Mon.Not.R.Astron.Soc.000,1–9(2006) Printed5February2008 (MNLATEXstylefilev2.2) X-ray and optical variability of Seyfert 1 galaxies as observed with XMM-Newton ⋆ R. Smith and S. Vaughan X-RayandObservationalAstronomyGroup,UniversityofLeicester,Leicester,LE17RH 7 0 0 Accepted2006December14;Received2006December05;inoriginalform2006October03 2 n a ABSTRACT J We haveexaminedsimultaneousX-rayandopticallightcurvesofa sample of eightnearby Seyfert 1 galaxies observed using the EPIC X-ray cameras and Optical Monitor on board 8 XMM-Newton.Theobservationsspan∼ 1dayandrevealedopticalvariabilityinfourofthe 1 eightobjectsstudied.In allcases, theX-rayvariabilityamplitudeexceededthatof theopti- v calbothinfractionalandabsoluteluminosityterms.Noclearlysignificantcorrelationswere 6 detected between wavebandsusing cross correlation analysis. We conclude that, in three of 0 thefourobjectsinwhichopticalvariabilitywasdetected,reprocessingmechanismsbetween 2 wavebandsdonotdominateeithertheopticalorX-rayvariabilityonthetime-scalesprobed. 1 0 Keywords: galaxies:active–galaxies:Seyfert:general–X-ray:galaxies 7 0 / h p 1 INTRODUCTION toachievethisistoschedulesimultaneousobservationsofasource - o on multiple telescopes. XMM-Newton provides a simpler way of ActiveGalacticNuclei(AGN)emitradiationoverabroadrangeof r performingtheseobservationsasitcarriestheOpticalMonitoras t wavelengthsfromradiothroughX-raysandarevariableoverthis s wellasthreeX-raytelescopesandcanthereforeperformX-rayand entire spectral range. It is thought that the variability in different a opticalobservationssimultaneously.Hereweexploitthiscapabil- : bandsmaybeconnectedordrivenbyasinglemechanism.Inthis v itytoexamineasmallsampleofobjectsandstudytherelationship paperweexaminethepotentialconnectionbetweenopticalandX- i betweenX-rayandopticalvariability. X rayvariabilityinSeyfert1galaxies. OpticalandUVcontinuumemission1 inAGNisbelievedto Previousstudiesofthissubjecthaveprovidedaconfusingar- r ray of results. In some cases, no correlation is detected on short a bethermal emissionoriginatingintheaccretion discsurrounding time-scales but light curves are correlated when averaged over a thecentralsupermassiveblackhole(SMBH).TheX-rayemission, longer period (e.g. NGC 4051; Peterson et al. 2000). NGC 4051 which shows the most rapid variability, is thought to come from wasalsostudiedbyShemmeretal.(2003)whofoundevidencethat thehot‘corona’ closetotheSMBH.Therearetwomaintheories theX-rayswereledbytheopticalemissionby∼ 2days.ForArk regardingaconnection between thesetwobands: reprocessing of 564,ontheotherhand,Shemmeretal.(2001) foundthattheUV X-raysintothermalopticalemissionandComptonupscatteringof lagstheX-rayemissionby0.4daysandopticallagsUVby∼ 2 optical photons toX-ray energies. In the X-rayreprocessing sce- days.TherearealsocaseswheretheX-rayandopticallightcurves nario,X-raysfromthecoronaareabsorbedinthedisc,heatingit, arecorrelatedwithnolag.Ina6yearobservationofNGC5548by whichthenre-radiatesthisenergyasopticalphotons.Theconverse Uttleyetal.(2003),astrongcorrelationbetweenX-rayandoptical theoryisthatphotonsfromthediscenterthecoronaandareComp- lightcurveswasdetectedatlag0±15daysfromdataaveragedat tonupscatteredbyhotelectronstobeemittedasX-rayphotons.Itis 30dayintervals.ForfurtherexamplesseeUttley(2005).Itisob- currentlyunclearhowimportantthesemechanismsareinforming viousthatfurtherworkneedstobedonetoresolvetheconfusion thecontinuumemissionfromAGN. surroundingreprocessing. If either of these processes are important in AGN then their effectshouldbeobservable inthevariabilityofthesource.Ifop- Onlytwopreviousstudieshaveusedthesimultaneousobserv- tical photons drive the X-ray photons then an increase in flux in ingcapabilitiesofXMM-Newtontoexaminevariabilitycorrelations theopticallightcurveshouldberepeatedintheX-raybandashort in AGN. Mason et al. (2002) used a 1.5 day long XMM-Newton whilelaterandviceversa.BycrosscorrelatingX-rayandoptical observationofNGC4051supplementedwithdatafromRXTEand lightcurvestolookforsuchacorrelation,wecaninferifandhow foundthreeprominentfeaturesinwhichtheX-rayleadstheoptical thedifferent emission regions areconnected. Thetraditional way emission.UsingMonteCarlosimulationstheyderivedaconfidence of85percentinthesefeatures.Are´valoetal.(2005)analysedthe long(300ks)observationofMCG−6-30-15andreportedasignif- ⋆ E-mail:[email protected] icant correlation with the UV leading the X-rays by 1.8 days. In 1 Throughoutthispaperweusetheterm‘optical’torefertotheoptical-UV thispaperwere-examinethesedataalongwithdatafromsixother bandpassoftheOpticalMonitor Seyferts. 2 R. Smith&S. Vaughan Table1.Observationsummary Object Redshift Ontime Revolution OMfilter No.OMexposures p OMrms X-rayrms (s) % % (1) (2) (3) (4) (5) (6) (7) (8) (9) 1H0707-495 0.0411 46018 0159 UVW2 15 0.067 2.0 40.1 Ark120 0.0322 112130 0679 UVW2 80 0.051 0.7 2.0 Ark564 0.0246 101774 0930 UVW1 49 0.088 0.3 22.8 MCG−6-30-15 0.0077 349286 0301–0303 U 275 <0.01 1.9 28.2 Mrk766 0.0129 129906 0265 UVW1 75 0.95 0 25.4 NGC3783(1) 0.0097 40412 0193 UVW2 30 0.36 0.4 5.8 NGC3783(2) 275633 0371–0372 UVW2 53 <0.01 2.9 20.7 NGC4051(1) 0.0023 121958 0263 UVW1 43 <0.01 1.5 47.6 NGC4051(2) 51866 0541 UVW1 15 <0.01 0.8 43.8 NGC7469 0.0163 164128 0912–0913 UVW2 111 <0.01 1.9 7.7 The remainder of this paper is organised as follows. In sec- thatpeaksintheobservedbandusingWien’sLaw.Thistempera- tion2wedescribetheobservationsselectedandthedatareduction turewasthenusedwiththestandardformulaeforageometrically procedures. The robustness of our technique is discussed in sec- thin, optically thick accretion disc to determine the approximate tion3.Section4containstheresultsoftheanalysisandinsection5 radiusfromwhichtheemissionoriginates: wecompare our resultstothosemade previously and discussthe implicationsoftheseresultstothestudyofAGNvariability. T(r)≈6.3×105 M˙ 1/4M−1/4 r −3/4 (1) (cid:18)M˙E(cid:19) 8 (cid:16)RS(cid:17) whereM˙/M˙ istheaccretionrateasafractionoftheEddington E 2 OBSERVATIONSANDDATAREDUCTION accretionrate,M8isthemassoftheblackholeinunitsof108M⊙ 2.1 Sampledefinitionandobservations andr/RS istheradiusintermsoftheSchwarzchildradius(Peter- son1997).Usingvaluesof0.01and0.1forM˙/M˙ ,andpublished E ThesatelliteXMM-NewtoncarriesthreeX-raytelescopesandaco- blackholemasses(seeTable 2),wederivedarangefortheradius aligned Optical Monitor (OM; Mason et al. 2001), comprising a oftheopticalregionbeingobserved.AssumingtheX-rayemission 30 cm Ritchey-Chre´tien telescope with a micro-channel plate in- comesfromclosetothecentralblackhole,thelighttraveltimeto tensifiedCCD.Thisgivesafieldofviewof17arcminsquareand theradiusofopticalemissionregiongivesaroughestimateforthe spatialresolutionof∼ 1arcsec,with0.48arcsecpixels.TheOM timedelaybetweenthesetworegions. cantakeimagesusinganyofsixnarrow-bandfilterssensitiveover Asanothercheckonthedelayexpected,weusedtheassump- therange1800−6000A˚,therebyprovidingopticalimagingand tion that the disc is heated entirely externally by X-rays. In this timinginformationsimultaneouswiththeX-rayobservations.The case,theenergyoftheblackbodypeakingintheOMfilteriscom- combination of long X-ray exposures with simultaneous optical parabletothetotalX-rayluminosity.Usingthetemperatureascal- data makes XMM-Newton ideal for probing the relation between culatedabove,Stefan’sLawwasusedtodeterminetheradiusofthe X-rayandopticalvariabilityonshorttime-scales. opticalemissionregion: TheXMM-NewtonScienceArchive(XSA)containsallavail- able data products from the satellite. The XSA was used to find LX =4πr2σT4 (2) longobservations(> 30ks)ofnearby(z< 0.1)Seyfert1galax- whereσisStefan’sconstant.TheX-rayluminosity,L ,isobtained ies.Objectswereselectediftherewere15ormoreexposurestaken X fromthe0.1−10 keVX-rayspectrum.Againtheradiuswascon- withasinglefilteroftheOM.Eightobjectswerefoundtosatisfy verted to an approximate time delay in light days. The results of these criteria: 1H 0707-495, Ark 120, Ark 564, MCG−6-30-15, thesecalculationsareshowninTable 2.Themajorityofsources Mrk 766, NGC 3783, NGC 4051 and NGC 7469. Four of these areexpectedtoshowtimedelaysoflessthanadaywhichshould sources had observations in two or more revolutions in the same theoreticallybeobservablewithXMM-Newton. filter.Asummaryoftheobservations of thesesourcesisgivenin Table 1. 2.3 Opticallightcurves 2.2 Predictedtimedelaysforthesample TheObservationDataFiles(ODFs)foreachsourcewereextracted Theeighttargetsselectedallhavepublishedblackholemassesti- from the XSA and processed using the task omichain of the mates,whichallowedustomakesimplepredictionsfortheinter- XMM-NewtonScienceAnalysisSystem(SASv6.5.0).Omichain bandtimedelaysthatmightbeexpectedfromreprocessingmodels. takestheODFsandperformsallstandardOMprocessingstepson Firstlyweassumedallheatinginthediscisgeneratedbythevis- themtoproducethefinalproducts-imagesandsourcelists.Once cosityof thediscitself.Differentradiiofthediscareatdifferent theimageshavebeencreated,omichainperformssourcedetec- temperaturesandcanbemodelledasblackbodieswithaparticular tionandphotometryroutines.Finallythesourcepositionsarecon- peakwavelength.Usingtheeffectivewavelengthoftheappropriate vertedfromdetectortoskycoordinatesandacombinedsourcelist OMfilter,wecalculatedthetemperatureofablackbodyspectrum fromallexposuresiscreated. X-rayand opticalvariabilityof Seyfert1s 3 samepixelinasingleCCDframe,andtheCLcorrectionisanon- Table2.Estimatedtimedelays linearcorrectionthathasbeencalibratedempiricallyandfoundto beself-consistentwhenappliedtoanapertureradiusof6arcsec(12 Object Mbh Int.delay Lx Ext.delay pixels).BeforetheCLcorrectioncanbeapplied,thePSF1correc- (106M⊙) (days) (1044ergs−1) (days) tionmustthereforebeimplementedtoscalethecountratefromthe (1) (2) (3) (4) (5) apertureusedtoaneffectiveapertureradiusof12pixels.Whenthe CCDisreadoutthereisashortamountoftime,theframetransfer 1H0707-495 2.31 0.02–0.03 0.42 0.16 time,whenanyincomingphotonsarenotdetected.Thedeadtime Ark120 150±192 0.25–0.54 20.1 1.10 Ark564 1.091 0.01–0.03 4.5 0.98 factorcorrectsforthisloss.IntheUVfiltersthewingsofthePSF MCG−6-30-15 2.9+1.83 0.03–0.07 1.14 0.69 aremoreextendedthanintheopticalfilterssoafurthercorrection Mrk766 0.−613.46 0.01–0.02 1.83 0.62 ismadetocountratesfromexposuresinthesefilterstoaccountfor NGC3783 29.8±5.42 0.09–0.18 2.55 0.39 thelossofcount ratefromthewings. Finallythetime-dependent NGC4051 1.91±0.782 0.02–0.04 0.03 0.08 degradationfactortakesaccountofthefactthattheperformanceof NGC7469 12.2±1.42 0.05–0.10 3.9 0.48 theOMgradually decreases over time.Theuncertaintiesoneach fluxpointwerederivedbypropagatingthePoissonianerroronthe 1Zhou&Wang(2005);2Petersonetal.(2004);3McHardyetal.(2005); sourceandbackgroundcountrates. 4Botteetal(2005) NOTES:Values in column 3 are based on the assumption of internal disc heatingbyviscosity.ThelowerlimitsuseavalueofM˙/M˙ =0.01andthe E upperlimitsuse0.1.X-rayluminosity(column4)isfortheband0.1–10keV. 2.4 X-raylightcurves Valuesincolumn5arebasedontheassumptionofexternaldischeatingby X-rays. X-ray light curves were produced using data from the European Photon Imaging Camera pn camera (EPIC-pn) onboard XMM- Newton.Eventlistsforeachobservationwereextractedusingthe standard processing procedure, epchain. In order to check for To create an optical light curve, photometry must be per- formedoneachexposureofeachobject.Althoughomichainau- backgroundflaring,10−15keVlightcurveswereextractedfrom off-sourceregionsandexaminedbyeyeforperiodsofhigh,vari- tomatically performs photometry on each image, the presence of able background. Where such intervals occurred they were re- hostgalaxyemissioninsomeimagescausestheroutinetoflipbe- moved by filtering out all time intervals during which the count tween‘extended’and‘pointsource’modesofphotometry,andso rate in the high energy light curve exceeded a critical value that does not perform a uniform extraction of all the images. As the was chosen to be slightly above the quiescent level, but was aimistoobtainaccuratephotometryofthenucleusandnotinclude slightly different for each observation. After filtering out back- thehostemissionthisisobviouslyundesirable.Inordertoensure uniform data reduction we used custom made scripts to perform ground flares, source light curves were extracted from a 40 arc- seccircularregionusingonlysingleordouble-pixel eventsinthe aperturephotometryandapplytheappropriateOMcorrectionsto the resulting data, modelled closely on the SAS processing tasks range0.2−10.0 keV,andbackgroundsubtractedusinganearby omdetectandommag. source-freeregion.ThelightcurveswerebinnedsuchthattheX- raysamplingiscomparabletothesamplingoftheOMlightcurves. Simple aperture photometry was applied to the images pro- ducedbyomichain(afterthemodulo-8correctionhasbeenap- Figure1showstheoptical/UVandX-raylightcurveforthe plied by the task ommodmap). Based on the user defined source sourceswithdetectableX-rayandopticalvariability.MCG−6-30- 15, NGC 3783 and NGC 7469 all had consecutive observations position (in detector coordinates), the exact source location was whichhavebeencombined. obtained by repeatedly centroiding on the counts within a small box,thenthecountswithinacircularaperturewereaccumulated. For all sources, except MCG−6-30-15, a circleof radius 12 pix- els was used as the source aperture to match the calibration (see below). Inthe case of MCG−6-30-15, a12 pixel radius aperture 3 TESTINGTHEMETHOD overlapped anearbystarso, toavoidthis,anapertureof7pixels 3.1 MonteCarlotests wasusedforallexposuresofMCG−6-30-15.Formostsources,an annulusplacedaroundthesourceaperturewasusedtoextractthe In order to test the robustness of our light curve extraction (out- backgroundcountrate.Thebackgroundannuluswasplacedatleast linedabove)toPSFlossesandhostgalaxycontamination,random 30pixelsoutfromthesourcetoavoidtheextendedPSFoftheUV dataweresimulatedandsubjectedtothesameaperturephotometry filters.InthecasesofArk564,MCG−6-30-15andNGC4051the procedure.Asthespacecraftpointingcanchangeduringanobser- hostgalaxyisvisiblearoundtheAGN.Asthehostgalaxyshould vationbyasmuchasafewarcsec,causingthetargetsourcetodrift notbevaryinginfluxanditisthefluxvariability,notabsoluteflux, severalpixelsacrosstheimage,thiseffectwasalsoincludedinthe thatwearestudying,wechosetoattemptnosubtractionofthehost simulations.ThesimulationsweredesignedtomatchtheMCG−6- galaxy fluxfrom theflux of the central AGN. Toget an accurate 30-15data,chosenbecauseitisthelongestdatasetandshowsthe valuefortheactualbackgroundofthefield,acircularbackground mostcontaminationfromitshostgalaxy.Thesimulationprocedure apertureawayfromthehostgalaxywasusedinthesecases. wasasfollows. In order to produce accurate count rates from aperture pho- The‘true’sourcepositionona224×224pixeldetectorgrid tometry of OM images there are five corrections that must be wasdefinedas(x0,y0)basedontheaveragedetector positionof applied - point spread function (PSF1), coincidence loss (CL), MCG−6-30-15intherealOMimages.Theeffectofrandompoint- deadtime (DT), a UV specific PSF correction (PSF2) and time- ingchangeswassimulatedbygivingarandomoffsettotheprecise dependentsensitivitydegradation(TDS).Coincidencelossisaloss positionofthepointsourceineachimage.Apointsourcewasthen of flux that occurs when more than one event is collected in the addedtotheimageatthenewposition(x0+∆x,y0+∆y)using 4 R. Smith&S. Vaughan Figure1. X-ray(0.2−10keV)andopticallightcurvesofMCG−6-30-15(Rev.0301–0303),NGC3783(Rev.0371–0372),NGC4051(Rev.0263),NGC 4051(Rev.0541)andNGC7469(Rev.0912–0913).X-raylightcurvesarebinnedtomatchtheopticalsampling.Errorbarsareincludedforallcountrate measurements,butforseveraloftheX-raylightcurvestheerrorbarsaresmallerthanthedatapointsymbols. X-rayand opticalvariabilityof Seyfert1s 5 the PSF model obtained from the latest calibration files. In prac- Table3.Fieldsourcesusedfortesting ticeadifferential PSFmodel was calculated fromthecumulative PSFmodel listedinthecalibrationfiles,andlinearlyinterpolated Fieldtarget RA Dec p toproduceafunctionsampledwith0.1pixelresolutionoutto12 (degrees) (degrees) pixels.Thiswasusedtodefinetheimageofthepointsourcefroma (1) (2) (3) (4) smoothPSFprojectedontoarelativelycoarsepixelgrid.Thehost galaxy emission was modelled as an ellipsoid with an exponen- Ark564 340.593 29.725 0.02 tialsurfacedensityprofile,withspatialparametersandnormalisa- 340.701 29.756 0.70 MCG−6-30-15 203.966 -34.137 0.21 tion(relativetothepointsource)takenfromthespatialanalysisof Mrk766 184.611 29.813 0.80 Are´valoetal.(2005), kindly suppliedbyDrAre´valo. Thesource NGC4051 180.786 44.539 0.21 imagewasthennormalisedtomatchthetypicalcountsperimage 180.793 44.541 0.56 fromtheobservations,andatypical(flat)backgroundlevel(∼3.3 180.763 44.541 0.77 ct/pix)wasadded.Thecountsperpixelwerethenrandomlydrawn fromaPoissondistributiontosimulaterandomcountingstatistics. Thesimulatedimageswerethensubjectedtoaperturephotometry. Forourfieldstartestswechosetwoobjectsofsimilarbrightness Specifically,repeatedcentroidingwasusedtofindtheexactsource toArk564whichwerefarenoughremovedfromotherobjectsin positionineachimage,thencountswereaccumulatedfromacir- thefieldtoallow accurate light curves tobe extracted. The other cular region and the PSF1 correction was applied exactly as for fieldsexaminedherecontainedfewobjectsotherthanthetargetso therealdata.Theeffectsoftheothercorrections,namelyCL,TDS allfieldstars(unlesscontaminatedbybeingtooclosetothetarget) and DT,werenot included. Thelattertwocorrections aresimply weretested. constantfactorsdeterminedforeachexposure,andtheCLiswell Table 3 summarises the results of these tests. A p value of calibratedforaperturephotometry(assumingthePSF1correlation ≫ 0.01 indicates that a light curve is non-variable. Three of the iscorrect). fourstarstestedprovedtobenon-variableprovingthatthemethod The simulations were designed to reproduce the effects of usedheredoesnotintroducespuriousvariability.Oneofthestars aperture photometry on a constant point source, the position of testedintheArk564fieldhasapvalueof0.02implyingpossible which is slightly different for each image, superposed on a real- variabilityinthesource.WeperformedCCFanalysisbetweenthis istichostgalaxyimageandflatconstantbackgroundlevel,allsub- objectandtheArk564lightcurvetoensurethedetectedvariability jectedtoPoissonvariations.Theendresultof200simulationswas isnotasystematicproblemalsoaffectingArk564.Nocorrelations a time series that could be fitted with a constant to test for spu- werefoundbetweenthetwoobjects.Wesuggestthatthestarisin- rious variability. Using random position offsets (∆x,∆y) drawn trinsicallyvariableanddoesnotcauseaproblemwithourmethod. from a Gaussian of mean zero and standard deviation 0.2 pixels, Asanother testof whether ornotthemethodisrobust,light theresult was afitstatisticof χ2 = 211.29 with199 degrees of curves for extended sources in the NGC 4051 host galaxy were freedom(dof),aperfectlyacceptablefit(p=0.262),indicatingno extracted. These will not vary on the time-scales probed here so statisticallysignificantvariabilitywaspresentgiven200images.A anon-varyinglightcurveshoulddefinitelybeproduced.Thelight longersimulationusing5000imagesdidshowsignificantvariabil- curvesextracteddidindeedprovetobenon-varyingconfirmingthat ity(χ2 = 5432.56for4999dof,p = 1.2×10−5)butonlyatthe themethoddoesnotintroducespuriousvariability. 0.4percentlevel,whichistoosmalltobedetectedinlessthan200 images.Thisexcessvariabilityisalsofarsmallerthanthemeasured amplitudesinanyoftheobservations(seebelow). 4 RESULTS Allowingfora10pixeldriftinbothxandy directionsover thecourseof 200 images,comparable tothetruedrift duringthe Todetermine whether or not the optical light curve isvariable, a MCG−6-30-15observation,plusarandomoffsetforeachimage, χ2 testwasperformedoneachlightcurve.Theresultingpvalues gavesimilarresults:χ2 = 205.19for199dof(p = 0.39).There aregiveninTable1.Valuesofp < 0.01indicatevariationatthe wasnostatisticallysignificantcorrelation(r = 0.044, p = 0.53) 99 per cent confidence level or greater and values between 0.01 betweenthemeasuredfluxandtheoffsetbetweenthecentroidand and 0.05 are possible detections of variability (95−99 per cent thestationary‘firstguess’position(x0,y0)giventothephotometry confidence).VariabilitywasdetectedintheOMlightcurvesat99 algorithm,indicatingthatthephotometrymethodisnotbiasedby percentconfidenceinfouroutofeightobjects. evenfairlylargechanges inspacecraftpointing. Thesameresults AlsoshowninTable1istheopticalandX-rayrmsvariabil- wereobtainedwhenthehostgalaxywasnotincludedinthesimu- ityamplitudeforeachsource.Thetypicalerrorinthesevaluesis lations,provingthatcontaminationbyhostgalaxylightwithinthe aroundonepercentso,dependingonthebrightnessofthesource, source aperture does not affect the variability. Changing the ran- anobjectwithrmsamplitudegreaterthanoneshouldbedetectable domoffsets(∆x,∆y)tohaveastandarddeviationof0.5pixelsin as varying. The optical rms values shown here are probably un- eachdirectionalsogaveentirelyconsistentresults. derestimated as they include the total flux of the source with no hostgalaxysubtraction.Forthefoursourcesthatshowsignificant variabilityinbothopticalandX-raybands,thermsvariabilityam- 3.2 Empiricaltestsusingfieldstars plitudewascalculatedinluminosityunits,astabulatedinTable4. Satisfiedthatourmethodperformedwellusingsimulateddatawe A standard tool for testing and measuring correlations be- thentesteditonactualdatafromtheOM.Forseveralofthesources tween two time series is the cross correlation function (CCF), inthesample(Ark564,Mrk766,MCG−6-30-15),starswerevis- which gives the degree of correlation between the two series as ibleinthefieldofview.Toprovethatthemethoddoesnotintro- oneseriesisshiftedbackwardsandforwardsintimerelativetothe ducespuriousvariability,theprocesswastestedonaselectionof other.Unfortunately,whenthedataarenotexactlyevenlysampled thesefieldstars.ThefieldaroundArk564containsmanyobjects. onecannotapplythestandard,‘textbook’formulaeforestimating 6 R. Smith&S. Vaughan Theconfidenceregionforthecorrelationcoefficientatagivenlag Table4.RMSvariability scaleswithN−1/2.Theboundsaresmallestatsmalltimedelays, pair wherethetwotimeseriesoverlapthemost, andincreasetowards Object OMrms X-rayrms (1042ergs−1) (1042ergs−1) the edges of the CCF. The CCFswere examined over a range of (1) (2) (3) lagsspanning,ineitherdirection,halftheobservationduration.At longerlagsthenumberofpairsthatcontributetotheCCFcalcula- MCG−6-30-15 0.2 35 tionrapidlydecreases,leadingtohighlyuncertainCCFestimates. NGC3783(2) 3.3 51 Itshould benoted however that Bartlett’sformulaisstrictlyonly NGC4051(1) 0.08 2.9 validwhenthenumber ofdatapointsN islargeandthedataare NGC4051(2) 0.5 0.7 stationary. As the X-ray/optical data do not satisfy either condi- NGC7469 7.3 30 tionwell,theconfidencelimitsshouldbeconsideredasroughes- timatesofthesizeofthetrueconfidenceregion.Bartlett’sformula isdiscussedinmoststandardreferencesfortimeseriesanalysisin- cluding:Jenkins&Watts(1968;sect8.2.1),Box&Jenkins(1976; theCCF(Box&Jenkins1976;Priestley1981;Brockwell&Davis sect 11.1.3), Priestley (1981; sect 9.5), Bendat & Piersol (1986; 1996).Therearetworeasonswhythepresentdataarenotevenly sect8.4),Kendall&Ord(1990;sect11.3),orBrockwell&Davis sampled:theOMimagesareratherevenlyspacedintimebutthere (1996;sect7.3.4). are a few gaps, and observations spanning more than one XMM- Previous papers discussing inter-band correlations in AGN Newtonrevolutionwillbesplitbytheorbitalgap.Suggestedsolu- variability have made use of Monte Carlo simulations to test the tionstotheproblemofunevensamplingincludeinterpolatingthe significance of any possible correlations. In principle the Monte data onto an even grid, or calculating the correlation using pairs Carloapproachshouldberobustbutinpracticeitdoesrelyonthe of data points that have a lag falling within a finite range (i.e. powerspectraofthetwolightcurvesbeingwellunderstoodinor- τij =tx(i)−ty(j)fallsintheinterval[τ,τ+∆τ]).Specificalgo- dertoproduce realisticsimulations. TechnicallytheCCFisnota rithmsthathavebeenusedinAGNmonitoringincludetheinterpo- ‘pivotal’statistic,meaningitissensitiveto‘uninteresting’param- latedcrosscorrelationfunction(ICCF;Gaskell&Peterson1987), eterssuchasthepowerspectralshape,andsosimulationsmustbe thediscretecorrelationfunction(DCF;Edelson&Krolik1988)and madeas carefullyaspossible. Forthe present analysis itwas not thez-transformeddiscretecorrelationfunction(ZDCF;Alexander possibletoobtainreliablepowerspectrafromthelimitedOMdata, 1997).Allthreeofthesewereusedinthepresentanalysisandthe andsoBartlett’sformula(whichusestheempiricalauto-correlation resultswerefoundtobeconsistent. function)wasusedasaguideofsignificance.Itisalsoworthnoting A second problem that plagues CCF estimation from AGN theresultsofMonteCarlotestsaresensitivetowhichofthepairof dataisthatthedataareoftennon-stationary,meaningthatthemean lightcurvesarerandomised–whethertheX-ray,oroptical,orboth and/orvarianceofashortlightcurvewillchangeovertime,dueto datasetarerandomisedcansubstantiallyaffecttheapparentsignifi- variationsontime-scaleslongerthanthelengthoftheobservation. cance,andasyetthereisnoacceptedpreference.Thischoiceisnot FollowingtheadviceofWelsh(1999)twoprecautionswereusedto requiredforBartlett’sformulatobeused. mitigatetheside-effectsofnon-stationarity.Firstlyalinearfunction Figure 2showstheCCFplotsfortheobjectsstudiedwhich wasfittedtothedata(usingordinaryleast-squares)andremovedto displayedopticalandX-rayvariability.Apositivelagintheplots suppressanylongtime-scalevariation,andsecondlythemeanand impliestheX-rayvariationsleadthoseintheopticalandviceversa variancewerecalculated‘locally’,usingonlythedatacontributing foranegativelag.The95and99percentconfidencelimitsarein- toaparticularlag.Followinganother suggestioninWelsh(1999) dicatedbydottedanddot-dashedlinesrespectively.Inthecaseof the correlation coefficient was computed using both the raw data NGC4051 (Rev.263) andNGC3783the95percent confidence andtherankeddata(eachdatapointbeingcorrelatedwasreplaced region is sufficiently broad that these data do not impose useful with itsrank). In principal using the ranked data should improve constraintsonthepossibilityofacorrelation.Theerrorbounds,as sensitivity to non-linear correlations and make the statistic more computedusingtheBartlettformula,werelargeinthesecasesbe- robusttooutliers,comparedtousingtherawdata.Inpracticethe cause the empirical ACFs for both optical and X-ray time series twowerefoundtobeincloseagreement. wereverybroad. Particularlyinthecaseof NGC3783theX-ray ConfidencelimitsontheCCFwerecomputedusingBartlett’s power spectrum over the time-scales studied here is rather steep, formula (Bartlett 1955) as an approximate but simple test of the leadingtosmoothlightcurvesandabroadACF,andhencealarge significance of any correlations. In particular, standard deviation error in the Bartlett formula. Thisaccounts for the fact that real- ofthedistributionofCCFpointsaroundanexpectedvalueofzero isations of processes with steeper power spectra (or equivalently, wascomputedusingequation11.1.9ofBox&Jenkins(1976).This broaderACFs)aremore‘weaklynon-stationary’.However,inthe assumesthatinrealitythetwoseriesarenotcorrelated,andcanbe casesofNGC4051(Rev.541),NGC7469andMCG−6-30-15the used to test against this hypothesis. Under the assumption of no CCFissufficentlywellconstrainedtoexcludeastrongcorrelation, cross-correlation(i.e.thenullhypothesisthattheexpectationvalue i.e.95percentconfidencelimitof|CCF(τ)|<0.5,overaplausi- oftheCCFiszero)Bartlett’sformulamaybewrittenas: blerangeofτ. 1 Somepreviousstudies(e.g.Nandraetal.2000)havedetected σ2{CCF(τj)}= Npair Xi ACF1(τi)ACF2(τi) (3) daecxorbruetlantiooncobreretwlaetieonnthbeetowpeteicnaloplitgichatlcaunrvdeXa-nrdayXl-irgahytpchuorvtoens.iInn- where the two ACF functions are the empirical auto- lightofthiswealsocrosscorrelatedtheopticallightcurvesofthe correlationfunctionsandthesummationiscarriedoutoverallmea- objectsstudiedherewiththe0.7−2/2−10 keVhardnessratio suredlags.HereNpairisthenumberofpairsofdatapointscontri- (which should track the photon index) but found the cross corre- butionatthelagτ . lationfunctionstobeverysimilartotheonesbetweenX-rayand j The95percentconfidenceregionwascalculatedas±1.96σ. opticalflux. X-rayand opticalvariabilityof Seyfert1s 7 Figure2. CCFplotsofMCG−6-30-15(Rev.0301–0303)NGC3783(Rev.0371–0372),NGC4051(Rev.0263-95percentconfidencelimitjustvisible), NGC4051(Rev.0541)andNGC7469(Rev.0912–0913).TheDCFisplottedinblackandtheICCFisthereddashedline.Thedottedanddot-dashedlines representthe95and99percentconfidencelimitsrespectively. 5 DISCUSSION 5.2 Comparisonwithpreviousstudies 5.2.1 ObservationsusingXMM-Newtondata TheobservationofNGC4051inRevolution0263wasalsoinves- 5.1 Summaryofresults tigated by Mason et al. (2002) for inter-band correlations. They Using data from the OM and X-ray telescopes aboard XMM- supplementedtheXMM-NewtondatawithX-rayobservationsfrom Newtonwehaveexaminedasampleofeightobjectstolookforev- RXTEandtheirCCFanalysiscoverspositivelagsuptotwodays. idenceofreprocessingbetweenwavebands.Opticalvariabilityon OvertheregionthattheirCCFplotoverlapswithours(0−0.6days) shorttime-scaleswasdetectedat99percentconfidenceinfourout theresultsareconsistent.WeobserveapeakintheCCFaround0.2 ofeightobjectsandrmsvariabilityamplitudesinallcasesshowthat days with a value of 0.75 similar to their peak of ∼ 0.6. Using theX-rayvariabilityisstronger,inbothfractionaltermsandabso- simulationsofuncorrelatedred-noiselightcurvestheyplaceacon- luteluminosityunits,thantheopticalvariability.Inthreeoutofthe fidence of 85 per cent in the correlation. Our peak lies between fourobjectsshowingdetectableopticalvariability,thecrosscorre- 68.3and95percentconfidencelevels,certainlynotsignificantat lationfunctionissufficientlywellconstrainedtoexcludeastrong 99percent.However,asmentionedinsection4,theconfidencere- X-ray/opticalcorrelationandhencereprocessingontime-scalesof gionsinthiscasearenotwellenoughconstrainedtocommenton <1dayisnotadominantmechanism. thecorrelation. 8 R. Smith&S. Vaughan TheOMobservationofMCG−6-30-15waspreviouslyanal- Shemmeretal.(2003)studiedNGC4051andfoundevidence ysedbyAre´valoetal.(2005),whoreportedapositivecorrelation foracorrelationbetweenX-rayandopticalbandswithalagofless with DCF = 0.82 at 160 ks (around 1.8 days) with the UV than one day. Their campaign covered a period of three months max leading theX-raydata. UsingMonte Carlosimulationsthey esti- withapproximatelydailyobservationsandsoprobedalongertime- matedaconfidencelimitof98.5percent(i.e.ap-valueof0.015). scalethan we examine here. NGC 4051 was also investigated by By contrast our analysis found a much lower CCF peak (0.35) Petersonetal.(2000).Onshorttime-scalestheyfoundnoevidence whichwasnotconsideredasignificantdetectionofcorrelation. forcorrelations.Havingsmoothedthedatain30daybinshowever ThereareseveraldifferencesbetweentheanalysisofAre´valo acorrelationconsistentwithzerolagisdetected. etal.(2005)andthatofthepresentpaper.Intermsofthelightcurve A30 dayobservation of NGC7469by Nandraetal.(1998) extraction,Are´valoetal.(2005)performedphotometryonattitude foundthatatleasttwovariabilitymechanismsarerequiredtode- correctedimagesbyfittinganempiricalPSFmodel tothesource scribetheirresult.CrosscorrelationofUVandX-raylightcurves image, whilesimultaneously modellingthehost galaxyemission. gave evidence for a lag of around four days. This lag explained Thepresentanalysisusedaperturephotometryon(detectorspace) the differing times of maxima in the two light curves but failed imagesbasedontheSASprocessingpipelinetasks,includingcor- todescribehowtheminimainthelightcurvesoccurredsimulata- rections for coincidence loss, deadtime and the counts/frame de- neously. pendence of the PSF model, none of which were included by Asnoneofthestudiesdescribedaboveprobethesameshort Are´valo et al. (2005). These differences in extraction technique time-scalesexaminedhereitisdifficulttomakeacomparisonbe- explaintheapparent differencebetweenthetworeductionsofthe tweenthemandtheresultsdescribedinthispaper.Anoverallpic- same data. Are´valo et al. (2005) alsoused coarser binning of the ture seems to be emerging of no correlation between X-ray and lightcurves,butapplyingthesamebinningtoourlightcurvesdid optical emission over sub-day periods but significant correlations notsubstantiallydecreasethediscrepancy.AsshowninSection3 onlyappearingonmuchlongertime-scales. theaperturephotometrymethodemployedinthispaperisrobustto hostgalaxypresenceandtopointingchangesbut,unliketheanal- ysis of Are´valo et al. (2005), our method includes all the known 5.3 ImplicationsforAGNvariability time-dependentfluxcorrectionsthatshouldbeappliedtoOMdata. In line with other work we find that X-ray rms variability ex- Therefore,inprincipleatleast,thisreductionshould bethemore ceedsthatintheopticalinallcases.However,intheobjectswith reliable. wellconstrainedCCF(MCG−6-30-15,NGC4051(Rev.0541)and In practice most of the difference between the correlation NGC7469),theabsenceofastrongcorrelationimpliesthemajor- strengthsisduetothemoreconservativeapproachemployedinthe ityof thevariance intheoptical band on short time-scales isun- presentanalysisforcalculatingtheCCF.Are´valoetal.(2005)pre- correlatedwiththeshorttime-scaleX-rayvariations.Papadakiset sentedtheDCFafternormalisingbythenoise-subtractedvariances al. (2000) suggest that this behaviour could be explained if only (i.e.thevariancesusedinthedenominatorofthecorrelationcoef- asmall section of theaccretion disc isvisible tothe X-raysor if ficientformulahadthemeansquareerrorsubtracted).Thepresent theX-rayemissionisanisotropic. Twooftheobservations show- analysis used ICCF, DCF and ZDCF methods without the noise- ingopticalvariability,NGC3783andNGC4051(Rev.0263)have subtractionterm,employinglinearandrank-ordercorrelationcoef- poorlyconstrained CCFconfidenceregionsandsoafirmconclu- ficients,thelattershouldbemorerobusttooutliers.Includingthe sionontheseobjectscannotbedrawn. noise-subtraction term increased the CCF value by ≈ 0.2 at the Intermsoftheoverallpictureemergingfromvariabilitystud- claimedlag,butthisonlyaffectstheabsolutevalueoftheCCFand ies this solidifies earlier findings (Edelson et al. 2000; Uttley et notitssignificance(sincetheeffectshouldbecalibratedoutduring al.2003)that,onshorttime-scales,X-rayandopticalvariationsin thesignificancetest). Seyfert1galaxiesareuncorrelated.Manypapers(seesection5.2) Aseconddifferenceisthat,inthepresentanalysisthetimese- findsomeevidenceforcorrelationsonlongertime-scales.Itseems rieswere‘detrended’beforecalculatingtheCCFbysubtractingoff thatrapidX-rayandopticalvariationsinSeyfert1galaxiesoccur alinearfunction.AsrecommendedbyWelsh(1999)thishelpsre- through separate mechanisms but long-term variations are some- moveanybiascausedbyverylongtime-scalevariationsmanifested howconnected. asquasi-lineartrendsoverthedatathatcanleadtospuriouslyhigh IntensiveobservationswithXMM-Newtonarenotsuitablefor correlationcoefficients.ApplyingthedetrendingreducedtheCCF probing longer time-scale variations. However, one promising al- by≈0.2attheclaimedlag.Ifthecorrelationat∼1.8-dwasrobust ternativeistheSwiftGammaRayBurstExplorer.Swiftcarriesco- itshouldnotbeaffectedbyremovaloflongertime-scale(∼ 5-d) alignedX-ray(XRT;Burrowsetal.2005)andUV/optical(UVOT; variations. Romingetal.2005)telescopescoveringessentiallythesameband- pass as XMM-Newton, but is in a low-Earth orbit making it bet- tersuitedtoregular‘snapshot’monitoringofsourcesoverweeks- 5.2.2 Observationsfromothertelescopes months. Thecombination of XMM-Newtonand Swiftis therefore Severalothersourcesdiscussedherehavealsobeenstudiedprevi- capable of probing X-ray/optical correlations withunprecedented ously:Ark564,NGC4051andNGC7469. detailonalltime-scalesfromhourstoweeks. Ark564wasobservedbyPapadakisetal.(2000)overaperiod of 21 days at theSkinakasObservatory inoptical and simultane- ouslyinX-rayswithASCA.Papadakisetal.(2000)probedslightly ACKNOWLEDGMENTS longer time-scalesthanwedobut,inlinewiththetrendreported here,theyfindnosignificantcorrelationsbetweenthetwobands. Wethanktheanonymousrefereeforusefulcommentsandsugges- Shemmeretal.(2001)examinedArk564overalongerperiod(50 tions.RJSandSVacknowledgePPARCforfinancialsupport.This days)inUVwithHSTandX-raywithRXTEandASCA.Theyfound paper is based on observations obtained with XMM-Newton, an evidenceofUVemissionfollowingX-rayby∼0.4days. ESA science mission with instruments and contributions directly X-rayand opticalvariabilityof Seyfert1s 9 funded by ESA Member States and the USA (NASA). This re- search has made use of the NASA/IPAC Extragalactic Database (NED) which is operated by the Jet Propulsion Laboratory, Cal- ifornia Institute of Technology, under contract with the National AeronauticsandSpaceAdministration. REFERENCES AlexanderT.,1997,inMaozD.,SternbergA.,LeibowitzE.M.,eds,ASSL Vol.218,AstronomicalTimeSeries,p163 Are´valoP.,Papadakis I.,KuhlbrodtB.,BrinkmannW.,2005,A&A,430, 435 BartlettM.S.,1955,AnIntroductiontoStochasticProcesses(CUP:Cam- bridge) BendatJ.S.,PiersolA.G.,1986,RandomData:AnalysisandMeasurement Procedures,(Wiley:NewYork) BotteV.,CiroiS.,DiMille F.,Rafanelli P.,RomanoA.,2005,MNRAS, 356,789 BoxG.E.P.,JenkinsG.M.,1976,TimeSeriesAnalysis:Forecastingand Control,2nded.(Holden-Day:SanFrancisco) BrockwellP.J.,DavisR.A.,1996,IntroductiontoTimeSeriesandFore- casting(Springer:NewYork) BurrowsD.N.,etal.,2005,SpaceScienceReview,120,165 EdelsonR.A.,KrolikJ.H.,1988,ApJ,333,646 EdelsonR.A.,etal.,2000,ApJ,534,180 GaskellM.C.,PetersonB.M.,1987,ApJS,65,1 JenkinsG.M.,WattsD.G.,1968,SpectralAnalysisandItsApplications (Holden-Day:SanFrancisco) KendallM.,OrdJ.K.,1990,TimeSeries,3rded.(EdwardArnold:London) MasonK.O.,etal.,2001,A&A,365,L36 MasonK.O.,etal.,2002,ApJ,580,L117 McHardyI.M.,GunnK.F.,UttleyP.,GoadM.R.,2005,MNRAS,359, 1469 Nandra K., Clavel J., Edelson R. A., George I. M., Malkan M. A., MushotzkyR.F.,PetersonB.M.,TurnerT.J.,1998,ApJ,505,594 NandraK.,LeT.,GeorgeI.M.,EdelsonR.A.,MushotzkyR.F.,Peterson B.M.,TurnerT.J.,2000,ApJ,544,734 Papadakis I.E.,BrinkmannW.,NegoroH.,DetsisE.,Papamastorakis I., GliozziM.,2000,preprint(astro-ph/0012317) Peterson B. M., 1997, An Introduction to Active Galactic Nuclei. Cam- bridgeUniversityPress(Cambridge) PetersonB.M.,etal.,2000,ApJ,542,161 PetersonB.M.,etal.,2004,ApJ,613,682 PriestleyM.B.,1981,SpectralAnalysisandTimeSeries,AcademicPress (London) RomingP.,etal.,2005,SpaceScienceReview,120,95 ShemmerO.,etal.,2001,ApJ,561,162 ShemmerO.,Uttley P.,Netzer H.,McHardy I.M.,2003, MNRAS,343, 1341 UttleyP.,EdelsonR.A.,McHardyI.M.,PetersonB.M.,MarkowitzA., 2003,ApJ,584,L53 UttleyP.,2005,inGaskellC.M.,McHardyI.M.,PetersonB.M.,Sergeev S.G.,eds, ASP Conf. Ser., AGN variability from X-rayto radio, in press(astro-ph/0501157) WelshW.F.,1999,PASP,111,1347 ZhouX.-L.,WangJ.-M.,2005,ApJ,618,L83 ThispaperhasbeentypesetfromaTEX/LATEXfilepreparedbythe author.