BulletinofMathematicalBiology(2009)71:189–210 DOI10.1007/s11538-008-9359-5 ORIGINAL ARTICLE Within-Host Virus Models with Periodic Antiviral Therapy PatrickDeLeenheer DepartmentofMathematics,UniversityofFlorida,Gainesville,USA Received:28January2008/Accepted:11September2008/Publishedonline:13December2008 ©SocietyforMathematicalBiology2008 Abstract Thispaperinvestigatestheeffectofdrugtreatmentonthestandardwithin-host virusmodel,assumingthattherapyoccursperiodically.Itisshownthateradicationispos- sibleundertheseperiodicregimens,andwequantitativelycharacterizesuccessfuldrugs ordrugcombinations,boththeoreticallyandnumerically.Wealsoconsidercertainopti- mizationproblems,motivatedforinstance,bythefactthateradicationshouldbeachieved atacceptable toxicity levelstothepatient.Itturnsoutthattheseoptimization problems canbesimplifiedconsiderably,andthismakescalculationsoftheoptimaafairlystraight- forwardtask.AllourresultswillbeillustratedonanHIVmodelbymeansofnumerical examplesbasedonup-to-dateknowledgeofparametervaluesinthemodel. Keywords Within-hostvirusmodels·HIV·HBV·HCV·Influenza·Malaria· Periodicdrugtreatment·Optimization 1. Introduction Forthepasttwodecades,within-hostvirusmodelsdescribingviralinfectionshaveplayed animportantroleintheunderstandingofviruses,andthewaysinwhichtheyescapenot only the immune system, but also the various drugs that have been developed to sup- pressviralreplication.Testingspecifichypothesesbasedonclinicaldataisoftendifficult sincesamplescannotalwaysbetakentoofrequentlyfrompatients,orbecausedetection techniquesofthevirusmaynotbeaccurate.Thisjustifiesthecentralroleplayedbymath- ematicalmodelsinthisareaofresearch. In this paper, we will revisit the standard model of within-host virus infections (Perelson and Nelson, 1999; Nowak and May, 2000) which encompasses several im- portantinfectionssuchasHIV(Richman, 2004),hepatitis B(GanemandPrince, 2004; LocarniniandLai,2003)andC(SpecialissueonvirologyandclinicaladvancesofHCV infection,2006),influenza(Earnetal.,2002),andeventhemalariaparasiteP.falciparum (Molineaux and Dietz, 2000), and we will explore the consequences of periodic antivi- ral treatment. We will characterize analytically and numerically the periodic treatment schedulesthatleadtoviraleradication.However,ourresultsshouldbeinterpretedwith E-mailaddress:[email protected]fl.edu. SupportedinpartbyNSFgrantDMS-0614651. 190 DeLeenheer a healthy dose of caution. Indeed, in the case of HIV, for example, we know that viral eradicationwiththecurrentlyavailabledrugsisnotpossible,evenwhenpatientsadhere tothestricttreatmentregimens.Thismeansthateitherthemathematicalmodeldoesnot capturealltherelevantdynamicsoftheinterplayofthevirusanditshostcells,orthatthe drugsarenotpotentenoughforviraleradication.Itseemsreasonabletospeculatethata mixofbothofthesefactorsistoblame,andadditionalmodelingeffortsarenecessary. In the case of HIV, several explanations for treatment failure have been proposed, suchasthepre-existenceofdrug-resistantstrains(RibieroandBonhoeffer,2000),orthe emergence of resistant strains after initiation of drug therapy (Bonhoeffer and Nowak, 1997;Larderetal.,1989;Richmanetal.,1994).Theabilityofthevirustomutatequickly intoformswhichmaybelesssensitivetodrugshasbeen,andcontinuestobe,thefocusof muchattention;seetherecentcontributions(Balletal.,2007;DeLeenheerandPilyugin, 2008) that study the behavior of multistrain viral models. According to Siliciano et al. (2003), treatment failure is due to the presence of a latent reservoir of HIV in resting memoryCD4+Tcells. Otherresearchhasgravitatedaroundthefactthattheperiodicregimeninwhichdrugs are taken daily (or more frequently), puts a very high strain on the patient, calling for therapiesminimizingthetreatmentburdenonthepatient(Kirschneretal.,1997),andalso leadingtoinvestigationsoftheuseofStructuredTreatmentInterruptions(STIs)(Bajaria etal.,2004;KrakovskaandWahl,2007;Ortizetal.,2001). Recallthatthestandardmodel(PerelsonandNelson,1999;NowakandMay,2000)is athree-dimensionalnonlinearODE.InthecaseofHIV,itsstateconsistsoftheconcentra- tionsofhealthyCD4+Tcells(thetargetsoftheHIV),infectedTcells,andviralparticles. UponinfectionofahealthyTcell,oneofthefirstordersofbusinessistomakeacopyof theviralRNA,usingtheenzymereversetranscriptase.Thisstep,whichiserror-proneand leads to mutations, can beblocked by aclass of drugs called reverse transcriptase (RT) inhibitors.Oncetheviralcopyhasbeenproduced,thedoublestrandedviralDNAinte- gratesinthecell’snucleusasprovirus.Theusualgeneexpressionnowdoestherest,and viralproteinsareproducedaccordingtothegeneticinformationencodedintheprovirus. These proteins are assembled, mature, and ultimately new viruses bud off from the in- fected cell’s surface which go on to infect other T cells. During the maturation stage, theproteaseenzymeisusedtocleavelongproteinchains,andtheso-calledprotease(P) inhibitorsaredrugsthattargetthisstep.Ifeffective,theygiverisetodefectivevirus. Forotherviruses,despitedifferencesintheinfectionandreplicationmechanisms,and in the drugs used against them, the standard model is still a popular model for describ- ingthedynamicsoftheinfection.ForhepatitisBorC,thetargetcellsarelivercellsand someofthedrugsusedarelamivudine,adefovirandentecavir(forHBV),ribavirin(for HCV)andinterferon(forHBVandHCV).Theinfluenzavirusinfectsepithelialcellsand istreatedwithneuraminidaseinhibitors(suchasoseltamivirandzanamivir)andM2in- hibitors(suchasamantadineandrimantadine).Finally,themalariaparasiteP.falciparum infectserythrocytes(redbloodcells)andmalariahascommonlybeentreatedbychloro- quine. The purpose of this paper is to assess theoretically and quantitatively what the im- pactisofperiodicdrugtreatmentonthedynamicbehaviorofthestandardmodel,andin particular to determine what it takes to get rid of the infection. Mathematically, we ob- tainanonlinearperiodicODE,forwhichingeneralitisdifficulttoproveglobalstability Within-HostVirusModelswithPeriodicAntiviralTherapy 191 and this explains why much research has traditionally resorted to simulations. Surpris- ingly though, solutions to the standard model ultimately are bounded by solutions of a monotonesystem,aspointedoutbyd’Onofrio(2005),andthisallowstoconcludeglobal stabilityforthenonlinearperiodicmodel. We will first consider a simple case of HIV treatment, where only RT inhibitors are administered,andwhereitisassumedthatthedrugisofthebang-bangtype,i.e.,ateach momentduringtheperiodofthetreatmentcycle,thedrugisinoneoftwostates:Either itisactiveatafixedefficiencylevel,oritisinactive.Thedrugisthuscharacterized by twoparameters:itsefficiencylevelwhenactive,andthedurationoftheactivity.Amajor roleinouranalysisisplayedbythespectralradiusofanon-negativematrix(namelyof thefundamentalmatrixsolution,evaluatedoveronetreatmentcycle,ofthelinearization attheinfection-freeequilibrium),whichisshowntopossessexpectedmonotonicityprop- ertiesintermsofthetwoparametersthatcharacterizethedrug.Specifically,thisspectral radius—whichalsocontrolsthespeedofconvergencetotheinfection-freeequilibrium— islowerwhenthedrugismorepotentorwhenitisactivelonger.Equivalently,conver- gencetotheinfection-freeequilibriumisfasterwithamorepotentdrug,oradrugwhose activitylastslonger.WewillseethattheseresultscanbegeneralizedtothecaseofPin- hibitors,ortoamixofbothRTandPinhibitors.Thislatterscenarioreflectsmoreclosely thestandardpracticeofadministeringcocktailsofdrugstoHIVinfectedpatients. Inreality,theefficiencyofadrugisnotofthebang-bangtype.Infact,currentresearch isinvestigatingtheeffectofincludingpharmacokineticsintothepicture,andhasrevealed that the efficiency is a periodic signal with an initial steep rise right after drug intake, followed by a slower decay over a period; see the work of Dixit and Perelson (2004), Rongetal.(2007)fordetailedmodels.Therefore,weturntothismoregeneralcase,by approximatingtheefficiencybyamoregeneralpiecewiseconstantperiodicsignal.Itturns outthatthepreviousresultsremainvalid. Finally,weturntooptimizationproblemsthatinvolveeithermaximizingthespeedof convergencetotheinfection-freeequilibriumwhilemakingsurethatacceptabletoxicity levelsarenotexceeded,orbyminimizingtoxicitylevels,whilemakingsurethespeedof convergencedoesnotfallbelowacertainthreshold. Allourresultswillbeillustratedbymeansofnumericalexamplesofwithin-hostHIV models whose parameters are chosen in accordance with current prevailing knowledge basedonclinicaldataandextensiveexperimentalevidence.Ourresultshavethepotential to suggest which drug, or which combination of drugs, are optimal for a given patient. Theycanalsobeusedtoexploretheconsequencesofchangingthetreatmentfrequency. Theinvestigationoftheimpactofperiodictreatmentcyclesonmulti-strainmodels,orthe effectofSTIsisthesubjectofongoingresearch. Notation FormatricesAandB,0≤A,0<AmeansthatAisa(entry-wise)nonneg- ative,positivematrix,respectively,andA≤B meansthat0≤B−A.Amatrixiscalled quasi-positiveifallitsoff-diagonalentriesarenonnegative.Thespectralradiusofama- trix A is defined as the largest modulus of all eigenvalues of A and will be denoted by ρ(A).Wewillalsousethem(cid:2)atrixexponentialofasquarematrixA,whichisdefinedby theconvergentmatrixseries ∞ 1Ai,andwillbedenotedbyEXP[A]. i=0i! 192 DeLeenheer 2. Within-hostvirusmodelwithtreatment Webrieflyrecallthewell-knownstandardmodel(PerelsonandNelson,1999;Nowakand May,2000).Let T˙ =f(T)−kVT, T˙∗=kVT −βT∗, (1) V˙ =NβT∗−γV, whereT,T∗,V denotetheconcentrationsofhealthyandinfectedcells,andvirusparti- cles, respectively. The notation T,T∗,V is borrowed from the HIV literature (Perelson andNelson,1999;NowakandMay,2000),wheretheyrepresentconcentrationsofCD4+ T-cells,infectedT-cells,andHIVvirus.Butwestressthatothervirusandparasiteinfec- tionsaredescribedwiththesamemodelasexplainedintheIntroduction. Allparametersareassumedtobepositive.Theparametersβ andγ arethedeathrates ofinfectedcellsandvirusparticles,respectively.Theinfectionisrepresentedbyamass actiontermkVT,andN istheaveragenumberofvirusparticlesbuddingoffaninfected cellduringitslifetime.The(net)growthrateoftheuninfectedcellpopulationisgivenby thesmoothfunctionf(T):R+→R,whichisassumedtosatisfythefollowing: ∃T >0:f(T)(T −T )<0 forT (cid:7)=T , and f(cid:8)(T )<0. (2) 0 0 0 0 We have chosen to make the class of allowable f(T)’s as large as possible, since the growthrateishardtodetermine.Inaddition,mostmathematicalresultsapparentlyremain validforthislargeclass.Finally,wenoticethatthetwomostpopularchoicesforf(T), namelya−bT forsomepositivea andb;seeNowakandMay(2000)ands+rT(1− T/T ) for some positive s,r and T , see Perelson and Nelson (1999) (here, s is a max max sourcetermmodelingcellproduction—whichinthecaseofHIVoccursinthethymus— andr andT arethemaximalpercapitagrowthrateandcarryingcapacityrespectively max describinglogisticgrowthofcells),satisfytheprecedingconditions. Sincecontinuityoff impliesthatf(T )=0,itfollowsthat 0 E =(T ,0,0), 0 0 isanequilibriumof(1),andwewillrefertoitastheinfection-freeequilibrium. Asecond,positiveequilibrium(correspondingtoaninfection)mayexistifthefollow- ingquantitiesarepositive: ¯ ¯ T¯ = γ , T¯∗= f(T), V¯ = f(T). (3) ¯ kN β kT Notethatthisisthecaseifff( γ )>0,orequivalentlyby(2)thatT¯ = γ <T .Interms kN kN 0 ofthebasicreproductionnumber kN R := T , 0 γ 0 Within-HostVirusModelswithPeriodicAntiviralTherapy 193 existenceofapositiveequilibriumisthereforeequivalentwith 1<R , (4) 0 whichwillbeastandingassumptionthroughouttherestofthispaper.Indeed,ifwewould assume that R <1, then it would follow from De Leenheer and Smith (2003) that the 0 infection-freeequilibriumE isgloballyasymptoticallystable(GAS),andhenceinthis 0 casetheinfectionwouldalwaysbeclearedwithouttreatment. WedenotethepositiveequilibriumthatcorrespondstoaninfectionbyE=(T¯,T¯∗,V¯). LinearizationatE showsthatitisunstable,andconditionsonf(T)areknownthatguar- 0 anteethatEisGAS(excludingofcourseinitialconditionscorrespondingtoahealthy,un- infectedindividual;thesecoincidewiththeT-axis,whichisthestablemanifoldofE ). 0 However,itisalsopossiblethatthemodelexhibitssustainedoscillatorysolutionswhich canbeasymptoticallystable.Regardlessofthedynamicalcomplexityofthesolutionsof the model, in general, if left untreated, the infection will persist in a patient. All these resultsfollowfromDeLeenheerandSmith(2003). Obviously, the purpose of treatment is to clear the infection, hopefully by making E GASbysuitablemodificationsofmodel(1)whichreflecttheeffectofdrugs.Letus 0 specializetoHIVbyexaminingtheeffectofRTinhibitors.TheeffectofusingPinhibitors willbeconsideredlater.UsingmonotherapybasedonRTinhibitors,model(1)ismodified to: (cid:3) (cid:4) T˙ =f(T)−k 1−(cid:5)(t) VT, (cid:3) (cid:4) T˙∗=k 1−(cid:5)(t) VT −βT∗, (5) V˙ =NβT∗−γV, where(cid:5)(t)∈[0,1]isthe(time-varying)drugefficiencyoftheRTinhibitors.Thedrugis noteffectivewhen(cid:5)(t)=0and100%effectivewhen(cid:5)(t)=1.NoticethatE isstillan 0 equilibriumofthemodifiedmodel(5),regardlessofthedrugefficiency. Assuming that the efficiency is constant over time, we set (cid:5)(t)=e∈(0,1]. Then to cleartheinfection,itsufficestochooseesuchthatthemodifiedbasicreproductionnum- berR ((cid:5))islessthan1,where 0 k(1−e)N R ((cid:5)):= T . 0 γ 0 Indeed,theresultsmentionedpreviouslyareapplicabletothismodifiedmodel,andthey implythatifR ((cid:5))<1,thenE isGASfor(5).Equivalently,iftheefficiencyesatisfies 0 0 1 e>e :=1− , (6) crit R 0 thentreatmentwillbesuccessfulinthiscase.Ifthedrugwouldbeeffective100%sothat e=1,thentreatmentwouldalwaysbesuccessful.CurrentRTinhibitorsclearlydonotfit this profile. Moreover, in practice, the drug efficiency is not constant through time, and themainpurposeofthispaperistoinvestigatethequantitativeconsequencesofthisfact. 194 DeLeenheer 3. Periodicdrugefficiency Wenowmaketheassumptionthat(cid:5)(t)isperiodic: (cid:5)(t)=(cid:5)(t+τ), forallt, for some period τ >0. This is closer to reality where patients ideally adhere to a strict periodic treatment schedule, taking medication daily (τ =1 day) or twice a day (τ = 0.5day)forinstance. The shape of (cid:5)(t) over one treatment cycle is determined by the pharmacokinetics which will not be modeled here. Roughly speaking, pharmacokinetics describes what happenstoadrugafterthemomentofintake,butbeforeitstartsbeingactiveatthein- fectionsite.Thestandardmodelcanbecoupledwithadetailedpharmacokineticsmodel; see,forinstance,theworkofDixitandPerelson(2004),Rongetal.(2007),whereitwas shownthatatleastqualitatively,thegraphoftheperiodicfunction(cid:5)(t)isroughlylikethe onedepictedinFig.1.Itischaracterizedbyaquickriseoftheefficiencytoapeakvalue rightafterdrugintake,followedbyaslowerdecay.Thisissignificantlydifferentfromthe casewheretheefficiencyisconstant,thesituationwedescribedintheprevioussection. Inpharmacokinetics,theefficiency(cid:5)(t)istraditionallydefinedas y(t) (cid:5)(t)= , K+y(t) forsomepositiveconstantK,wherey(t)isastatecomponentofacompartmentallinear system. For our purposes, we do not need to know the details of the pharmacokinetics process,exceptforthefactthatthesignaly(t)(andhencealso(cid:5)(t))convergestoaperi- odicsignalwiththesameperiodasthetreatmentschedule. Thus,wewillassumethattheefficiency (cid:5)(t) isperiodic,andwestartbylinearizing system(5)attheequilibriumE : 0 x˙=B(t)x, (7) where ⎛ ⎞ f(cid:8)(T ) 0 −k(1−(cid:5)(t))T 0 0 ⎜ ⎟ B(t)=⎜⎝ 0 −β k(1−(cid:5)(t))T0 ⎟⎠. 0 Nβ −γ Fig.1 Periodicdrugefficiency(cid:5)(t). Within-HostVirusModelswithPeriodicAntiviralTherapy 195 Itiswellknownthatthestabilitypropertiesoftheoriginof(7)(andgenericallythelocal stabilitypropertiesoftheequilibrium E forsystem(5))aredeterminedbytheFloquet 0 multipliersof(7).Theblock-triangularstructureofB(t)impliesthattheseare ef(cid:8)(T0)τ and λ , λ , 2 3 whereλ andλ aretheFloquetmultipliersoftheplanarτ-periodicsystem: 2 3 (cid:11) (cid:12) (cid:11) (cid:12)(cid:11) (cid:12) x˙2 = −β k(1−(cid:5)(t))T0 x2 . (8) x˙3 Nβ −γ x3 In particular, since f(cid:8)(T )<0 by (2), it follows that the three Floquet multipliers of 0 system (7) are contained in the interior of the unit disk of the complex plane, which in turnimpliesthat E islocallyasymptoticallystableforsystem(5)—if |λ |,|λ |<1.In 0 2 3 fact,byabeautifulargumentduetod’Onofrio(2005),itturnsoutthatthesameconditions implythemuchstrongerresultofglobalasymptoticstabilityofE forsystem(5). 0 Proposition1(d’Onofrio,2005). LettheFloquetmultipliersofsystem(7)becontained intheinterioroftheopenunitdiskofthecomplexplane.ThenE isGASforsystem(5), 0 hencetheinfectioniscleared. ThisresultshowshowrelevantandimportantitistodeterminetheFloquetmultipliersof system(7).Unfortunately,forgeneral functions (cid:5)(t),thisisanotoriouslydifficulttask. Therefore, we will consider the simpler case where (cid:5)(t) is piecewise constant, bearing in mind that piecewise constant functions are often good approximations to continuous functions.Wewillstartwithanevensimplercasewhere(cid:5)(t)isofthebang-bangtype. 3.1. Periodicdrugefficiencyofthebang-bangtype We make the following simplifying assumption regarding the shape of the graph of the τ-periodicfunction(cid:5)(t),whichisillustratedinFig.2: (cid:13) e, t∈[0,p], (cid:5)(t)= (9) 0, t∈(p,τ), Fig.2 Periodicdrugefficiency(cid:5)(t)ofthebang-bangtype. 196 DeLeenheer where p∈(0,τ) is the time duration during which the drug is supposed to be active with efficiency e∈[0,1].During the remaining part of the treatment period the drug is assumedtobetotallyinefficient.Clearly,thisisaverycrudewayofapproximatingthe morerealisticshapeof(cid:5)(t)depictedinFig.1,butsomekeypropertiesaretobelearned fromthiscase,andtheycarryovertomoregeneralcasesthatdescriberealitybetter,as wewilldiscoverlater. Therearetwopossibleparameterswhichcanbevariedin(9),namelyeandp,andthe purposeoftherestofthissubsectionistoinvestigatetheireffectontheFloquetmultipliers of system (8) with (9). These Floquet multipliers are the eigenvalues of the following matrix (cid:14) (cid:15) (cid:14) (cid:15) Φ(e,p)=EXP (τ−p)A(0) EXP pA(e) , (10) where (cid:16) (cid:17) −β k(1−e)T A(e):= 0 . (11) Nβ −γ SincebothA(e)andA(0)arequasi-positivematricestheirmatrixexponentialsarenon- negativematrices.1 Thus, Φ(e,p) isanonnegativematrixandbythePerron–Frobenius theorem(BermanandPlemmons,1994);itsspectralradiusρ(Φ(e,p))isaneigenvalueof Φ(e,p).Thus,theFloquetmultipliersofsystem(8)with(9)arecontainedintheinterior oftheunitdiskofthecomplexplaneifandonlyifρ(Φ(e,p))<1.Thisguaranteesthat theinfectioniscleared(globally)byProposition1. The following proposition—whose proof is deferred to the Appendix—reveals that ρ(Φ(e,p))hastheexpectedmonotonicityproperties:itdecreaseswithe(moreefficient treatment)andwithp(drugiseffectivelonger). Proposition2. Lete,e(cid:8)∈[0,1]andp,p(cid:8)∈[0,τ].Thenthemap(e,p)→ρ(Φ(e,p))is continuous, (cid:3) (cid:4) (cid:3) (cid:4) e<e(cid:8), p(cid:7)=0⇒ρ Φ(e(cid:8),p) <ρ Φ(e,p) , (12) and (cid:3) (cid:4) (cid:3) (cid:4) p<p(cid:8), e(cid:7)=0⇒ρ Φ(e,p(cid:8)) <ρ Φ(e,p) . (13) Moreover, (cid:3) (cid:4) (cid:3) (cid:4) (cid:3) (cid:14) (cid:15)(cid:4) ρ Φ(e,0) =ρ Φ(0,τ) =ρ EXP τA(0) >1 foralle∈[0,1]andallp∈[0,τ](notreatment) (14) and 1Proof: Let A be quasi-positive. Then B=A+αI is a nonnegative matrix for all sufficiently large values of α, implying that EXP[tB] is a nonnegative matrix for all t ≥0. But since EXP[tA]= EXP[−αt]EXP[tB],thesameconclusionholdsforEXP[tA]. Within-HostVirusModelswithPeriodicAntiviralTherapy 197 Fig.3 Spectralradiusofρ(Φ(e,p))asafunctionofefficiencyeandtreatmentdurationp.Thehorizontal surfacecorrespondstoρ=1. (cid:3) (cid:4) (cid:3) (cid:14) (cid:15)(cid:4) (cid:18) (cid:19) ρ Φ(1,τ) =ρ EXP τA(1) =max EXP[−βτ],EXP[−γτ] <1 (constant,100%effectivetreatment). (15) Sinceρ(Φ(e,p))(provideditislessthan1)isameasureofhowfastsolutionsof(5) with(9)approachE (atleastlocallynearE ),thisresultmaybeinterpretedasfollows: 0 0 Letthetreatmentbeperiodic,ofthebang-bangtype,andcapableofclearingtheinfection. Ifitismoreefficient,orlastslonger,thentheinfectionisclearedmorequickly.Weillus- trateProposition2inFigs.3and4.TheparametersusedaretakenfromRongetal.(2007), and they are as follows: f(T)=a−bT with a=104ml−1day−1 and b=0.01day−1 (whichimpliesthat T =106ml−1), k=2.4×10−8mlday−1, β=1day−1, N =3000, 0 γ =23day−1.Theperiodofthetreatmentτ is1day. InRongetal.(2007),forarelatedmodel,itisarguedthattheaveragedrugefficiency, (cid:20) 1 τ ep (cid:5)(t)dt= , τ τ 0 isagoodindicatortoassessthesuccessorfailureofperiodictreatmentregimens,inthe sensethattheoutcomeofconstant(nonperiodic)treatmentwithdrugefficiencyatalevel equaltotheaveragedrugefficiencyoftheperiodicregimen,willpredicttheoutcomeof theperiodicregimen. WeshowinFigs.5and6thatthisclaimshouldbeinterpretedwithsomecaution,asit isonlyapproximatelytrue. Usingthesamemodelparameters asbefore,weseeforinstancethat thelevelcurve ep =0.67 for the average drug efficiency (recall that τ =1 day) intersects the level 198 DeLeenheer Fig.4 Contourplotofthespectralradiusρ(Φ(e,p))asafunctionofefficiencyeandtreatmentduration p:ρ(Φ(e,p))>1inred(dark)regionand<1ingreen(light)region. curve ρ(Φ(e,p))=1. Thus, all points on this level curve and above (below) the curve ρ(Φ(e,p))=1correspondtotreatmentsuccess(failure).Oneparticularpointforwhich treatment fails isthepoint (e,p)=(0.67,1) which correspondsto aconstant (nonperi- odic)treatmentregimen.Recalling(6),wenoticethattreatmentfailureforthisparticular pointcouldalsohavebeenconcludedfromthefactthat 1 0.67<e =1− ≈0.681. crit R 0 Wecaninfactgeneralizethisconclusion,anddeterminenumericallyalllevelcurves fortheaveragedrugefficiencywhichcontainpointscorrespondingtobothtreatmentfail- ureandsuccess;seeFig.6.Thesearethelevelcurvesep=c,wherec∈(0.659,0.681), sincetheyintersectthecurveρ(Φ(e,p))=1.Pointsontheselevelcurvesthatarebelow (above) the latter curve correspond to treatment failure (success). The efficiency levels e=0.659ande=e ≈0.681constituteanintervalof crit e −0.659 crit ≈3.3% e crit neare forwhichcautionshouldbeexertedinclaimingthattheaveragedrugefficiency crit isagoodmeasurefortreatmentfailureorsuccess.Fortunately,thisisonlyasmallinterval forthisexample,andthustheaveragedrugefficiencyisapproximatelyagoodmeasure fortreatmentsuccessorfailure. Forcompleteness,wealsopresentinFigs.7and8theresultsofasimulationrunthat illustratewhathappenswhenbothaperiodicdrugtreatmentregimen,anditscorrespond- ingconstant(nonperiodic)treatmentregimenwiththesameaveragedrugefficiencyfail.
Description: