ebook img

Yaghi - Abaqus Thermal Analysis of the Fusion Welding of a P92 PDF

18 Pages·2011·1.21 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Yaghi - Abaqus Thermal Analysis of the Fusion Welding of a P92

Abaqus Thermal Analysis of the Fusion Welding of a P92 Steel Pipe A.H.Yaghi,D.W.J.Tanner,T.H.Hyde,A.A.Becker, W. Sun Materials,MechanicsandStructuresResearchDivision,FacultyofEngineering UniversityofNottingham,NottinghamNG72RD,UK Fusionweldingiscommoninsteelpipelineconstructioninfossil-fuelpowergenerationplants. Steelpipesinservicecarrysteamathightemperatureandpressure,undergoingcreepduring yearsofservice;theirintegrityiscriticalforthesafeoperationofaplant. Thehigh-grade martensiticP92steelissuitableforplantpipesforitsenhancedcreepstrength. P92steelpipes areusuallyjoinedtogetherwithasimilarweldmetal. Martensiticpipesaresometimesjoinedto austeniticsteelpipesusingnickelbasedweldconsumables. Weldinginvolvesseverethermal cycles,inducingresidualstressesintheweldedstructure,which,withoutpostweldheattreatment (PWHT),canbedetrimentaltotheintegrityofthepipes. Weldingresidualstressescanbe numericallysimulatedbyapplyingthefiniteelement(FE)methodinAbaqus. Thesimulation consistsofathermalanalysis,determiningthetemperaturehistoryoftheFEmodel,followedbya sequentially-coupledstructuralanalysis,predictingresidualstressesfromthetemperaturehistory. Inthispaper,theFEthermalanalysisofthearcweldingofatypicalP92pipeispresented. The twopartsoftheP92steelpipearejoinedtogetherusingadissimilarmaterial,madeofInconel weldconsumables,producingamulti-passbuttweldfrom36circumferentialweldbeads. FollowingthegenerationoftheFEmodel,theFEmeshiscontrolledusingModelChangein Abaqustoactivatetheweldelementsforeachbeadatatimecorrespondingtowelddeposition. Thethermalanalysisissimulatedbyapplyingadistributedheatfluxtothemodel,theaccuracyof whichisjudgedbyconsideringthefusionzonesinboththeparentpipeaswellasthedeposited weldmetal. Forrealisticfusionzones,theheatfluxmustbeprescribedinthedepositedweldpass andalsotheadjacentpipeelements. TheFEthermalresultsarevalidatedbycomparing experimentaltemperaturesmeasuredbyfivethermocouplesonthepipeoutsidesurfacewiththe FEtemperaturehistoryatcorrespondingnodalpoints. Keywords:FiniteElement(FE),ThermalAnalysis,FusionWelding,P92SteelPipe,Inconel625. 2011SIMULIACustomerConference 1 1. Introduction Thenumericalsimulationoftheprocessoffusionweldingofsteelpipesinpowergeneration plantshasbeenthesubjectofresearchandpublicationforafewdecades. Steelpipesarean essentialcomponentinfossil-fuelandotherpowerplants,deliveringsteamathightemperature andpressure. Theconstructionofthepipesrequiresjoiningthembyapplyingfusionwelding, involvingintensethermalcycles,causingrapidheatingandcoolingoftheweldedmetal. This inducesresidualstressesintheweldmaterialandtheheataffectedzone(HAZ)ofthepipes,which usuallyexceedthematerialyieldstressatcertainlocations. Thelargemagnitudeofthewelding- inducedresidualstressescanbedetrimentaltothemechanicalperformanceofthewelded componentsduringservice. Thisproblemisusuallyovercomebythepost-weldheattreatment (PWHT)oftheweldedpipes,whichiscostlyandcanbetechnicallychallenging;PWHT significantlyreducesthemagnitudeofresidualstressesbutitcannoteliminatethem. Therefore, thedeterminationofresidualstressesthroughouttheweldedpipescanbevaluablefordeciding howtoapplyPWHTorindeedhowtomodifyweldingprocedurestomitigatetheill-effectsof residualstresses. Thedeterminationofresidualstressesinweldedpipescanbeachievedbyexperimental procedures,suchastechniquesbasedoncentre-holedrilling,deep-holedrilling,X-raydiffraction andneutrondiffraction,whicharecostlyanddifficultattimes,andcaninvolvedestructiveor semi-destructiveprocedures,otherwisetherevealedstressfieldislimitedtothesurfaceornearthe surface(Yaghi,2010). Theexperimentally-determinedresidualstressfieldismeasuredatspecific locationsonlyandtheexperimentalmethodsinvolveaveragingoveranarea,possiblymissingout onsharpchangesintheresidualstressfieldwhicharetypicalofwhatisinducedbytheprocessof welding. Thefiniteelement(FE)numericalmethod,however,canprovideresidualstress predictionsthroughouttheweldedcomponent,capturingthesharppeaksofthestressfield, dependingontherefinementofthegeneratedFEmesh. Thechallengingpartofproviding accuratenumericalresultsliesinacquiringasetofmaterialpropertieswhichtrulyreflectthe behaviourofthemodelledmaterial. Iftherequiredsetofmaterialpropertiesforthenumerical simulationisavailableandthegeneratedFEmeshhassufficientrefinement,theresidualstress fieldduetoweldingcanbeaccuratelyobtainedthroughouttheFEmodel,makingtheFEmethod highlyeffectiveatpredictingweldingresidualstresses. TheFEmethodcomprisestwoparts:athermalanalysis,simulatingtheweldingthermalcycles anddeliveringatemperaturehistorythroughouttheweldingprocess,andasequentially-coupled structuralanalysis,processingthetemperaturehistoryasinputdataanddeterminingthe developingthermalstressesandtheresidualstressfieldinducedbythethermalcycles. Evidently, theaccuracyofresidualstressesisdependentontheaccuracyofthetemperaturehistory determinedbythethermalanalysis. Inthispaper,thethermalanalysisofanarcweldedsteelpipe, typicallyfoundinpowergenerationplants,ispresented. ThepipeismadeofP92steelandis dissimilarinthesensethattheweldmetalisdifferentfromthetwoP92partsbeingjoined together. P92steelpipesareusuallyjoinedtogetherwithasimilarweldmetal. Martensiticpipes aresometimesjoinedtoausteniticsteelpipesusingnickelbasedweldconsumables. Inthisstudy, theP92steelpipehasbeenweldedwithadissimilarweldmetalforresearchpurposes. Theweld 2 2011SIMULIACustomerConference isacircumferentialbutt-weldconsistingof36beads. Thefirstbeadorweldpassismadeof Inconel82(IN82)andtheremaining35beadsorweldpassesaremadeofInconel625(IN625). P92,alsoknownasNF616inJapan,isarelativelynewly-developed9-12%Crferriticsteelthat canbeusedinhightemperatureapplications,suchasinfossil-fuelandnuclearpowerstationsas wellaschemicalplants. P92isamodifiedformofitspredecessorP91. Molybdenum,Mo,inP91 (9Cr1Mo)hasbeenpartiallyreplacedbyTungsten,W,forP92(9Cr2W). P92hascreepstrength approximately30%higherthanthecurrentlywidelyusedsteelP91(Brózda,2005),andithas provedsuitableforpipingandheadersattemperaturesuptoaround625°C(Richardot,2000). Hence,inmodernsuper-criticalsteampowerplants,P92allowshigheroperatingparametersand thereforehigherefficiencies. Ingeneral,anFEsimulationofaweldedpipecanbethree-dimensional(3D)or,whenappropriate, canbetwo-dimensional(2D)axisymmetric(Deng,2006). A3Dsimulationisdesirablewhen effectsthatcannotbeotherwisemodelledarerevealed,suchasstressesatweldingstartingand stoppinglocations. A2Daxisymmetricsimulation,however,canbemoresuitable,whensuch effectsaretobeignored,andwhenthemoreuniformresidualstressfieldisofinterest. Thisis becausea2DaxisymmetricsimulationcanhaveamuchfinerFEmeshforthesamecomputational processingtimeincomparisonwitha3Dsimulationofthesamemodel,whichcanleadto significantlymoreaccurateresultsforlargemodelswithnumerousweldpasses. 3Dmodelsof weldswithmanypassescanovercomethenecessityofrunningprohibitivelylargeanalysesby employingtechniquessuchaslumpingoftheweldpassestogetherandkeepingtheFEmesh relativelycoarse,whichwouldreducetheaccuracyoftheresults. Figure1. P92pipebeforewelding. Thereportedthermalanalysisisbasedona2Daxisymmetricmodeloftheweldedpipewiththe FEmeshcontrolledusingthefacilitynamedModelChangeinAbaqus(ABAQUSUserManual, 2009). ModelChangeallowstheweldmaterialforeachweldpasstobecomeactiveduringthe numericalsimulationatthetimecorrespondingtothedepositionofthepass. Theheatdelivered bytheweldingarchasbeenmodelledbyprescribingauniformlydistributedheatflux,whichisa 2011SIMULIACustomerConference 3 triangularfunctionagainsttime,correspondingtotheapproachingandthendepartingweldingarc. Thedistributedheatfluxhasbeenappliedtoeachweldpasswhenitisdepositedandalsotothe surroundingpipe(parent)materialinordertoobtainthedesiredthermalcontoursintheFEmodel. IntheFEthermalstudy,considerationhasbeengiventofusionzonesintheweldandparent material,peaktemperaturecontoursthroughouttheHAZandthetemperaturehistoryatlocations correspondingtoasetofattachedthermocouples. Theactualweldedpipehadfivethermocouples attachedatdifferentlocations,makingitpossibletovalidatethetemperaturehistorydetermined bythereportedFEthermalanalysis. 2. Dissimilar Welded Pipe TheFEthermalanalysishasbeenconductedtomodelthethermalbehaviourofaweldedsteel pipe. Priortowelding,theP92pipewascutintotwohalvesandtheendspreparedforjoining,a photographofwhichisshowninFigure1. Thetwohaveswereaxisymmetricallyalignedandheld inlargemetalvicesandthenweldedtogetherusing36weldbeads(orpasses)ofdissimilarweld materials. Theright-handsidewasreleasedafterthethirdweldpasshadbeencompleted,andthe left-handsideremainedfixedthroughouttheprocessofwelding,ascanbeseeninFigure2. Figure2. P92pipeduringwelding. 2.1 PipeGeometry,WeldDetailsandMaterialSpecifications ThegeometryanddimensionsoftheweldedP92pipe,aswellastheweldingsequence,areshown inFigure3. Theweldedpipehasanoutsidediameterof355mmandatotallengthof700mm. Thefirstweldpasswasdepositedbytungsteninertgas(TIG)weldingusingthenickelbasedweld materialInconel82(IN82),havingthemanufacturer’sbrandnameUTPA068HH,witharod diameterof2.4mm,duringwhichargongaswasusedtoshieldtheweldfromatmosphericgases. Weldpasses2to36weredepositedbymanualmetalarc(MMA)weldingusingthenickelbased weldmaterialInconel625(IN625),havingthemanufacturer’sbrandnameNIMROD625KS, 4 2011SIMULIACustomerConference withthefillerrodforweldpasses2and3havingadiameterof3.2mmandtheremainingpasses havingadiameterof4.0mm. Thechemicalcompositionsfortheparentandweldmaterialsare showninTable1. Thematerialpropertiesarediscussedinsection3.2. 32mm 28mm 32 34 35 36 33 2.0-2.5mm 28 30 31 29 24 26 27 25 20 22 23 21 19 17 18 30mm 14 16 15 13 15° 11 12 10 8 9 6 7 4 5 4.35mm 2 3 1mm 30° 1 1.5mm 3mm Figure3. Sketchofweldbeadsequenceshowingoverallwelddimensions. Table1. Chemicalcompositionofthepipeandweldmaterials. Fe C Mn P S Si Cr W Mo V Nb N B Al Ni P92 Bal 0.10 0.45 0.015 0.002 0.45 8.62 1.86 0.33 0.21 0.076 0.047 0.003 0.019 0.27 IN625 1.48 0.03 0.76 0.005 0.005 0.33 21.9 - 8.67 - 3.340 - - - Bal IN82 0.80 0.01 3.00 - - 0.10 20.0 - - - 2.700 - - - Bal 2.2 ThermocouplesandWeldProcedure Thetemperatureofthepipewasmonitoredduringweldingbyattachingfivethermocouplestothe surfaceofthepipeandrecordingthetemperatureswithachartplotterthroughoutthewelding process. Thethermocouplesmeasuredthesurfacetemperatureatfivedifferentlocationswith varyingdistancefromtheweldcentreline(WCL)andalsoatdifferentangularpositionsaround thepipecircumference. SincetheFEanalysisisaxisymmetric,theangularpositionofthe thermocouplesaroundthecircumferenceisirrelevanttothereportedstudy. Thefactthatthe angularpositionvariesforthethermocouples,however,isrelevantinexplainingsomeofthe scatternoticedinthetemperatureresultsaswellassomeofthediscrepanciesobservedbetween theexperimentallymeasuredandtheFEdeterminedtemperatures,aswillbediscussedlaterinthe paper. Thermocouples1and2(TC1andTC2)areclosesttotheweldandarelocatedontheleft- handpipesection,bothatanaxialdistanceof32.4mmfromtheWCL. Theotherthermocouples, 2011SIMULIACustomerConference 5 TC3,TC4andTC5,arelocatedontheright-handpipesectionataxialdistancesof35.0mm, 40.5mmand70.3mmfromtheWCLrespectively. Allthedistancesweremeasuredafter depositingthethirdweldpassandbeforetherestofthepassesweredeposited,i.e.beforeany significantdeformationtookplace. Itisworthnotingthatthedistancesrelatingtothe thermocouplesareaccuratetowithin±0.5mm;theyare,however,quotedheretothestated precisiontocorrespondtothematchingnodalpositionsintheFEmesh,wheretemperature comparisonsaremade. Thethermocoupleswereusedtomonitorthetemperatureofthepipetomaintaintherequired preheatandinterpasstemperature,necessaryinthecaseofP92steelforaweldingprocedure whichwouldlikelybefreefromtheriskofmicroormacro-crackingduringweldingorjustafter, asthepipecooledtoroomtemperature. Thetemperaturehistoryobtainedfromthethermocouples hasalsobeenusedtovalidatethethermalbehaviourdeterminedbytheFEsimulation. Thepipe washeatedbyanelectricblanketonbothsidesascanbeseeninFigure2. Althoughtheblanket wouldgoonandoffandwouldreachrelativelyhightemperatureswhenswitchedon,the temperaturesattheweldregionandtheHAZwererelativelysteady,andthereforetheFE modellingoftheblanketeffectwasachievedbyprescribingasinktemperatureatthesurface wheretheblanketwasincontactwiththepipe. Thesinktemperaturewasvariedfromoneweld passtotheother,duringtheFEsimulation,toemulatetheexperimentallymeasuredtemperatures duringtheinterpassperiods. Duringtheactualweldingofthepipe,asrecommendedbyliterature, itwasaimedtokeepthepreheatandinterpasstemperaturesfortheTIGweldingofthefirstpass between100°Cand150°C(Holloway,2008)andfortheMMAweldingofalltheotherpasses between200°Cand250°C(Richardot,2000). 3. FE Thermal Analysis TheFEthermalanalysisreportedinthispaperispartofamorecompleteFEsimulationintended bytheauthorstodetermineweldingresidualstressesforthedissimilarweldedP92pipe. TheFE thermalanalysis,whichformsthefirstpartofthesimulation,isreportedhere,whereasthe sequentiallycoupledstructuralanalysis,whichformsthesecondpartofthesimulation,istobe reportedinafuturepublication. Thetypeofsimulationadoptedbytheauthorsisdescribedas solid-mechanical,modellingtheheatfluxdeliveredtothepipebytheheatsourceandallowingfor thethermo-physicalbehaviour,suchasconductivity,andthentranslatingthethermaleffectsinto structuralmechanicaleffects,suchasvolumeexpansionsandplasticity,withoutallowingforany fluideffectsofthemoltenregions. Thesolidmechanicsapproachisjustifiedinignoringthefluid effects,sincestressesbecomesignificantonlywhenthematerialhassolidifiedandisrelatively cool. Whenthematerialismoltenorclosetobeingmolten,itissoftenoughnottosustainany significantstresses. Aslongasthemechanicalpropertiesusedinthesimulationrepresentthe actualbehaviourofthematerial,fluideffectsdonothavetobetakenintoconsideration. 3.1 FEModeloftheWeldedPipe TheFEsimulationofthefusionweldingofthedissimilarweldedP92pipestartswithgenerating anFEmodelbyfirstlycreatinganFEmesh. Thecommercialpackageusedforthispurposeand indeedforperformingthecompleteFEthermalanalysis,reportedinthispaper,isAbaqus 6 2011SIMULIACustomerConference (ABAQUSUserManual,2009). AcompleteFEmeshhasbeengeneratedfromthestart,which includesthepipeandtheweldregion. TheweldpasssequenceintheFEmodelisidenticaltothatintheactualweld,asshowninFigure 4. TheshapeoftheweldpassesintheFEmodeldoesnothavetoaccuratelymatchtheactual shapeoftheweldbeadstoproducerepresentativeandrealisticthermalcontours(Yaghi,2010). AlthoughtheshapesoftheFEpassesarerathersquarecomparedtotheactualweld,theresulting thermalcontoursemergeroundedandrealistic.Nonetheless,itisbelievedthatthefinallayerof weldpasseshasthemostsignificanteffectonresidualstresses,andthereforeanattempthasbeen madetomakethefinallayercloserinshapetotheactualweldbeads. Theshapeofthefinallayer ofbeadscaneasilybeadjustedwithoutundulycomplicatingtheFEmodel,whichisnotthecase fortheotherbeads. TheactualFEmeshwhichhasbeengeneratedforthemodelisshownin Figures5and6. ItcanbeseeninFigure5thatthemeshisrefinedintheweldregionandHAZ andthatitbecomesgraduallycoarserasitmovesawayfromtheweld,asshowninFigure6. The complete2DaxisymmetricFEmeshcomprises9022nodesand2919elements. Theelementtype usedthroughouttheFEmodelisaneight-nodecontinuumsolidquadraticaxisymmetricdiffusive heattransferquadrilateral,giventhenameDCAX8inAbaqus. Figure4. WeldpasssequenceintheFEmodel. TheelementsintheFEmeshformingeachweldpassareassignedagroupnamesothateachpass canbedepositedindependentlyduringthesimulation. Attheinceptionofthesimulation,the elementsofalltheweldpassesaremadetobecomeinactive,renderingthemthermallydormant, whilestillkeepingalltheelementsofthemeshattachedtogether. ThisisachievedinAbaqusby usingthecommand“ModelChange,Type=Element,Remove”atthebeginningofthefirststepin theinputfileofthethermalanalysis. Eachweldpassisdepositedinthecorrespondingstepinthe thermalanalysisbyusingthecommand“ModelChange,Type=Element,Add”,whichreactivates thecorrespondingelementsintheFEmesh. 2011SIMULIACustomerConference 7 Figure5. FEmeshshowingtheweld,HAZandpartofthepipe. TherequirementoftheFEmodeltoexchangeheat,atitssurface,withthesurrounding environmentisfacilitatedusingtheoption“sfilm”intheinputfile. Asurfacefilmor“sfilm”is generatedbyselectingtheoutsidesurfaceofrelevantelementswhichareexpectedtoexchange heatwiththesurroundingsbyconvectionandradiationorduetodirectcontactwithasolid materialasinthecaseoftheelectricblanket. Thesurfacefilmisspecifiedandthefilmproperties areassignedvaluestoallowappropriateamountofheattobeexchangedatthesurface. The temperatureoftheenvironmentsurroundingthemodelisspecifiedbyprescribingasink temperatureattherelevantsurfaces. Therefore,byspecifyingsetsofsurfacefilmsandfilm properties,theFEmodelcanexchangeheatwiththesurroundings,simulatingtheheatflow betweenthesurfaceofthemodelandtheenvironment,whetherthesurfacebelongstotheweldor pipe,andalsobetweenthepipeandtheelectricblanket. Thesurfacefilmismadetofollowthe evolutionoftheoutsidesurfaceasthedepositionofeachweldpassissimulated. Figure6. Complete2DaxisymmetricFEmesh. 3.2 MaterialProperties ThematerialpropertydatarequiredfortheFEthermalanalysishavebeenobtainedforthree differentmaterials,namely,P92steel,Inconel82(IN82)andInconel625(IN625). Someofthe dataareavailableinliterature,butsomehavebeenderivedeitherbyextrapolationtohigher temperaturesorbyreferringtoothersimilarmaterialswithknownmaterialpropertydata. This 8 2011SIMULIACustomerConference approachhasbeenadopted,sinceparametricanalysesbytheauthorsofweldingresidualstresses fordifferentmaterialshaveindicatedthatweldingresidualstressesingeneralaremostlysensitive tothevalueofyieldstressaswellasthatofthecoefficientoflinearthermalexpansion(whichare partoftheFEstructuralanalysis);theyaresignificantlylesssensitivetochangesinthermal properties;moreover,heatfluxeswouldhavetobeadjustedtoobtainrealisticmoltenzones,which wouldinturncompensateforinaccuraciesinthethermalproperties. Ithasalsobeenpossibleto calculatemeltingtemperaturesfromthermodynamicsoftwarepackages. Thematerialproperties thatneedtobespecifiedinthethermalanalysisarethethermalconductivity,density,specificheat capacity,latentheatcapacity,solidusandliquidustemperaturesandheattransfercoefficients. Figure7. ThermalconductivityandspecificheatcapacityintheFEmodel. ThethermalconductivityofP92steelhasbeenassumedtobethesameasthatforP91steel,which isavailableinliterature(Yaghi,2010). ThespecificheatcapacityofP92steelhasbeenobtained fromliterature(Richardot,2000)fromroomtemperatureupto650°C,abovewhichithasbeen assumedtoremainunchanged. BothmaterialpropertiesareshowninFigure7. Thesolidusand liquidustemperaturesforP92steelhavebeencalculatedas1420°Cand1500°Cbyusing MTDATAsoftwaredevelopedattheNationalPhysicalLaboratory(NPL)intheUKandtheyhave beencorroboratedbythesamevaluespublishedforP91steel(Yaghi,2010). ThedensityforP92 steelisspecifiedinliterature(Richardot,2000)as7850kg/m3. ThelatentheatcapacityforP92 steelhasbeenassumedtobethesameasthatforP91steel,specifiedas260kJ/kg(Yaghi,2010). ThethermalconductivityandspecificheatcapacityofIN625areprovidedinliterature(Special Metals,2006)fortemperaturesupto982°Cand1093°Crespectively. Thesamevalueshavebeen assumedfortheweldmaterialNIMROD625KSforthegiventemperaturerange,abovewhichthe twothermalpropertiesareassumedtoremainconstantuptothemeltingpoint. Asthematerial goesfromthesolidustotheliquidustemperature,thethermalconductivityisdoubledin magnitudetocompensateforthestirringeffectsinthemoltenstate(Brickstad,1998). Thesame thermalconductivityandspecificheatcapacityhavebeenassumedfortheweldmaterialUTP 2011SIMULIACustomerConference 9 A068HHusedforthefirstpassduetothelackofdataforIN82. Itisworthnotingthattheeffect ofthefirstweldpassonresidualstressesneartheoutsidesurfaceofthepipe,wheremostinterest liesforsuchwallthickness,isexpectedtobenegligible. Thethermalconductivityandspecific heatcapacityfortheweldmaterialsareshowninFigure7. ThedensityforIN625isgivenas 8440kg/m3(SpecialMetals,2006). Thisvaluehasbeenassumedforbothweldmaterials. The latentheatcapacityforpurenickelislistedas297kJ/kg(TheEngineeringToolBox,cited2011). Therefore,anapproximateandintermediatevaluebetweenthoseofP92steelandpurenickelof 280kJ/kghasbeenassumedfortheweldmaterials. Thesolidusandliquidustemperaturesfor UTPA068HHhavebeencalculatedtobe1301°Cand1368°CandforNIMROD625KStobe 1250°Cand1345°Crespectively,usingthesoftwareThermoCalcClassicVersionS(TCC), developedbytheFoundationofComputationalThermodynamicsinStockholmofSweden,and utilisingThermotechNickelsDatabaseVersion7(TTNi7)(Saunders,1996). Heatlossesatthesurfaceofthepipehavebeenmodelledbyprescribingappropriatevaluesforthe coefficientofheattransferundertheAbaquscommandFilmProperty. Heatlosscoefficientsfor P92steelandalsotheInconelweldmaterialhavebeenassumedtobethesameasthoseforP91 steel,giveninliterature(Yaghi,2005)tobe0.0668T(W/m2K)whenthetemperatureTisbelow 500°Cand0.231T–82.1(W/m2K)whenTisabove500°C. Asimilarapproachhasbeenadopted tomodeltheeffectoftheelectricblanketonthepipe. Recognisingthattheblanketwould fluctuateintemperaturesubstantiallyandwouldbeswitchingonandofftocontroltheinterpass temperatureduringwelding,themodellinghasbeensimplifiedtohavingtheblanketataconstant temperatureduringthedepositionofanyoneweldpass,prescribingaveryhighvaluetothe coefficientofheattransferatthesurfacewithwhichtheblankethascontact,andcontrollingthe sinktemperatureatthatsurfacetoobtainthedesiredtemperaturehistoryatthefive thermocouples. Thevalueprescribedforthecoefficientofheattransferforthispurposeis200T (W/m2K),whereTisthetemperatureofthepipe. 3.3 HeatFluxesandFusionZonesintheFEModel Themainpartofthethermalanalysisistomodeltheeffectoftheheatsourceonthepipeduring fusionwelding,i.e.theheatdeliveredbytheweldingarcintotheweldandsurroundingmaterial. Thishasbeencoveredindetailforsimilarweldedpipesinapreviouspublication(Yaghi,2005). Themodellingmethod,however,needstobemodifiedforthethermalanalysisofadissimilar weldedpipe,asisthecasehere. Ingeneral,theheateffectoftheweldingarconapipecanbemodelledbyprescribingauniformly distributedheatflux(DfluxinAbaqus)foreachoftheweldpassesastheyaredeposited. Inthe reportedwork,thefluxisassumedtofollowatriangularfunction(Yaghi,2005),whichstartsfrom zeroandriseslinearlytoreachapeakathalftime,tosignifytheapproachoftheweldarc,and thenitdecreaseslinearlybacktozeroatfulltime,tosignifythedepartureofthearc. Thewelding speedwasdeterminedtobearound50mm/minforthefirstpassandrangedbetween152and 207mm/minfortheremainingpasses. Theweldingcurrentrangedbetween90and130A,andthe DCvoltagerangedbetween9and10forthefirstpassandbetween24.3and26.5Vforpasses2to 36. TheheatfluxintheFEmodellastedfor10.7sforthefirstpass,5.9sforeachofthesecond andthirdpasses,andbetween6.6sand7.6sforeachoftheremainingpasses. Themethodof 10 2011SIMULIACustomerConference

Description:
2011 SIMULIA Customer Conference 1 Abaqus Thermal Analysis of the Fusion Welding of a P92 Steel Pipe A.H. Yaghi, D.W.J. Tanner, T.H. Hyde, A.A. Becker, W. Sun
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.