ebook img

X-rays as dominant excitation mechanism of [Fe ii] and H2 emission lines in active galaxies PDF

6.1 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview X-rays as dominant excitation mechanism of [Fe ii] and H2 emission lines in active galaxies

Mon.Not.R.Astron.Soc.000,1–10(0000) Printed20January2012 (MNLATEXstylefilev2.2) ii X-rays as dominant excitation mechanism of [Fe ] and H emission 2 lines in active galaxies 2 Oli L. Dors Jr.1⋆, Rogemar A. Riffel2, Mo´nica V. Cardaci3,4,5, Guillermo F. Ha¨gele3,4,5, 1 0 Aˆngela C. Krabbe1, Enrique Pe´rez-Montero6, Irapuan Rodrigues1 2 1UniversidadedoValedoPara´ıba,Av.ShishimaHifumi,2911,Cep12244-000,Sa˜oJose´dosCampos,SP,Brazil n 2UniversidadeFederaldeSantaMaria,Av.Roraima,1000,Cep97105-900,SantaMaria,Brazil a 3ConsejoNacionaldeInvestigacionesCient´ıficasyTe´cnicas(CONICET),Argentina. J 4FacultaddeCienciasAstrono´micasyGeof´ısicas,UniversidadNacionaldelaLaPlata,PaseodelBosques/n,1900LaPlata,Argentina. 9 5DepartamentodeF´ısicaTeo´rica,C-XI,UniversidadAuto´nomadeMadrid,28049Madrid,Spain. 1 6InstitutodeAstrof´ısicadeAndaluc´ıa(CSIC),POBox3004,18080Granada,Spain ] O 20January2012 C . h p ABSTRACT - o We investigatethe excitationmechanismsof near-infrared[Feii] andH emissionlines r 2 t observedinActiveGalacticNuclei(AGNs).Webuiltaphotoionizationmodelgridconsider- s ingatwo-componentcontinuum,oneaccountsfortheBigBumpcomponentpeakingat1Ryd a [ and anotherrepresentsthe X-ray source that dominatesthe continuumemission at high en- ergies.Photoionizationmodelsconsideringas ionizingsource a spectralenergydistribution 1 obtainedfromphotometricdataoftheSy2Mrk1066takenfromtheliteraturewereconsid- v ered.Results of these modelswere comparedwith a largesample of observationallong-slit 6 and Integralfield Unit (IFU) spectroscopy data of the nuclear regionfor a sample of active 4 objects. We found that the correlation between the observational [Feii]λ1.2570µm/Paβ vs. 0 H λ2.1218µm/Brγiswellreproducedbyourmodelsaswellastherelationshipsthatinvolve 4 2 . theH2emissionlineratiosobservedinthespectroscopicdata.Weconcludethattheheatingby 1 X-raysproducedbyactivenucleicanbeconsideredacommonandveryimportantmechanism 0 ofexcitationof[Feii]andH . 2 2 1 Keywords: galaxies:Seyfert–galaxies:ISM–infrared:galaxies : v i X r a 1 INTRODUCTION 2009; Mu¨llerSa´nchezetal. 2009; RamosAlmeidaetal. 2009; Rodr´ıguez-Ardilaetal.2005,2004;Daviesetal.2007). The excitation of the Narrow Line Region of Seyfert (Sy) galax- The H can be excited by two mechanisms: (i) fluorescent ies can reveal how radiation and mass outflows from the nu- 2 excitation through absorption of soft-UV photons (912–1108Å) cleus interact with circumnuclear gas. In particular, near-infrared in the Lyman and Werner bands, existing both in star-forming (hereafter near-IR) observations are a powerful tool to investi- regions and surrounding the Active Galactic Nuclei (AGNs) gatethisissue,becausetheobscuration–whichcanaffecttheop- (Black&vanDishoeck 1987) and (ii) collisional excitation due tical morphology of the emitting gas region– is less important to the heating of the gas by shocks, the interaction of a radio at these wavelengths (Mulchaeyetal. 1996; Ferruitetal. 2000). jet with the interstellar medium (Hollenbach&McKee 1989), or Relevant emission-linesinthenear-IR include[Feii]λ1.2570µm by X-ray photons from the central AGN (Maloneyetal. 1996). and λ1.6440µm, Hi lines such as Paβ, and H at λ1.9576µm, 2 Several studies based on intensity-line ratios (Riffeletal. 2010; λ2.1218µm, and λ2.3085µm, which can be used to map the Storchi-Bergmannetal.2009;Rodr´ıguez-Ardilaetal.2005,2004) gas kinematics and excitation (e.g. Riffel&Storchi-Bergmann have shown that collisional excitation processes dominate the H 2011b; Riffeletal. 2010). Nevertheless, the dominant excita- 2 emissionsurroundingAGNs.However,whichisthedominantpro- tion mechanisms of the [Feii] and H emission lines in the 2 cessisanopenquestion.Veilleuxetal.(1997),usingJandK-band central regions of active galaxies are still unclear and have spectraofasampleof33Sy2galaxies,foundthatshocksassoci- been the subject of several recent studies (e.g. Riffeletal. ated with nuclear outflows are a likely source of both [Feii] and 2010, 2008, 2006; Storchi-Bergmannetal. 2009; Hicksetal. H emissionratherthancircumnuclearstarbursts,assuggestedby 2 Quillenetal.(1999). Forthe[Feii]emission,the[Feii]λ1.2570µm/Paβlineratio ⋆ E-mail:[email protected] isgenerallyusedtoinvestigatethemainmechanismofexcitation. 2 Dorset al. Thevalueofthislineratioiscontrolledbythequotientofthevol- Knopetal.(2001),andRiffeletal.(2006).Thissamplecomprises umesof partiallyandfullyionizedgasregions, with[Feii] emis- long-slitdataof13Sy1and21Sy2galaxies,alongwith1Quasar. sion being excitedin thepartiallyionized gas (Mourietal.1990, Theintensitiesofthenear-IR[Feii]andH emissionlinesobserved 2 1993;Rodr´ıguez-Ardilaetal.2005;Riffeletal.2010,2008,2006; intheseobjectswerecompared withourphotoionization models. Storchi-Bergmannetal. 2009). Such zones in AGNs are created Wealsousedthe[Oiii]λ5007Å/Hβand[Oi]λ6300Å/Hαlinein- by X-ray emission (e.g. Simpsonetal. 1996) and/or shock heat- tensityratiosofabout600000emission-linegalaxieslistedinthe ing of the gas by mass outflows from the nuclei which interact MPA/JHUDatacatalogueoftheSloanDigitalSkySurveyDR7re- with the ambient clouds (e.g. Forbes&Ward 1993). This prob- lease(availableathttp://www.mpa-garching.mpg.de/SDSS/DR7/). lemwasaddressedbyMourietal.(2000),whocomparedtheval- uesofthelineratios[Feii]λ1.2570µm/Paβand[Oi]λ6300Å/Hβ predictedbymodels,consideringphotoionizationandshockheat- 2.2 IFUdata ing, with those observed in a sample of AGNs and Starburst For this study we selected two Sy1 galaxies, Mrk1157 and galaxies. These authors pointed out that in AGNs, X-ray heat- NGC4151, and two Sy2galaxies (ESO428-G14 and Mrk1066). ing is the most important [Feii] excitation mechanism. However, AllofthemwerepreviouslyobservedbyourgroupusingtheIFU Rodr´ıguez-Ardilaetal. (2004), using near-IR spectroscopy of a spectrographs of the Gemini telescopes. We selected these ob- sample of galaxies obtained with the Infrared Telescope Facility, jectsbecausebothJ-andK-bandspectroscopicdataareavailable. found that X-ray excitation is enough to explain the H emis- 2 The observations of Mrk1066, Mrk1157, and NGC4151 were sion and part of the [Feii] emission observed in Sy1 galaxies, performed using the Near-IR Integral field Spectrograph (NIFS; but fails to explain the emission of these elements in Sy2. For McGregoretal.2003)onGeminiNorth,whileESO428-G14was these objects, a combination of shocks and circumnuclear star- observed withtheGemini Near Infra-RedSpectrograph (GNIRS; formation is required to explain these emissions. Moreover, it is Eliasetal.1998)onGeminiSouth. notclearwhetherthe[Feii]andH areexcitedbythesamemech- 2 anism.Rodr´ıguez-Ardilaetal.(2004)foundacorrelationbetween the[Feii]λ1.2570µm/PaβandtheH λ2.1218µm/Brγratios,indi- 2 3 PHOTOIONIZATIONMODEL catingthatbothsetsoflinesmaybeoriginatedbyasingledominant mechanism. However, high spatial resolution spectroscopy data Toanalysethe[Feii]andH excitationmechanisms,webuiltagrid 2 fromIntegralFieldUnit(IFU)ofactivegalaxiesindicatethatthe ofmodelsusingthephotoionizationcodeCloudy/08(Ferlandetal. H2 andthe[Feii]emittinggashavedistinctfluxdistributionsand 1998),andthenwecomparedthelineintensityratiospredictedby kinematics,withtheformerbeingconsideredatracerofthefeed- themwiththoseobserved.Thespectralenergydistribution(SED) ingoftheAGNandthelatteratracerofitsfeedback(Riffeletal. oftheionizingsourceusedasinputfortheCloudycodewasatwo- 2010,2009,2008;Storchi-Bergmannetal.2009;Hicksetal.2009; component continuumrangingfrom∼ 1015Hzto∼ 1021Hz.The Mu¨llerSa´nchezetal.2009).Thisresultindicatesthatthelinesof shapeofthisSEDissimilartotheoneobservedintypicalAGNs these elements are formed in distinct regions. Although several for that range. The first is the Big Bump component peaking at workshaveinvestigatedtheexcitationoriginsofH2andthe[Feii], 1Ryd with a high-energy and an infrared exponential cutoff and itisstillunknownwhetheracommonmechanismcanexcitethese thesecondonerepresentstheX-raysourcethatdominatesathigh elements. Fortunately, a large number of near-IR data of AGNs energiesandischaracterized byapower lawwithanindexα = x arecurrentlyavailableintheliterature,whichenablesanextensive −1.Itsnormalizationwascomputedtoproducetherequiredvalue comparisonwithmodelsyieldingamorereliableconclusionabout oftheopticaltoX-rayspectralindexα .Thisindexdescribesthe ox thelikelydominantexcitationmechanismoftheseemissionlines. continuumbetween2keVand2500Å (Zamoranietal.1981).We In this paper, we combined near-IR data of Sy galaxies ob- assumedthedefaultvalueoftheCloudycodeα =−1.4,because ox tained with IFU and long-slit spectroscopy with photoionization thatisabouttheaverageoftheobservedvalues,whicharebetween modelstoinvestigatetheoriginoftheH2and[Feii].InSection 2, -1.0and-2.0,fortheentirerangeofobservedluminositiesofAGNs wedescribetheobservationaldatausedintheanalysis.Themod- (Milleretal.2011;Zamoranietal.1981). ellingproceduresarepresentedinSect.3.InSect.4,thediagnostic The cosmic ray emission was considered inthe models as a diagrams used to compare the observational data withour model secondionizingsource.Cosmicraysheattheionizedgasandpro- predictionsaredescribed.Resultsanddiscussionarepresentedin duce secondary ionizations in the neutral gas, which mostly in- Sects.5and6,respectively.Aconclusionoftheoutcomeisgiven creasetheintensitiesoftheH emissionlines.Weassumedavalue 2 inSect.7. oftheH ionizationrateof10−15s−1,whichisaboutthesamerate 2 foundbyMcCalletal.(2003)foragalacticlineofsight.Itisworth notingthatthevalueofthecosmicrayratemustbeestimatedob- 2 OBSERVATIONALDATA jectbyobject.Forexample,Suchkovetal.(1993)foundforM82 acosmicrayrateseveraltimeslargerthantheoneintheMilkWay. Wecompiledfromtheliteratureobservational dataofthenuclear GammarayobservationsofthestarburstNGC253byAceroetal. regionofactivegalaxiesinthenear-IRandopticalspectralrange (2009)indicateacosmicrayratethreeordersofmagnitudelarger obtained with long-slit and IFU spectroscopy. The selection cri- thanthatfortheMilkyWay.Also,moleculardataofstarforming terion was the presence of bright infrared emission lines in their galaxies,suchasArp220,showevidenceforextremelyhighcos- spectra.Thesedataaredescribedbelow. micrayratesyieldedbytheUVemissionfromsupernovaremnants (Meijerinketal.2011). We computed a sequence of models assuming an electron 2.1 Long-slitdata density N = 104 cm−3, ionization parameter U in the range e Near-IRemissionlineintensityratiosof35activegalaxieswereob- −4.0 6 logU 6 −1.0 defined as U = Q /4πR2nc, where Q ion S ion tainedfromRodr´ıguez-Ardilaetal.(2004),Reunanenetal.(2002), isthenumberofhydrogenionizingphotonsemittedpersecondby .... 3 Table1.Fe/OandO/Hgasphaseabundancesassumedinthemodels. Metallicity(Z/Z⊙) 12+log(O/H) log(Fe/O) 2 9.0 -1.47(a1) -1.94(a2) -2.24(a3) 1 8.69 -1.77(b1) -2.24(b2) -2.77(b3) 0.5 8.38 -2.15(c1) -2.54(c2) -2.76(c3) the ionizing source, R is the Stro¨mgren radius (in cm), n is the S particle density (in cm−3), and c is the speed of light. The cho- senrangeofthesevaluesforUistypicalofnarrow-lineregionsof Sy galaxies (e.g. Ferland&Netzer 1983). The H emission lines 2 are very dependent on the electron density value assumed in the models. For example, when N varies from 103 to 105 cm−3, the e logarithm of the H λ2.1218µm/Brγ emission line intensity ratio 2 spanabout2.6dex.ThevalueN =104cm−3,assumedinourmod- e els,isameanvaluefromthoseconsideredbyMourietal.(2000). Weconsideredinourmodelsthreevaluesof12+log(O/H)=8.38, 8.69,and9.00,whichcorrespond tovaluesofthemetallicity0.5, 1, and 2 times the solar value published by AllendePrietoetal. (2001).Theabundancesofothermetalsinthenebulawerescaled linearly to the solar metal composition through the comparison Figure1.Diagnostic diagram showingtheobservational datatakenfrom of the oxygen abundances, with the exception of the N and Fe theliterature(seeSect.2)andresultsfromthegridofphotoionizationmod- els(seeSect.3).Solidlinesconnectcurvesofiso-Z,whiledottedlinescon- abundances. Thenitrogen abundance was taken from therelation nectcurvesofiso-U.Thevalues oflogU andZ areindicated. Thethree log(N/O)=log(0.034+120O/H)ofVila-Costas&Edmunds(1993). differentlinesforeachZcorrespondtothedifferentassumedvaluesofthe TheFe/OabundanceratiohasalargescatterforafixedO/Hvalue Fe/Oasindicatedbythelabels(seeTable1).Circles,squares,andstarrep- (Izotovetal. 2006) and its value is uncertain because the Fe and resentSy1,Sy2,andquasar data, respectively. Thetypical errorbar(not O abundances in grains are poorly known (Peimbert&Peimbert shown)oftheemissionlineratiosisabout10%. 2010).Thus,wevariedtheFe/Oabundanceratiobyabout0.7dex oneachmetallicity. The presence of internal dust was considered and the grain H2λ2.247µm/λ2.121µm (Fig. 2) — Mouri (1994) proposed abundances (vanHoof et al.2001) werealsolinearlyscaled with these diagrams to separate gas emission yielded by shocks from the oxygen abundance. To take into account the depletion of re- emission caused by fluorescence. The drawback in using the fractoryelementsontodustgrains,theabundancesofMg,Al,Ca, H2λ1.957µm/λ2.121µm ratio is that the H2λ1.957µm may be Ni,andNawerereducedbyafactorof10,andSibyafactorof2 affected by telluric bands of H2O and CO2, or blended with the relativetoadopted abundances ineachmodel inaccordance with [Siiv]λ1.963µmemissionline(Rodr´ıguez-Ardilaetal.2005). Garnettetal.(1995).InTable1,theO/HandFe/Oabundanceval- • [Oiii]λ5007Å/Hβ vs.[Oi]λ6300Å/Hα(Fig.3)—Thisdi- uesofthegasphaseassumedinthemodelsareshown.Themodel agramwassuggested byBaldwinetal.(1981)toseparateobjects oftheH moleculedescribedbyShawetal.(2005)andthemodel accordingtotheirprimaryexcitationmechanisms,i.e.(a)photoion- 2 of the Fe+ ion described by Verneretal. (1999), which consider ization by stars, (b) photoionization by a power law continuum 371 energy levels, were assumed in our computations. The outer source or (c) shock heating. In particular, the [Oi]λ6300Å/Hα radius of the modelled nebula is that where the temperature falls lineratioisgreatlyincreasedbythepresenceofshockinggas,even below1000K. whenithaslowvelocities(e.g.Allenetal.2008). 4 DIAGNOSTICDIAGRAMS 5 RESULTS We used four diagnostic diagrams containing predicted and ob- 5.1 Integratedspectra servedemissionlineratiosofthe[Feii],H ,[Oiii],and[Oi]which 2 In Figs. 1 and 2 we show the first three diagnostic diagrams de- aredescribedbelow. scribedabovecontainingtheresultsofourgridofphotoionization • [Feii]λ1.2570µm/Paβ vs. H λ2.1218µm/Brγ (Fig. 1) modelsandthedatasample.Sy1,Sy2andquasararerepresented 2 — Diagnostic diagram suggested by Larkinetal. (1998) and bydifferentsymbols.FortheIFUdata,theemissionlineratiosrep- Rodr´ıguez-Ardilaetal. (2004) to separate galaxies accord- resented in these Figs. were estimated by integrating the spaxels ing to their level of nuclear activity. Recently, Riffeletal. insideacentralapertureof0.5′′×0.5′′foreachgalaxy,withexcep- (2010) constructed this diagram with spatially resolved tion of ESO428-G14 for which an aperture of 0.75′′×0.75′′ was IFU data of an AGN. Typical values for the nucleus of considered.ThesevaluesarepresentedinTable2. Sy galaxies are 0.6 .[Feii]λ1.2570µm/Paβ. 2.0 and InFig. 1, wecan see that almost all theobservational ratios 0.6 .H λ2.1218µm/Brγ. 2.0 (Rodr´ıguez-Ardilaetal. 2005). arewithintheparameterspacedefinedbyourgridofphotoioniza- 2 This[Feii]/PaβisverydependentontheFe/Oabundancewhilethe tionmodels. Alowermetallicitythanthoseassumed inour mod- H emissionlinesaredependentontheionizationparameter. els is required to reproduce the data of the galaxies out of the 2 • H λ1.957µm/λ2.121µm and H λ2.033µm/λ2.223µm vs. grid.Theobservedcorrelationbetween[Feii]λ1.2570µm/Paβand 2 2 4 Dorset al. Figure3.[Oiiiλ5007Å/Hβvs.[Oiλ6300Å/Hαdiagnosticdiagram.The yellowlineseparatesobjectsionizedbymassivestarsfromthosecontaining activenucleus(Kewleyetal.2001).Blue,greenandredsolidlinesareasin Fig.1.Pointsrepresentemission-linegalaxieslistedintheMPA/JHUData Figure 2. As in Fig. 1 for H2 emission lines. The arrow indi- catalogueoftheSloanDigitalSkySurveyDR7release(seeSect.2). cates the direction in which the ionization parameter increases. Circles, squares, and star represent Sy1, Sy2, and quasar data, respectively. The hatchedarearepresents theregionoccupied byshockmodelresultsfrom appeartohavetheX-raysasmainionizingsourcewhileforthere- Hollenbach&McKee(1989). mainingonesacompositeionizationbyX-raysandshockcanbe considered. Fig.3showsthe[Oiii]λ5007Å/Hβvs.[Oiλ6300Å/Hαdiag- Table2.IntegratedlineratiointensitiesofIFUdata nosticdiagram.InthisFig.wecanseethattheobservationaldataof AGNsarewelldescribebyourmodels.Ifourmodelsusethelower values of the ionization parameter (logU < −3.5; these models Object [Feii]λ1.2570µm/Paβ H2λ2.1218µm/Brγ arenotshown),wecanextendtheparameterspacetoincludethe ESO428-G14 0.75 1.10 objectsthathavevaluesofthelogarithmofthe[Oiii]λ5007Å/Hβ Mrk1066 0.52 0.96 ratiolowerthanzero.Asinthecaseofthe[Feii]λ1.2570µm/Paβ Mrk1157 0.73 2.24 andH λ2.1218µm/Brγdiagnosticdiagram(Fig.1),theparameter NGC4151 0.45 0.26 2 spaceofthemodelswithsolarmetallicityalmostcontainsthatof theZ = 0.5Z models. ⊙ H λ2.1218µm/Brγisexplainedbyanincreaseinmetallicityand 2 ionizationparameter.Noteworthythattheparameterspacedefined 5.2 IFUdata by the models built using Z = 0.5Z isalmost completely con- ⊙ tainedintheonedefinedbythemodelsbuiltusingthesolarmetal- Weplotthe[Feii]λ1.2570µm/PaβandH λ2.1218µm/Brγ diag- 2 licity. nosticdiagramforeachspaxelofourfourobjectswithourmodel In the case of the diagnostic diagrams that only involve H results (see upper panels of Figs. 4 and 5). In these Figs., the 2 line ratios (Fig. 2), the photoionization models are slightly de- spaxel data are separated by their ionization mechanism accord- pendent on the assumed metallicities, covering almost the same ing to the place in the diagnostic diagram, with different colours parameter space, and strongly dependent on variations in the for each mechanism. The different ionization mechanism zones ionization parameter. Taking into account the observational er- are delimited in the Figs. by dashed-lines, following the work of ror bars, our models are in good agreement with the observed Rodr´ıguez-Ardilaetal.(2004).Thespaxelsshowingtypicalvalues H λ2.033µm/λ2.223µmandH λ2.247µm/λ2.121µmratios(up- ofstarbursts,Seyferts,andlow-ionizationnuclearemission-linere- 2 2 perpanel).Ontheotherhand,inthelowerpanelofFig.2canbe gions(LINERs)arerepresentedbygreenopencircles,blackfilled noticedlargerdispersionoftheobservationaldatawhichisnotwell circles, and redcrosses, respectively. Withthe samecolour code, reproduce bythemodels.Thisdispersioncouldbetheresultofa weshowthespatialpositionofeachspaxelintheIFUfieldofview contaminationofthemeasurementsoftheH λ1.957µmemission (seelowerpanelsofFigs.4and5).Ourmodelscompletelyrepre- 2 line intensities due to a blend with the [Siiv]λ1.963µm line (as senttheregionoccupiedbySeyfertandLINERsdata. explained above). Therefore, the predicted H λ1.957µm intensi- 2 tiesaresomewhatlowerthantheobservedones.InFig.2,wealso show the area occupied by the theoretical intensities of the line 6 DISCUSSION ratio H λ2.247µm/λ2.121µm from shock models performed by 2 Hollenbach&McKee (1989). These authors computed emission- The excitation mechanism of the near-IR emission lines of the line spectra of steady interstellar shocks in molecular gas con- [Feii] and H in active galaxies have been the subject of sev- 2 sidering velocities from 30 to 150 km/s and particle densities of eral works. For example, Mourietal. (2000) compared results of 103−106cm−3.Wecanseethatmostoftheobjectsofoursample models considering photoionization by X-rays and shock heating .... 5 Figure4.Toppanels:[Feii]λ1.2570µm/Paβvs.H2λ2.1212µm/Brγline-ratiodiagnosticdiagramforMrk1157(left)andESO428-G14(right).Thedashed linesdelimitregionswithratiostypicalofStarbursts(greenopencircles),Seyferts(blackfilledcircles)andLINERs(redcrosses).Blue,greenandredsolid linesareasinFig.1.Bottompanels:spatialpositionofeachspaxelintheIFUfieldofviewfromthediagnosticdiagram. with observational data of AGNs and starburst galaxies. These For our models, we assumed an incident continuum whose authors built their models considering large ranges in shock ve- shapeisgivenbytwocomponents,aBigBumpandanX-raypower locities, gas density, metallicity, and different ionizing continua. law, varying the Fe/O abundance. With these models that do not Mouri and collaborators showed that the [Feii] emission is en- consider shock heating, we are able to explain the observational hanced when a partially ionized zone is produced by photoion- data.Nevertheless,wedonotexcludesomecontributionbyshock ization by X-rays (described by a power-law) and shock heating. heating to the [Feii] emission. Comparing our models with the These two processes can be discriminated by the electron tem- SDSSDR7emission-linegalaxies(Fig.3),weareabletodescribe perature of the [Feii] region: 8000K in heating by X-rays and the[Oi]/HαlineratioobservedinAGNs.Thisdiagramcannotbe 6000 K inshock heating. Comparing the electron temperature of usedtodiscriminate[Feii]excitationmechanism,nevertheless,we the [Feii] region estimated by Thompson (1995) for NGC4151 musttakeintoaccountthatthe[Oi]/Hαlineratioisshocksensitive. (8000 < T < 12000K)withtheirmodels,Mourietal.(2000) Hence,althoughshockcontributionintheionizationofFecannot e showed that, at least for this galaxy, it indicates that X-rays are beruledout,modelsconsideringacontinuumdescribedbyaBig themoreimportantmechanismtoyieldthe[Feii]flux.Theseau- BumpandanX-raypowerlawastheionizationsourcecanalsore- thorsarrivedtothesameconclusionusingthe[Oi]λ6300Å/Hαvs. producethe[Feii]emissionlinesaswellasthebehaviourofshock [Feii]λ1.2570µm]/Paβ diagnostic diagram. A similar result was sensitiveemissionlinessuchas[Oi]λ6300Å.AnalysingIFUob- also obtained by Jackson&Beswick (2007) by analysing J-band servationsoftheSygalaxyNGC4151,Turneretal.(2002)found spectraofthreeSy2galaxies. thatthe[Feii]emissionmainlyarisesinthevisiblenarrow-linere- 6 Dorset al. Figure5.AsinFig.4butforMrk1066(left)andNGC4151(right). gioninwhichthedominantexcitationmechanismisthephotoion- wherehigh-velocitygasmotionsheatandacceleratethismolecule; izationbycollimatedX-rayemissionfromthenucleus.Olivaetal. and (3) X-ray illumination, where hard X-ray photons penetrate (2001)pointedoutthatinregionswhereshocksarethedominant deep into molecular clouds, heating large amounts of molecular mechanismtheiron-basedgrainsaredestroyedbutthephosphorus gasresultingintheH emission(seeRodr´ıguez-Ardilaetal.2004, 2 is not, yielding a larger [Feii]λ1.2570µm/[Pii]λ1.188µm line- and references therein). Rodr´ıguez-Ardila and collaborators used ratiointensity thanthat observed in theregions dominated by X- thediagramsshowninFig.2tocompareobservationaldataof22 ray.Inordertoverifythis,inFig.6weshowahistogramcontaining objectswithmodelsconsideringathermalemission,anon-thermal thisobservedlineintensityratiofor17Seyfertgalaxies,5Sy1and UVexcitation,athermalUVexcitation,andamixtureofthermal 12Sy2,takenfromJackson&Beswick(2007),Riffeletal.(2006), and low-density fluorescence. These authors found that for 4 ob- and Olivaetal. (2001). It can be seen that the [Feii]/[Pii] for Sy jectstheexcitationmechanismisclearlythermal,whileforthere- galaxiesrangesfrom1.5to6(withameanvalueof2.7).Themean maining objects a mixing with a non-thermal process cannot be value of this ratio is about 20 for SNRs, which indicate that the discarded,eventhoughtheresultspointouttoadominantthermal emittinggashasrecentlypassedthroughafastshock(Olivaetal. mechanism. 2001).Therefore,theseresultsconfirmthatshockshavelittleinflu- ToanalysetherelativeweightoftheX-rayemissionwithre- enceonthe[Feii]emission. specttotheothermodelcomponents(mainlywithfluorescenceand RegardingtheH ,thismoleculecanbeexcitedviathreedis- UVphotons),notonlyfortheH emissionbutalsoforthe[Feii], 2 2 tinct mechanisms: (1) UVfluorescence, where photons withλ > wemademodelsfixingallparameterswiththeexceptionoftheα ox 912ÅareabsorbedbytheH moleculeandthenre-emitted,result- value (see Fig. 7), which is related to the X-ray power law nor- 2 inginthepopulationofvariousvibro-rotationallevels,(2)shocks, malization(seeSection§3).WeassumedZ=Z andlogU=−2.5 ⊙ .... 7 Sy 1 Sy 2 4 3 N 2 1 0 0 1 2 3 4 5 6 [FeII]1.257µm/[PII]1.88µm Figure6. Histogramshowingthe[Feii]/[Pii]emissionlineintensityratios ofasampleofobjectscollectedfromtheliterature. sincethemodelsbuiltusingthesolarmetallicityandthisvalueof theionizationparametercoveralmostalltheparameterspaceoccu- Figure 7. Model results using solar metallicity, Ne=104cm−3, logU=- piedbytheobservationaldata(seeFig.1).Takingintoaccountthe 2.5andvaryingonlytheαoxparametertoseetheinfluenceoftheX-rayson α definition(Tananbaumetal.1979),whichfixestheBigBump the[Feii]λ1.2570µm/PaβandH2λ2.1218µm/Brγemissionlineratios.To ox delimittheregionoccupiedbytheAGNswefollowRodr´ıguez-Ardilaetal. parameters, adecrement oftheα valueimpliesthat theamount ox (2004). oftheX-raysemittedbythesourcedecreases.InFig.7wecansee thatourmodelswithα = −1.4reproducewelltheobservational ox AGNdata.Nevertheless,whenweuselowervaluesofthisparame- 13.6 eV 1 keV 70 keV ter,theratiospredictedbythemodelsgooutoftheregiontypically occupied bytheAGNs(Rodr´ıguez-Ardilaetal.2004).Therefore, ourmodelsfavourthescenariosuggestedbyMaloneyetal.(1996), 16 wemheitrteedthaetXH-2ramyowleacvuelleenegmthisssfiroonmisthmeaciennltyragloAvGerNne.dThbiysaplhsootocanns -2m] c be inferred from the dependence of the H2 emission lines on the -1g s 14 ionizationparameterU. er To verify if shock models can fit the observational data, we F) [ν compared shock model results by Hollenbach&McKee (1989) ν g( 12 with our sample (see Fig. 2). Only few observational points are o l located in the area occupied by these shock models and, even in thesecases,modelsconsideringX-raysalsodescribethedata. On the other hand, varying in our models the H ioniza- 10 2 tion rate by cosmic rays by a factor of 200, we found that the H2λ2.1218µm/Brγ line ratio only increases by about 0.15dex, 8 10 12 log(ν1)4 [Hz] 16 18 whichshowsthattheadditionalionizationbycosmicrayshaslittle influenceontheH emissionlines. Figure 8. Spectral energy distribution at the Schwarzschild radio 2 A simple scenario where both [Feii] and H emissions are (10−5pc) of the Sy1 galaxy Mrk1066 used as the photoionization 2 mainlyduetotheX-raycontinuumcomingfromtheactivenucleus source for some models of this galaxy. We assumed a galaxy dis- tance of 50Mpc (Mouldetal. 2000). The photometric data were taken hasalsobeenproposedbyotherauthors.Forexample,Blietzetal. fromDressel&Condon(1978),Moshiretal.(1990),deVaucouleursetal. (1994) and Knopetal. (2001) showed that X-rays from the nu- (1991), Beckeretal. (1991), Douglasetal. (1996), Condonetal. (2002), cleus can heat the gas located in the narrow line region driving Skrutskieetal. (2003), Braatzetal. (2004), Guainazzietal. (2005), the [Feii] and H emission. Because 98% of the iron is tied up 2 Mun˜oz-Mar´ınetal.(2007),andCardamoneetal.(2007). industgrains,thisprocessmustfreetheironthroughdustdestruc- tionandyetnotdestroytheH molecules(Rodr´ıguez-Ardilaetal. 2 2004). These authors computed the emergent [Feii]λ1.2570 µm Longinottietal. 2007; Bianchietal. 2009; Krongoldetal. 2009; andH λ2.1218µmfluxusingtheX-raymodelsbyMaloneyetal. Cardacietal. 2011; Corraletal. 2011, and references therein), 2 (1996) and compared their predictions withobservational dataof provide information about the continuum shape and the particu- seven objects. They found that X-ray heating can only explain lar spectral features of the AGNs in this wavelength range. For a fraction of the [Feii] and H emission, and they stated that Mrk1066,wecomparedtheresultsobtainedusingthissimplesce- 2 the discrepancy found can be alleviated if the emitting gas is lo- nario that only involves a continuum modelled by a Big Bump cated closer than the distance adopted in their models. The X- and an X-ray power law with those obtained using its intrinsic ray data, provided by the XMM-Newton and Chandra space tele- SED.WebuilttheobservationalSEDtakingthephotometricdata scopes,andtheirdetailedanalysis(seee.g. Piconcellietal.2005; from the NASA/IPAC Extragalactic Database (NED), following 8 Dorset al. by Riffeletal. (2006, 2008, 2010) and Storchi-Bergmannetal. (2009), respectively. However, these authors did not reach con- clusiveresults.Forexample,Riffeletal.(2006)suggestedthatthe [Feii]excitationinESO428-G14ismainlyduetoshocks.Never- theless, the detailed analysis performed in the present work con- fronting our models with the IFU data shows that X-rays are a morereliabledominant excitationmechanism even inthecaseof ESO428-G14. 7 CONCLUSIONS In this work we show that a photoionization model grid built by adopting a continuum source characterized by two components, oneaccountingfortheBigBumpcomponentpeakingat1Rydand theotherdescribingtheX-raysemission,isabletoreproducethe [Feii]andH infraredemissionlinesofasampleofAGNs.Testing 2 theinfluenceoftheX-raysontheintensityoftheseemissionlines, wefoundthatadecrement intheX-raycontentofthecontinuum source translatesinto aweakening of these lines, and themodels areno longer compatiblewiththeobservations. Thisimpliesthat the heating by the X-ray emission from the active nuclei can be Figure9.ComparisonbetweenthegridmodelresultsshowninFig.1(solid consideredasthemostimportantmechanismofexcitationforthe lines)andthemodelsbuiltconsideringthesemi-empiricalSEDofMrk1066 IRemissionlinesoftheseelements. showninFig.8(dashedlines). Cardacietal.(2009).ToenhancethenumberofpointsoftheSED ACKNOWLEDGMENTS asneeded by Cloudy, weperformed alinear interpolation among Wearegratefultothereferee,NealJackson, forathoroughread- thesemi-empiricalpoints(seeFig.8).Webuiltanewgridofpho- ingofthemanuscriptandforsuggestionsthatgreatlyimprovedits toionization models under the same assumptions of abundances, clarity. ionization parameters and density, but only for one value of the Based on observations obtained at the Gemini Observatory, Fe/Oratioforeachmetallicity.InFig.9thepredictionsofourmod- whichisoperatedbytheAssociationofUniversitiesforResearch elsusingtheSEDofMrk1066andthemodelresultspresentedin inAstronomy, Inc., under a cooperative agreement withthe NSF Fig.1assumingthesameFe/Oabundance astheMrk1066 mod- onbehalfoftheGeminipartnership:theNationalScienceFounda- els are shown. The model results derived using the two different tion(UnitedStates),theScienceandTechnologyFacilitiesCoun- ionizingsourcesaremostlyinagreement. cil (United Kingdom), the National Research Council (Canada), The semi-empirical SED of Mrk1066 includes not only the CONICYT (Chile), the Australian Research Council (Australia), rangecoveredbytheCloudymodelbutalsotheradioandIRwave- Ministe´rio da Cieˆncia e Tecnologia (Brazil) and south-eastCYT lengths. Hence, the agreement between solid and dashed lines in (Argentina). This research has made use of the NASA/IPAC Ex- Fig. 9 only indicates that the assumed multicomponent model is tragalactic Database (NED) which is operated by the Jet Propul- a good representation of the AGN continuum when studying the sionLaboratory,CaliforniaInstituteofTechnology,undercontract [Feii]andH emission. 2 with the National Aeronautics and Space Administration. OLD Recent resolved integral field spectroscopy of the central and ACK are grateful to the FAPESP for support under grant region of active galaxies shows that the ionized (in particu- 2009/14787-7 and 2010/01490-3. MC and GH aregrateful tothe lar the [Feii] emitting gas) and the molecular (traced by the SpanishMinisteriodeCienciaeInnovacio´nforsupportundergrant H emission) gas have distinct flux distributions and kinemat- 2 AYA2010-21887-C04-03, and the Comunidad de Madrid under ics. The molecular component is more restricted to the plane of grantS2009/ESP-1496(ASTROMADRID).EPMisgratefultothe the galaxies and the ionized one extends to high latitudes above SpanishMinisteriodeCienciaeInnovacio´nforsupportundergrant it, which is in most cases co-spatially with the radio jet (e.g., AYA2010-21887-C04-02, andtheJuntadeAndaluc´ıaundergrant Riffeletal. 2006, 2008, 2009, 2010; Riffel&Storchi-Bergmann TIC114. 2011a,b; Storchi-Bergmannetal. 2009, 2010). Usually the [Feii] hasanenhancementinfluxandvelocitydispersioninregionssur- roundingtheradiostructure,suggestingthattheradiojetplaysan REFERENCES important role in the [Feii] emission. Our models are able to re- produce the [Feii] emission of active galaxies without consider- Acero F., Aharonian F., Akhperjanian A. G., Anton G., Barres ingshockexcitationbytheradiojet.Thus,theenhancementinthe de Almeida U., Bazer-Bachi A. R., Becherini Y., Behera B., [Feii]fluxinthevicinityofradiostructurescanbeinterpretedas Bernlo¨hrK.,BochowA.,and160coauthors,2009,Science,326, beingduetoanenhancementinthegasdensity,causedbythein- 1080 teractionoftheradiojetwiththeemittinggas,andmainlyexcited AllenM.G.,GrovesB.A.,DopitaM.A.,SutherlandR.S.,Kew- byX-raysfromthecentralengine. leyL.J.,2008,Astrophys.J.,Suppl.Ser.,178,20 The main exciting mechanism of infrared emission lines of AllendePrietoC.,LambertD.L.,AsplundM.,2001,Astrophys. ESO428-G14,Mrk1157,Mrk1066andNGC4151wasdiscussed J.Letters,556,L63 .... 9 BaldwinJ.A.,PhillipsM.M.,TerlevichR.,1981,Publ.Astron. Kewley L. J., Dopita M. A., Sutherland R. S., Heisler C. A., Soc.Pac.,93,5 TrevenaJ.,2001,Astrophys.J.,556,121 Becker R.H.,WhiteR.L.,Edwards A.L.,1991, Astrophys. J., KnopR.A.,ArmusL.,MatthewsK.,MurphyT.W.,SoiferB.T., Suppl.Ser.,75,1 2001,Astron.J.,122,764 BianchiS.,GuainazziM.,MattG.,FonsecaBonillaN.,PontiG., Krongold Y., Jime´nez-Bailo´n E., Santos-Lleo M., Nicastro F., 2009,Astron.Astrophys.,495,421 Elvis M., Brickhouse N., Andrade-Velazquez M., Binette L., BlackJ.H.,vanDishoeckE.F.,1987,Astrophys.J.,322,412 MathurS.,2009,Astrophys.J.,690,773 Blietz M., Cameron M., Drapatz S., Genzel R., Krabbe A., van LarkinJ. E.,ArmusL.,Knop R. A.,SoiferB. T.,Matthews K., derWerfP.,SternbergA.,WardM.,1994,Astrophys.J.,421,92 1998,Astrophys.J.,Suppl.Ser.,114,59 BraatzJ.A.,HenkelC.,GreenhillL.J.,MoranJ.M.,WilsonA.S., Longinotti A. L., Sim S. A., Nandra K., Cappi M., 2007, Mon. 2004,Astrophys.J.Letters,617,L29 Not.R.Astron.Soc.,374,237 CardaciM.V.,Santos-Lleo´ M.,Ha¨geleG.F.,KrongoldY.,D´ıaz MaloneyP.R.,HollenbachD.J.,TielensA.G.G.M.,1996,As- A. I., Rodr´ıguez-Pascual P., 2011, Astron. Astrophys., 530, trophys.J.,466,561 A125+ McCallB.J.,HuneycuttA.J.,SaykallyR.J.,GeballeT.R.,Djuric CardaciM.V.,Santos-Lleo´ M.,KrongoldY.,Ha¨geleG.F.,D´ıaz N.,DunnG.H.,SemaniakJ.,NovotnyO.,Al-KhaliliA.,Ehlerd- A.I.,Rodr´ıguez-PascualP.,2009,Astron.Astrophys.,505,541 ingA.,HellbergF.,KalhoriS.,NeauA.,ThomasR.,O¨sterdahl CardamoneC.N.,MoranE.C.,KayL.E.,2007,Astron.J.,134, F.,LarssonM.,2003,Nature,422,500 1263 McGregor P. J., Hart J., Conroy P. G., Pfitzner M. L., Bloxham CondonJ.J.,CottonW.D.,BroderickJ.J.,2002,Astron.J.,124, G.J.,JonesD.J.,DowningM.D.,DawsonM.,YoungP.,Jarnyk 675 M., Van Harmelen J., 2003, in M. Iye & A. F. M. Moorwood CorralA.,DellaCecaR.,CaccianigaA.,SevergniniP.,Brunner ed.,SocietyofPhoto-OpticalInstrumentationEngineers(SPIE) H.,CarreraF.J.,PageM.J.,SchwopeA.D.,2011,Astron.As- ConferenceSeriesVol.4841ofSocietyofPhoto-OpticalInstru- trophys.,530,A42+ mentation Engineers (SPIE) Conference Series, Gemini near- DaviesR.I.,Mu¨llerSa´nchezF.,GenzelR.,TacconiL.J.,Hicks infraredintegralfieldspectrograph(NIFS).pp1581–1591 E. K. S., Friedrich S., Sternberg A., 2007, Astrophys. J., 671, MeijerinkR.,SpaansM.,LoenenA.F.,vanderWerfP.P.,2011, 1388 Astron.Astrophys.,525,A119+ de Vaucouleurs G., de Vaucouleurs A., Corwin Jr. H. G., Buta MillerB.P.,BrandtW.N.,SchneiderD.P.,GibsonR.R.,Steffen R.J.,PaturelG.,FouqueP.,1991,ThirdReferenceCatalogueof A.T.,WuJ.,2011,Astrophys.J.,726,20 Bright Galaxies. Volume 1-3, XII, 2069 pp. 7 figs.. Springer- MoshirM.,KopanG.,ConrowT.,McCallonH.,HackingP.,Gre- VerlagBerlinHeidelbergNewYork gorichD.,RohrbachG.,MelnykM.,RiceW.,FullmerL.,White DouglasJ.N.,BashF.N.,BozyanF.A.,TorrenceG.W.,Wolfe J.,ChesterT., 1990, inBulletinof theAmericanAstronomical C.,1996,Astron.J.,111,1945 SocietyVol.22ofBulletinoftheAmericanAstronomicalSoci- DresselL.L.,CondonJ.J.,1978,Astrophys.J.,Suppl.Ser.,36, ety,TheIRASFaintSourceCatalog,Version2.pp1325–+ 53 Mould J. R.,Huchra J. P.,Freedman W.L.,Kennicutt Jr.R. C., EliasJ.H.,VukobratovichD.,AndrewJ.R.,ChoM.K.,Cuberly FerrareseL.,FordH. C.,GibsonB.K.,Graham J.A.,Hughes R.W.,DonK.,GerzoffA.,HarmerC.F.,HarrisD.,Heynssens S.M.G.,IllingworthG.D.,KelsonD.D.,MacriL.M.,Madore J. B.,Hicks J., Kovacs A., Li C.,Liang M., Moon I. K.,Pear- B. F., Sakai S., Sebo K. M., Silbermann N. A., Stetson P. B., sonE.T.,PlumG.,RoddierN.A.,TvedtJ.,WolffR.J.,Wong 2000,Astrophys.J.,529,786 W.-Y.,1998,inA.M.Fowlered.,SocietyofPhoto-OpticalIn- MouriH.,1994,Astrophys.J.,427,777 strumentationEngineers(SPIE)ConferenceSeriesVol.3354of MouriH.,KawaraK.,TaniguchiY.,1993,Astrophys.J.,406,52 SocietyofPhoto-OpticalInstrumentationEngineers(SPIE)Con- MouriH.,KawaraK.,TaniguchiY.,2000,Astrophys.J.,528,186 ferenceSeries,DesignoftheGemininear-infraredspectrometer. MouriH.,NishidaM.,TaniguchiY.,KawaraK.,1990,Astrophys. pp555–565 J.,360,55 FerlandG.J.,KoristaK.T.,VernerD.A.,FergusonJ.W.,King- Mun˜oz-Mar´ın V. M., Gonza´lez Delgado R. M., Schmitt H. R., donJ.B.,VernerE.M.,1998,Publ.Astron.Soc.Pac.,110,761 CidFernandesR.,Pe´rezE.,Storchi-BergmannT.,HeckmanT., FerlandG.J.,NetzerH.,1983,Astrophys.J.,264,105 LeithererC.,2007,Astron.J.,134,648 FerruitP.,WilsonA.S.,MulchaeyJ.,2000,Astrophys.J.,Suppl. MulchaeyJ.S.,WilsonA.S.,TsvetanovZ.,1996,Astrophys.J., Ser.,128,139 467,197 ForbesD.A.,WardM.J.,1993,Astrophys.J.,416,150 Mu¨llerSa´nchezF.,DaviesR.I.,GenzelR.,TacconiL.J.,Eisen- Garnett D. R., Dufour R. J., Peimbert M., Torres-Peimbert S., hauerF.,HicksE.K.S.,FriedrichS.,SternbergA.,2009,Astro- ShieldsG.A.,SkillmanE.D.,TerlevichE.,TerlevichR.J.,1995, phys.J.,691,749 Astrophys.J.Letters,449,L77+ Oliva E., Marconi A., Maiolino R., Testi L., Mannucci F., Ghi- Guainazzi M., Matt G., PerolaG. C., 2005, Astron. Astrophys., nassiF.,LicandroJ.,OrigliaL.,BaffaC.,CheccucciA.,and12 444,119 coauthors,2001,Astron.Astrophys.,369,L5 HicksE.K.S.,DaviesR.I.,MalkanM.A.,GenzelR.,Tacconi PeimbertA.,PeimbertM.,2010,Astrophys.J.,724,791 L.J.,Mu¨llerSa´nchezF.,SternbergA.,2009,Astrophys.J.,696, Piconcelli E., Jimenez-Bailo´n E., Guainazzi M., Schartel N., 448 Rodr´ıguez-PascualP.M.,Santos-Lleo´ M.,2005,Astron.Astro- HollenbachD.,McKeeC.F.,1989,Astrophys.J.,342,306 phys.,432,15 IzotovY.I.,Stasin´skaG.,MeynetG.,GusevaN.G.,ThuanT.X., QuillenA.C.,Alonso-HerreroA.,RiekeM.J.,RiekeG.H.,Ruiz 2006,Astron.Astrophys.,448,955 M.,KulkarniV.,1999,Astrophys.J.,527,696 JacksonN.,BeswickR.J.,2007,Mon.Not.R.Astron.Soc.,376, Ramos Almeida C., Pe´rez Garc´ıa A. M., Acosta-Pulido J. A., 719 2009,Astrophys.J.,694,1379 10 Dorset al. ReunanenJ.,KotilainenJ.K.,PrietoM.A.,2002,Mon.Not.R. Astron.Soc.,331,154 RiffelR.,Rodr´ıguez-ArdilaA.,PastorizaM.G.,2006,Astron.As- trophys.,457,61 RiffelR.A.,Storchi-BergmannT.,2011a, Mon.Not.R.Astron. Soc.,411,469 RiffelR.A.,Storchi-BergmannT.,2011b, Mon.Not.R.Astron. Soc.,pp1320–+ RiffelR.A.,Storchi-BergmannT.,DorsO.L.,WingeC.,2009, Mon.Not.R.Astron.Soc.,393,783 RiffelR.A.,Storchi-BergmannT.,NagarN.M.,2010,Mon.Not. R.Astron.Soc.,404,166 Riffel R. A., Storchi-Bergmann T., Winge C.,Barbosa F.K. B., 2006,Mon.Not.R.Astron.Soc.,373,2 Riffel R. A., Storchi-Bergmann T., Winge C., McGregor P. J., BeckT.,SchmittH.,2008,Mon.Not.R.Astron.Soc.,385,1129 Rodr´ıguez-ArdilaA.,PastorizaM.G.,ViegasS.,SigutT.A.A., PradhanA.K.,2004,Astron.Astrophys.,425,457 Rodr´ıguez-ArdilaA.,RiffelR.,PastorizaM.G.,2005,Mon.Not. R.Astron.Soc.,364,1041 Shaw G., Ferland G. J., Abel N. P., Stancil P. C., van Hoof P.A.M.,2005,Astrophys.J.,624,794 SimpsonC.,ForbesD.A.,BakerA.C.,WardM.J.,1996,Mon. Not.R.Astron.Soc.,283,777 SkrutskieM.F.,CutriR.M.,StieningR.,WeinbergM.D.,Schnei- derS.,CarpenterJ.M.,BeichmanC.,CappsR.,ChesterT.,Elias J.,and21coauthors,2003,VizieROnlineDataCatalog,7233,0 Storchi-BergmannT.,LopesR.D.S.,McGregorP.J.,RiffelR.A., BeckT.,MartiniP.,2010,Mon.Not.R.Astron.Soc.,402,819 Storchi-BergmannT.,McGregorP.J.,RiffelR.A.,Simo˜esLopes R.,BeckT.,DopitaM.,2009, Mon.Not.R.Astron.Soc.,394, 1148 SuchkovA.,AllenR.J.,HeckmanT.M.,1993,Astrophys.J.,413, 542 Tananbaum H., Avni Y., Branduardi G., Elvis M., Fabbiano G., Feigelson E., Giacconi R., Henry J. P., Pye J. P., Soltan A., ZamoraniG.,1979,Astrophys.J.Letters,234,L9 ThompsonJr.R.J.,1995,Astrophys.J.,454,660 TurnerJ.E.H.,Allington-SmithJ.,ChapmanS.,ContentR.,Done C., Haynes R., Lee D., Morris S.,2002, Mon. Not. R. Astron. Soc.,331,284 VeilleuxS.,GoodrichR.W.,HillG.J.,1997,Astrophys.J.,477, 631 VernerE.M.,VernerD.A.,KoristaK.T.,FergusonJ.W.,Hamann F.,FerlandG.J.,1999,Astrophys.J.,Suppl.Ser.,120,101 Zamorani G., Henry J. P., Maccacaro T., Tananbaum H., Soltan A., Avni Y., Liebert J., Stocke J., StrittmatterP. A., Weymann R.J.,SmithM.G.,CondonJ.J.,1981,Astrophys.J.,245,357

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.