara (ISIR, Osaka Univ.) for water sample preparation, Toru Hirohata and Masamichi Yamanishi(HamamatsuPhotonics)forlendingultra-broadbandphotomultipliertubesforus,YuEtoandAkiraTanaka(Osaka Univ.)forhelpfuldiscussions.ThisworkwassupportedinpartbytheJapanScienceandTechnologyAgencyCRESTproject (JST-CREST), the Quantum Cybernetics project of the Japan Society for the Promotion of Science (JSPS), the Funding Program for World-Leading Innovative R&D on Science and Technology Program of JSPS (FIRST), Grant in-Aids from JSPS;theProjectforDevelopingInnovationSystemsoftheMinistryofEducation,Culture,Sports,Science,andTechnology (MEXT),theNetworkJointResearchCenterforAdvancedMaterialsandDevices,theResearchFoundationforOpto-Science andTechnology,andtheGlobalCOEprogramme. Author contributions statement Experiments,measurementsanddata analysiswereperformedbyM.O.withassistance ofR.O. andS.T.Devicefabrication was carriedoutbyH.H.L.andS.K. Allauthorsdiscussedtheresultsandcommentedonthemanuscriptatallstages. M.O., S.K.andS.T.wrotethemanuscript.TheprojectwassupervisedbyN.N.,S.K.andS.T. Additional information Competingfinancialinterests Theauthorsdeclarenocompetingfinancialinterests. 6/10 2#53’0 1(-30!-(40 50$(.5 10’#8 2 !"#$%#&$ ’()*+,-".!/0 I( ) 10+0/+"! I( ) ! 2#53’0 1(-30!-(40 50$(.5 2()&#’ 2(&)’0,3*"+"& 3*"+"&- $0+0/+"! 6.53 %0#5 2 C( ) 7"&’(&0#! /!8-+#’ 9$’0! C( ) 3*"+"&- 10’#8 Figure1. OCTandQOCTschemes. (a),SchematicdiagramofOCT.I(t )istheinterferedlightintensitymeasuredata detectorwithvaryingdelayt (inset). BSisabeamsplitter. (b),SchematicdiagramofQOCT.C(t )isthecoincidencecount ratecountedattwosinglephotondetectorswithvaryingdelayt (inset). 7/10 / 901(2,3) *+,-./01(2,3) *+,-./08,5 4,565. 7+ !"#$% $%"&’()*+,-."(/#"’0*1,2+/314 5%"6+4"(*)10-2 %"70218",’*/2(" 9%":(+0,;0)/’’43",’(;" /33’0)/*0,- <*+=)*=+( . ) &’()) !"#$% >" # $" # !" # !" # Figure2. FabricationofchirpedQPMlithiumtantalatedeviceusingnano-electrode-polingtechnique.(a),Device fabricationprocess.Blackarrowsindicatethedirectionofferroelectricspontaneouspolarizationintheperiodicallypoled device. Mg:SLTisMg-dopedstoichiometriclithiumtantalate. (b),Scanningelectronmicroscopyimages(upperandlower) ofthe400nmwideAlelectrodesfabricatedforthepolingperiodof3.2m m. (c),OpticalMicroscopyimagesofperiodically poledstructures.TheQPMperiodvariesfrom3.12m m(left)to3.34m m(right)alongthe20mmdevicelength. 8/10 # $ 7*A2’? !"#,$%&" 9:;<%2,= $E,!).0+F BI ,,N?3O#%%(11.>"%)0 &1 =HHH >,D ?%""#%%10&&0/!,31%(,/4@(%)101(//%@ 56 )+.0 I $%!&""# ’%)+ 2.*)&/,#3(0()+ 56;2 75 401&/.)0% =HHB 7*A2’?’%)+ 75 56 8&0%156 75’%)+ 2#% MHH LHH KHH JHH =HHH 8&G%/%)*03,D)"F ’()*#-2&3++&,1-#.-/04%!10+5,-.6/0%1 5566 <%/;&2> 5765 56 % ).0+F I ,2.*)&/,#3(0()+ 75 ;2 75 $E,! B ,C@/%1,#3(0()+ C@/%1,#3(0()+ >,D&1=HHH !" 56 ’%)+ +.0 M 7.11(1 8&0%1 7.11(1 %) I 9:;<%2,B &/.)0 B #23.(*0)(&)/+, <%/&> %401 =HH ;2 56 75 2# MHH LHH KHH JHH =HHH 56 ?(,9:;<%2,= 75 8&G%/%)*03,D)"F Figure3. Experimentalsetup. (a),TPIandLCIinterferometerswithhybridultra-broadbanddetectionsystems(HUBDeS). TheupperinsetshowsthechirpedQPMdevicesetinthetemperaturecontrolledmetalholder.HUBDeSconsistsofaSi avalanchephotodiode(APD)andanInGaAsAPD.ThelowerinsetshowstheLCIinterferometer.A1mmthicknessofwater canbeinsertedintheopticalpathinTPIandLCIinterferometers.BS,beamsplitter;FC,fibercoupler;PMF, polarization-maintainingfiber;Mg:SLT,Mg-dopedstoichiometriclithiumtantalate. (b),Frequencyspectrumofcollinearly emittedphotonsfromthedevice.Experimentaldata(reddots)andthetheoreticalcurve(blackline)areplotted.(c), Frequencyspectraofphotonpairsgeneratedfromthedeviceinnon-collinearemission.Theobserveddataareplottedfor signalphotons(reddots)andidlerphotons(bluedots). Thetransmissionefficiencyanddetectionefficiencyofthe spectrometerwerecalibrated(b,c. 9/10 !" #$" - 2 !" := ,-’./ /0+/:-04#!$ ’’(12)*++3,,-4.+/0 9/0:’;<#"(cid:18612)(cid:18612)(cid:18615)(cid:18610)(cid:18610)(cid:18610)(cid:18610)(cid:18610) (cid:18594)(cid:18594)(cid:18631)(cid:18646)(cid:18682)(cid:18666)(cid:18674)(cid:18663)(cid:18663)(cid:18673)(cid:18676)(cid:18676)(cid:18667)(cid:18683)(cid:18671)(cid:18663)(cid:18672)(cid:18678) %&’()*’+ C3,.@?-D+8’-#"!!"$ #!$’ . /7-8+/7+’73(cid:18611)(cid:18611)(cid:18615)(cid:18610)(cid:18610)(cid:18610)(cid:18610)(cid:18610) "!$&’ . "!" 63- (cid:18607)(cid:18614) (cid:18607)(cid:18612) (cid:18610) (cid:18612) (cid:18614) %& % " & >+?@4’; .= >+?@4’; .= 4 5 ,-’./ /:-04 #!!"$ ’’(12)*++3,,-4.+/0 :’;<#":= (cid:18616)(cid:18615)(cid:18610)(cid:18610)(cid:18610)(cid:18610)(cid:18610)(cid:18610) (cid:18594)(cid:18594)(cid:18631)(cid:18646)(cid:18682)(cid:18666)(cid:18674)(cid:18663)(cid:18663)(cid:18673)(cid:18676)(cid:18676)(cid:18667)(cid:18683)(cid:18671)(cid:18663)(cid:18672)(cid:18678) 23+ /0+ 9/0 (cid:18614)(cid:18610)(cid:18610)(cid:18610) (& 8’-#!" 73 1+’ @?-D+ /7+’ (cid:18613)(cid:18610)(cid:18610)(cid:18610) (+0+1 C3,.""!!$" A!B’ . 3-/7-8+ (cid:18612)(cid:18611)(cid:18610)(cid:18610)(cid:18610)(cid:18610)(cid:18610)(cid:18610) "!$5’ . %&’ %& % " & 6 (cid:18607)(cid:18614) (cid:18607)(cid:18612) (cid:18610) (cid:18612) (cid:18614) >+?@4’; .= >+?@4’; .= Figure4. ObtainedLCIandTPIsignals. (a,b),LCIfringesobtainedintheLCIinterferometerusingsignalphotonsasthe source. Thefringeswithout(a)andwith(b)a1mmthicknessofwaterinsertedintheopticalpath. Theexperimentaldata (reddots)andthetheoreticalcurves(blueline)areplottedinunitsofthedelay.Theintegrationtimewas1secondperpoint. (c,d),TPIdipsobtainedintheTPIinterferometer.Thedipswithout(c)andwith(d)the1mmthicknessofwater. The experimentaldata(reddots),thetheoreticalcurves(bluelines)andtheGaussianfittingcurves(blackdashedlines)are plottedinunitsofthedelay.Theintegrationtimewas10secondsperpoint.Theredlinesconnectingthedatapointsarea guidetotheeye(a–d). 10/10

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.