(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:4)(cid:7)(cid:8)(cid:9)(cid:10)(cid:11)(cid:4)(cid:8)(cid:5)(cid:12)(cid:13)(cid:6)(cid:13)(cid:10)(cid:8)(cid:4)(cid:14)(cid:10)(cid:15)(cid:7)(cid:13)(cid:6)(cid:16)(cid:4)(cid:10)(cid:3)(cid:17)(cid:10)(cid:18)(cid:19)(cid:8)(cid:13)(cid:7)(cid:20)(cid:21)(cid:3)(cid:22)(cid:23)(cid:7)(cid:14)(cid:10)(cid:21)(cid:3)(cid:3)(cid:24)(cid:13) (cid:25)(cid:26) (cid:2) 0 Nonlinear Analysis and Design of Phase-Locked Loops G.A.Leonov,N.V.KuznetsovandS.M.Seledzhi Saint-PetersburgStateUniversity Russia 1. Introduction Phase-lockedloops(PLLs)arewidelyusedintelecommunicationandcomputerarchitectures. They were invented in the 1930s-1940s (De Bellescize, 1932; Wendt & Fredentall, 1943) and thenintensivestudiesofthetheoryandpracticeofPLLswerecarriedout(Viterbi,1966;Lind- sey, 1972; Gardner, 1979; Lindsey and Chie, 1981; Leonov et al., 1992; Encinas, 1993; Nash, 1994;Brennan,1996;Stensby,1997). One of the first applications of phase-locked loop (PLL) is related to the problems of data transfer by radio signal. In radio engineering PLL is applied to a carrier synchronization, carrierrecovery,demodulation,andfrequencysynthesis(see,e.g.,(Stephens,2002;Ugrumov, 2000)). After the appearance of an architecture with chips, operating on different frequencies, the phase-lockedloopsareusedtogenerateinternalfrequenciesofchipsandsynchronizationof operationofdifferentdevicesanddatabuses(Youngetal., 1992; Egan, 2000; Kroupa, 2003; Razavi, 2003; Shu&Sanchez-Sinencio, 2005; Manassewitsch, 2005). Forexample, themod- erncomputermotherboardscontaindifferentdevicesanddatabusesoperatingondifferent frequencies, which are often in the need for synchronization (Wainner & Richmond, 2003; Buchanan&Wilson,2001). Anotheractual applicationof PLLis theproblem ofsaving energy. One ofthe solutionsof thisproblemforprocessorsisadecreasingofkernelfrequencywithprocessorload. Thein- dependentphase-lockedloopspermitonetodistributemoreuniformlyakernelloadtosave theenergyandtodiminishaheatgenerationonaccountofthateachkerneloperatesonits ownfrequency.Nowthephase-lockedloopsarewidelyusedforthesolutionoftheproblems of clock skew and synchronization for the sets of chips of computer architectures and chip microarchitecture. For example, a clock skew is very important characteristic of processors (see,e.g.,(Xanthopoulos,2001;Bindal,2003)). Variousmethodsforanalysisofphase-lockedloopsarewelldevelopedbyengineersandare consideredinmanypublications(see,e.g.,(Banerjee,2006;Best,2003;Kroupa,2003;Bianchi, 2005;Egan,2007)),buttheproblemsofconstructionofadequatenonlinearmodelsandnon- linearanalysisofsuchmodelsarestillfarfrombeingresolvedandrequireusingspecialmeth- odsofqualitativetheoryofdifferential,difference,integral,andintegro-differentialequations (Gelig et al., 1978; Leonov et al., 1996a; Leonov et al., 1996b; Leonov & Smirnova, 2000; Abramovitch, 2002; Suarez & Quere, 2003; Margaris, 2004; Kudrewicz & Wasowicz, 2007; Kuznetsov,2008;Leonov,2006).Wecouldnotlisthereallreferencesintheareaofdesignand www.intechopen.com (cid:26)$ (cid:11)(cid:27)(cid:28)(cid:29)(cid:30)(cid:11)(cid:28)(cid:31)(cid:29)(cid:2)(cid:10) (cid:10)!(cid:29)(cid:2)(cid:28)"(cid:29)(cid:21)(cid:10)(cid:20)(cid:10)(cid:28)(cid:19)(cid:7)(cid:3)(cid:9)(cid:12)(cid:10)(cid:8)(cid:4)(cid:14)(cid:10)(cid:18)(cid:9)(cid:8)(cid:22)#(cid:6)(cid:22)(cid:7) analysisofPLL,soreadersshouldseementionedpapersandbooksandthereferencescited therein. 2. MathematicalmodelofPLL InthisworkthreelevelsofPLLdescriptionaresuggested: 1)thelevelofelectronicrealizations, 2)thelevelofphaseandfrequencyrelationsbetweeninputsandoutputsinblockdiagrams, 3)thelevelofdifference,differentialandintegro-differentialequations. Thesecondlevel, involvingtheasymptoticalanalysisofhigh-frequencyoscillations, isnec- essary for the well-formed derivation of equations and for the passage to the third level of description. ConsideraPLLonthefirstlevel(Fig.1) Fig.1.BlockdiagramofPLLonthelevelofelectronicrealizations. HereOSCmaster isamasteroscillator,OSCslave isaslave(tunable)oscillator,whichgenerate high-frequency"almostharmonicoscillations" f (t)= A sin(ω (t)t+ψ) j=1,2, (1) j j j j whereA andψ aresomenumbers,ω (t)aredifferentiablefunctions.Block isamultiplier j j j ofoscillationsof f (t)and f (t)andthesignal f (t)f (t)isitsoutput. Therelationsbetween 1 2 1 2 (cid:2) theinputξ(t)andtheoutputσ(t)oflinearfilterhavetheform t σ(t)=α (t)+ γ(t τ)ξ(τ)dτ. (2) 0 − (cid:3) 0 Hereγ(t)isanimpulsetransientfunctionoffilter,α (t)isanexponentiallydampedfunction, 0 depending on the initial data of filter at the moment t = 0. The electronic realizations of generators, multipliers, and filters can be found in (Wolaver, 1991; Best, 2003; Chen, 2003; Giannini & Leuzzi, 2004; Goldman, 2007; Razavi, 2001; Aleksenko, 2004). In the simplest caseitisassumedthatthefilterremovesfromtheinputtheuppersidebandwithfrequency ω (t)+ω (t)butleavesthelowersidebandω (t) ω (t)withoutchange. 1 2 1 − 2 Nowwereformulatethehigh-frequencypropertyofoscillations f (t)andessentialassump- j tion that γ(t) and ω (t) are functions of "finite growth". For this purpose we consider the j great fixed time interval [0,T], which can be partitioned into small intervals of the form [τ,τ+δ],(τ [0,T])suchthatthefollowingrelations ∈ γ(t) γ(τ) Cδ, ω (t) ω (τ) Cδ, | − |≤ | j − j |≤ (3) t [τ,τ+δ], τ [0,T], ∀ ∈ ∀ ∈ www.intechopen.com (cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:4)(cid:7)(cid:8)(cid:9)(cid:10)(cid:11)(cid:4)(cid:8)(cid:5)(cid:12)(cid:13)(cid:6)(cid:13)(cid:10)(cid:8)(cid:4)(cid:14)(cid:10)(cid:15)(cid:7)(cid:13)(cid:6)(cid:16)(cid:4)(cid:10)(cid:3)(cid:17)(cid:10)(cid:18)(cid:19)(cid:8)(cid:13)(cid:7)(cid:20)(cid:21)(cid:3)(cid:22)(cid:23)(cid:7)(cid:14)(cid:10)(cid:21)(cid:3)(cid:3)(cid:24)(cid:13) (cid:26)% ω (τ) ω (τ) C , τ [0,T], (4) | 1 − 2 |≤ 1 ∀ ∈ ω (t) R, t [0,T] (5) j ≥ ∀ ∈ aresatisfied.Hereweassumethatthequantityδissufficientlysmallwithrespecttothefixed numbersT,C,C ,thenumberRissufficientlygreatwithrespecttothenumberδ. Thelatter 1 meansthatonthesmallintervals[τ,τ+δ]thefunctionsγ(t)andω (t)are"almostconstants" j andthefunctions f (t)rapidlyoscillateasharmonicfunctions. j ConsidertwoblockdiagramsshowninFig.2andFig.3. Fig.2.Multiplierandfilter. Fig.3.Phasedetectorandfilter. Hereθ (t) = ω (t)t+ψ arephasesoftheoscillations f (t),PDisanonlinearblockwiththe j j j j characteristic ϕ(θ)(beingcalledaphasedetectorordiscriminator). Thephasesθ (t)arethe j inputs of PD block and the output is the function ϕ(θ (t) θ (t)). The shape of the phase 1 − 2 detectorcharacteristicisbasedontheshapeofinputsignals. Thesignals f (t)f (t)andϕ(θ (t) θ (t))areinputsofthesamefilterswiththesameimpulse 1 2 1 − 2 transientfunctionγ(t).Thefilteroutputsarethefunctionsg(t)andG(t),respectively. AclassicalPLLsynthesisisbasedonthefollowingresult: Theorem1. (Viterbi,1966)Ifconditions(3)–(5)aresatisfiedandwehave 1 ϕ(θ)= A A cosθ, 2 1 2 thenforthesameinitialdataoffilter,thefollowingrelation G(t) g(t) C δ, t [0,T] | − |≤ 2 ∀ ∈ issatisfied.HereC isacertainnumberbeingindependentofδ. 2 www.intechopen.com (cid:26)& (cid:11)(cid:27)(cid:28)(cid:29)(cid:30)(cid:11)(cid:28)(cid:31)(cid:29)(cid:2)(cid:10) (cid:10)!(cid:29)(cid:2)(cid:28)"(cid:29)(cid:21)(cid:10)(cid:20)(cid:10)(cid:28)(cid:19)(cid:7)(cid:3)(cid:9)(cid:12)(cid:10)(cid:8)(cid:4)(cid:14)(cid:10)(cid:18)(cid:9)(cid:8)(cid:22)#(cid:6)(cid:22)(cid:7) ProofofTheorem1(Leonov,2006) Fort [0,T]weobviouslyhave ∈ g(t) G(t)= − t = γ(t s) A A sin ω (s)s+ψ sin ω (s)s+ψ − 1 2 1 1 2 2 − (cid:3) (cid:4) (cid:5) (cid:8) 0 (cid:6) (cid:7) (cid:6) (cid:7) ϕ ω (s)s ω (s)s+ψ ψ ds= − 1 − 2 1− 2 (cid:5) (cid:8)(cid:9) t A A = 1 2 γ(t s) cos ω (s)+ω (s) s+ψ +ψ ds. − 2 − 1 2 1 2 (cid:3) (cid:4) (cid:5) (cid:8)(cid:9) 0 (cid:6) (cid:7) Considertheintervals [kδ,(k+1)δ], where k = 0,...,m andthenumber m issuchthat t ∈ [mδ,(m+1)δ].Fromconditions(3)–(5)itfollowsthatforanys [kδ,(k+1)δ]therelations ∈ γ(t s)=γ(t kδ)+O(δ) (6) − − ω (s)+ω (s)=ω (kδ)+ω (kδ)+O(δ) (7) 1 2 1 2 arevalidoneachinterval[kδ,(k+1)δ].Thenby(7)foranys [kδ,(k+1)δ]theestimate ∈ cos ω (s)+ω (s) s+ψ +ψ =cos ω (kδ)+ω (kδ) s+ψ +ψ +O(δ) (8) 1 2 1 2 1 2 1 2 (cid:5) (cid:8) (cid:5) (cid:8) (cid:6) (cid:7) (cid:6) (cid:7) isvalid.Relations(6)and(8)implythat t γ(t s) cos ω (s)+ω (s) s+ψ +ψ ds= − 1 2 1 2 (cid:3) (cid:4) (cid:5) (cid:8)(cid:9) 0 (cid:6) (cid:7) (9) (k+1)δ m = ∑ γ(t kδ) cos ω (kδ)+ω (kδ) s+ψ +ψ ds+O(δ). − 1 2 1 2 k=0 (cid:3) (cid:4) (cid:5) (cid:8)(cid:9) kδ (cid:6) (cid:7) From(5)wehavetheestimate (k+1)δ cos ω (kδ)+ω (kδ) s+ψ +ψ ds=O(δ2) 1 2 1 2 (cid:3) (cid:4) (cid:5) (cid:8)(cid:9) kδ (cid:6) (cid:7) andthefactthatRissufficientlygreatascomparedwithδ.Then t γ(t s) cos ω (s)+ω (s) s+ψ +ψ ds=O(δ). − 1 2 1 2 (cid:3) (cid:4) (cid:5) (cid:8)(cid:9) 0 (cid:6) (cid:7) Theorem1iscompletelyproved.(cid:2) www.intechopen.com (cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:4)(cid:7)(cid:8)(cid:9)(cid:10)(cid:11)(cid:4)(cid:8)(cid:5)(cid:12)(cid:13)(cid:6)(cid:13)(cid:10)(cid:8)(cid:4)(cid:14)(cid:10)(cid:15)(cid:7)(cid:13)(cid:6)(cid:16)(cid:4)(cid:10)(cid:3)(cid:17)(cid:10)(cid:18)(cid:19)(cid:8)(cid:13)(cid:7)(cid:20)(cid:21)(cid:3)(cid:22)(cid:23)(cid:7)(cid:14)(cid:10)(cid:21)(cid:3)(cid:3)(cid:24)(cid:13) (cid:26)' Fig.4.BlockdiagramofPLLonthelevelofphaserelations Thus,theoutputsg(t)andG(t)oftwoblockdiagramsinFig.2andFig.3,respectively,differ littlefromeachotherandwecanpass(fromastandpointoftheasymptoticwithrespecttoδ) tothefollowingdescriptionlevel,namelytothesecondlevelofphaserelations. InthiscaseablockdiagraminFig.1becomesthefollowingblockdiagram(Fig.4). Considernowthehigh-frequencyimpulseoscillators,connectedasindiagraminFig.1.Here f (t)= Asign(sin(ω (t)t+ψ)). (10) j j j j Weassume,asbefore,thatconditions(3)–(5)aresatisfied. Consider2π-periodicfunctionϕ(θ)oftheform A A (1+2θ/π) for θ [ π,0], ϕ(θ)= 1 2 ∈ − (11) (cid:10)A1A2(1−2θ/π) for θ∈[0,π]. andblockdiagramsinFig.2andFig.3. Theorem2. (Leonov,2006) Ifconditions(3)–(5)aresatisfiedandthecharacteristicofphasedetector ϕ(θ)hastheform(11),then forthesameinitialdataoffilterthefollowingrelation G(t) g(t) C δ, t [0,T] | − |≤ 3 ∀ ∈ issatisfied.HereC isacertainnumberbeingindependentofδ. 3 ProofofTheorem2 Inthiscasewehave g(t) G(t)= − t = γ(t s) A A sign sin ω (s)s+ψ sin ω (s)s+ψ − 1 2 1 1 2 2 − (cid:3) (cid:4) (cid:5) (cid:8) 0 (cid:6) (cid:7) (cid:6) (cid:7) ϕ ω (s)s ω (s)s+ψ ψ ds. − 1 − 2 1− 2 (cid:9) (cid:6) (cid:7) www.intechopen.com (cid:26)( (cid:11)(cid:27)(cid:28)(cid:29)(cid:30)(cid:11)(cid:28)(cid:31)(cid:29)(cid:2)(cid:10) (cid:10)!(cid:29)(cid:2)(cid:28)"(cid:29)(cid:21)(cid:10)(cid:20)(cid:10)(cid:28)(cid:19)(cid:7)(cid:3)(cid:9)(cid:12)(cid:10)(cid:8)(cid:4)(cid:14)(cid:10)(cid:18)(cid:9)(cid:8)(cid:22)#(cid:6)(cid:22)(cid:7) Partitioningtheinterval[0,t]intotheintervals[kδ,(k+1)δ]andmakinguseofassumptions (5)and(10),wereplacetheaboveintegralwiththefollowingsum (k+1)δ m ∑ γ(t kδ) A A sign cos ω (kδ)ω (kδ) kδ+ψ ψ − 1 2 1 2 1− 2 − k=0 (cid:4) (cid:3) (cid:4) (cid:5) (cid:8) kδ (cid:6) (cid:7) cos ω (kδ)+ω (kδ) s+ψ +ψ ds − 1 2 1 2 − (cid:5) (cid:8)(cid:9) (cid:6) (cid:7) ϕ ω (kδ) ω (kδ) kδ+ψ ψ δ . − 1 − 2 1− 2 (cid:5) (cid:8) (cid:9) (cid:6) (cid:7) Thenumbermischoseninsuchawaythatt [mδ,(m+1)δ].Since(ω (kδ)+ω (kδ))δ 1, ∈ 1 2 ≫ therelation (k+1)δ A A sign cos ω (kδ) ω (kδ) kδ+ψ ψ 1 2 1 − 2 1− 2 − (cid:3) (cid:4) (cid:5) (cid:8) kδ (cid:6) (cid:7) (12) cos ω (kδ)+ω (kδ) s+ψ +ψ ds − 1 2 1 2 ≈ (cid:5) (cid:8)(cid:9) (cid:6) (cid:7) ϕ ω (kδ) ω (kδ) kδ+ψ ψ δ, ≈ 1 − 2 1− 2 (cid:5) (cid:8) (cid:6) (cid:7) issatisfied.Hereweusetherelation (k+1)δ A A sign cosα cos ωs+ψ ds ϕ(α)δ 1 2 − 0 ≈ (cid:3) kδ (cid:11) (cid:6) (cid:7)(cid:12) forωδ 1,α [ π,π],ψ R1. Thus,T≫heorem∈2−iscomple0te∈lyproved.(cid:2) Theorem2isabaseforthesynthesisofPLLwithimpulseoscillators. Fortheimpulseclock oscillatorsitpermitsonetoconsidertwoblockdiagramssimultaneously:onthelevelofelec- tronicrealization(Fig.1)andonthelevelofphaserelations(Fig.4),wheregeneralprinciples ofthetheoryofphasesynchronizationcanbeused(Leonov&Seledzhi,2005b;Kuznetsovet al.,2006;Kuznetsovetal.,2007;Kuznetsovetal.,2008;Leonov,2008). 3. DifferentialequationsofPLL LetusmakearemarknecessaryforderivationofdifferentialequationsofPLL. Consideraquantity θ˙ (t)=ω (t)+ω˙ (t)t. j j j Forthewell-synthesizedPLLsuchthatitpossessesthepropertyofglobalstability,wehave exponentialdampingofthequantityω˙ (t): j |ω˙j(t)|≤Ce−αt. Here C and α are certain positive numbers being independent of t. Therefore, the quantity ω˙ (t)t is, asarule, sufficientlysmallwithrespecttothenumber R (seeconditions(3)–(5)). j From the above we can conclude that the following approximate relation θ˙ (t) ω (t) is j ≈ j www.intechopen.com (cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:4)(cid:7)(cid:8)(cid:9)(cid:10)(cid:11)(cid:4)(cid:8)(cid:5)(cid:12)(cid:13)(cid:6)(cid:13)(cid:10)(cid:8)(cid:4)(cid:14)(cid:10)(cid:15)(cid:7)(cid:13)(cid:6)(cid:16)(cid:4)(cid:10)(cid:3)(cid:17)(cid:10)(cid:18)(cid:19)(cid:8)(cid:13)(cid:7)(cid:20)(cid:21)(cid:3)(cid:22)(cid:23)(cid:7)(cid:14)(cid:10)(cid:21)(cid:3)(cid:3)(cid:24)(cid:13) (cid:26)) valid. InderivingthedifferentialequationsofthisPLL,wemakeuseofablockdiagramin Fig.4andexactequality θ˙ (t)=ω (t). (13) j j Notethat,byassumption,thecontrollawoftunableoscillatorsislinear: ω (t)=ω (0)+LG(t). (14) 2 2 Hereω (0)istheinitialfrequencyoftunableoscillator, Lisacertainnumber,andG(t)isa 2 controlsignal,whichisafilteroutput(Fig.4).Thus,theequationofPLLisasfollows t θ˙ (t)=ω (0)+L α (t)+ γ(t τ)ϕ θ (τ) θ (τ) dτ . 2 2 0 − 1 − 2 (cid:5) (cid:3) (cid:8) 0 (cid:6) (cid:7) Assumingthatthemasteroscillatorissuchthatω (t) ω (0),weobtainthefollowingrela- 1 ≡ 1 tionsforPLL t θ1(t)−θ2(t) ′+L α0(t)+ γ(t−τ)ϕ θ1(τ)−θ2(τ) dτ =ω1(0)−ω2(0). (15) (cid:5) (cid:3) (cid:8) (cid:6) (cid:7) 0 (cid:6) (cid:7) ThisisanequationofstandardPLL.Note,thatifthefilter(2)isintegratedwiththetransfer functionW(p)=(p+α)−1 σ˙ +ασ= ϕ(θ) thenforφ(θ)=cos(θ)insteadofequation(15)from(13)and(14)wehave θ¨˜+αθ˜˙+Lsinθ˜=α ω (0) ω (0) (16) 1 − 2 π (cid:6) (cid:7) withθ˜=θ θ + . So,ifherephasesoftheinputandoutputsignalsmutuallyshiftedby 1− 2 2 π/2thenthecontrolsignalG(t)equalszero. Arguingasabove,wecanconcludethatinPLLitcanbeusedthefilterswithtransferfunctions ofmoregeneralform K(p)=a+W(p), whereaisacertainnumber,W(p)isaproperfractionalrationalfunction.Inthiscaseinplace ofequation(15)wehave t θ1(t)−θ2(t) ′+L aϕ θ1(t)−θ2(t) +α0(t)+ γ(t−τ)ϕ θ1(τ)−θ2(τ) dτ = (17) (cid:4) (cid:3) (cid:9) (cid:6) (cid:7) (cid:6) (cid:7) 0 (cid:6) (cid:7) =ω (0) ω (0). 1 − 2 Inthecasewhenthetransferfunctionofthefiltera+W(p)isnon-degenerate,i.e. itsnumer- atoranddenominatordonothavecommonroots,equation(17)isequivalenttothefollowing systemofdifferentialequations z˙ = Az+bψ(σ) (18) σ˙ =c∗z+ρψ(σ). www.intechopen.com (cid:26)* (cid:11)(cid:27)(cid:28)(cid:29)(cid:30)(cid:11)(cid:28)(cid:31)(cid:29)(cid:2)(cid:10) (cid:10)!(cid:29)(cid:2)(cid:28)"(cid:29)(cid:21)(cid:10)(cid:20)(cid:10)(cid:28)(cid:19)(cid:7)(cid:3)(cid:9)(cid:12)(cid:10)(cid:8)(cid:4)(cid:14)(cid:10)(cid:18)(cid:9)(cid:8)(cid:22)#(cid:6)(cid:22)(cid:7) Hereσ=θ θ ,Aisaconstant(n n)-matrix,bandcareconstant(n)-vectors,ρisanumber, 1− 2 × andψ(σ)is2π-periodicfunction,satisfyingtherelations: ρ= aL, − W(p)=L−1c∗(A pI)−1b, − ω (0) ω (0) ψ(σ)= ϕ(σ) 1 − 2 . − L(a+W(0)) Thediscretephase-lockedloopsobeysimilarequations z(t+1)= Az(t)+bψ(σ(t)) (19) σ(t+1)=σ(t)+c∗z(t)+ρψ(σ(t)), wheret Z, Z isasetofintegers. Equations(18)and(19)describetheso-calledstandard ∈ PLLs (Shakhgil’dyan & Lyakhovkin, 1972; Leonov, 2001). Note that there exist many other modificationsofPLLsandsomeofthemareconsideredbelow. 4. MathematicalanalysismethodsofPLL Thetheoryofphasesynchronizationwasdevelopedinthesecondhalfofthelastcenturyon thebasisofthreeappliedtheories:theoryofsynchronousandinductionelectricalmotors,the- oryofauto-synchronizationoftheunbalancedrotors,theoryofphase-lockedloops. Itsmain principleisinconsiderationoftheproblemofphasesynchronizationatthreelevels:(i)atthe levelofmechanical,electromechanical,orelectronicmodels,(ii)atthelevelofphaserelations, and(iii)atthelevelofdifferential,difference,integral,andintegro-differentialequations. In thiscasethedifferenceofoscillationphasesistransformedintothecontrolaction, realizing synchronization. Thesegeneralprinciplesgaveimpetustocreationofuniversalmethodsfor studying the phase synchronization systems. Modification of the direct Lyapunov method with the construction of periodic Lyapunov-like functions, the method of positively invari- ant cone grids, and the method of nonlocal reduction turned out to be most effective. The last method, which combines theelements of thedirect Lyapunov method and thebifurca- tion theory, allows one to extend the classical results of F. Tricomi and his progenies to the multidimensionaldynamicalsystems. 4.1 MethodofperiodicLyapunovfunctions HereweformulatetheextensionoftheBarbashin–Krasovskiitheoremtodynamicalsystems withacylindricalphasespace(Barbashin&Krasovskii,1952). Consideradifferentialinclu- sion x˙ f(x), x Rn, t R1, (20) ∈ ∈ ∈ where f(x)isasemicontinuousvectorfunctionwhosevaluesaretheboundedclosedconvex set f(x) Rn. Here Rn isann-dimensionalEuclideanspace. Recallthebasicdefinitionsof ⊂ thetheoryofdifferentialinclusions. Definition1. WesaythatUε(Ω)isanε-neighbourhoodofthesetΩif Uε(Ω)= x inf x y <ε , { | y Ω| − | } ∈ where isanEuclideannorminRn. |·| www.intechopen.com (cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:4)(cid:7)(cid:8)(cid:9)(cid:10)(cid:11)(cid:4)(cid:8)(cid:5)(cid:12)(cid:13)(cid:6)(cid:13)(cid:10)(cid:8)(cid:4)(cid:14)(cid:10)(cid:15)(cid:7)(cid:13)(cid:6)(cid:16)(cid:4)(cid:10)(cid:3)(cid:17)(cid:10)(cid:18)(cid:19)(cid:8)(cid:13)(cid:7)(cid:20)(cid:21)(cid:3)(cid:22)(cid:23)(cid:7)(cid:14)(cid:10)(cid:21)(cid:3)(cid:3)(cid:24)(cid:13) (cid:26)+ Definition2. Afunction f(x)iscalledsemicontinuousatapoint x ifforanyε > 0thereexistsa numberδ(x,ε)>0suchthatthefollowingcontainmentholds: f(y)∈Uε(f(x)), ∀y∈Uδ(x). Definition 3. A vector function x(t) is called a solution of differential inclusion if it is absolutely continuousandforthevaluesoft,atwhichthederivativex˙(t)exists,theinclusion x˙(t) f(x(t)) ∈ holds. Under the above assumptions on the function f(x), the theorem on the existence and con- tinuabilityofsolutionofdifferentialinclusion(20)isvalid(Yakubovichetal.,2004). Nowwe assumethatthelinearlyindependentvectorsd1,...,dmsatisfythefollowingrelations: f(x+d )= f(x), x Rn. (21) j ∀ ∈ Usually, d∗jx is called the phase or angular coordinate of system (20). Since property (21) allows us to introduce a cylindrical phase space (Yakubovich et al., 2004), system (20) with property(21)isoftencalledasystemwithcylindricalphasespace. Thefollowingtheoremisanextensionofthewell–knownBarbashin–Krasovskiitheoremto differentialinclusionswithacylindricalphasespace. Theorem3. SupposethatthereexistsacontinuousfunctionV(x):Rn R1suchthatthefollowing → conditionshold: 1)V(x+d )=V(x), x Rn, j=1,...,m; j ∀ ∈ ∀ m 2)V(x)+ ∑(d∗jx)2 →∞as|x|→∞; j=1 3)foranysolutionx(t)ofinclusion(20)thefunctionV(x(t))isnonincreasing; 4)ifV(x(t)) V(x(0)),thenx(t)isanequilibriumstate. ≡ Thenanysolutionofinclusion(20)tendstostationarysetast +∞. → RecallthatthetendencyofsolutiontothestationarysetΛastmeansthat lim inf z x(t) =0. t +∞z Λ| − | → ∈ AproofofTheorem3canbefoundin(Yakubovichetal.,2004). 4.2 Methodofpositivelyinvariantconegrids.Ananalogofcircularcriterion Thismethodwasproposedindependentlyintheworks(Leonov,1974;Noldus,1977).Itissuf- ficientlyuniversaland"fine"inthesensethathereonlytwopropertiesofsystemareusedsuch astheavailabilityofpositivelyinvariantone-dimensionalquadraticconeandtheinvariance offieldofsystem(20)undershiftsbythevectord (see(21)). j Hereweconsiderthismethodformoregeneralnonautonomouscase x˙ =F(t,x), x Rn, t R1, ∈ ∈ wheretheidentitiesF(t,x+d ) = F(t,x)arevalid x Rn, t R1 forthelinearlyinde- pendentvectorsd Rn (j =j1,...,m). Letx(t) = x∀(t,t∈,x )is∀a∈solutionofthesystemsuch j ∈ 0 0 thatx(t ,t ,x )=x . 0 0 0 0 www.intechopen.com (cid:26)(cid:25) (cid:11)(cid:27)(cid:28)(cid:29)(cid:30)(cid:11)(cid:28)(cid:31)(cid:29)(cid:2)(cid:10) (cid:10)!(cid:29)(cid:2)(cid:28)"(cid:29)(cid:21)(cid:10)(cid:20)(cid:10)(cid:28)(cid:19)(cid:7)(cid:3)(cid:9)(cid:12)(cid:10)(cid:8)(cid:4)(cid:14)(cid:10)(cid:18)(cid:9)(cid:8)(cid:22)#(cid:6)(cid:22)(cid:7) WeassumethatsuchaconeoftheformΩ = x∗Hx 0 ,whereHisasymmetricalmatrix { ≤ } suchthatoneeigenvalueisnegativeandalltherestarepositive,ispositivelyinvariant. The lattermeansthatontheboundaryofcone∂Ω= xHx=0 therelation { } V˙(x(t))<0 issatisfiedforallx(t)suchthat x(t)=0,x(t) ∂Ω (Fig.5). { (cid:13) ∈ } Fig.5.Positivelyinvariantcone. Bythesecondproperty,namelytheinvarianceofvectorfieldundershiftbythevectorskd, j k Z,wemultiplytheconeinthefollowingway ∈ Ω = (x kd )H(x kd ) 0 . k { − j − j ≤ } Since it is evident that for the cones Ω the property of positive invariance holds true, we k obtainapositivelyinvariantconegridshowninFig.6.Ascanbeseenfromthisfigure,allthe Fig.6.Positivelyinvariantconegrid. solutionsx(t,t ,x )ofsystem,havingthesetwoproperties,areboundedon[t ,+∞). 0 0 0 IftheconeΩhasonlyonepointofintersectionwiththehyperplane{d∗jx = 0}andallsolu- tionsx(t),forwhichatthetimettheinequality x(t)∗Hx(t) 0 ≥ issatisfied,havepropertyV˙(x(t)) ε x(t)2(hereεisapositivenumber),thenfromFig.6it ≤− | | isclearthatthesystemisLagrangestable(allsolutionsareboundedontheinterval[0,+∞)). www.intechopen.com
Description: