ebook img

Within-Host Virus Models with Periodic Antiviral Therapy PDF

22 Pages·2008·0.45 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Within-Host Virus Models with Periodic Antiviral Therapy

BulletinofMathematicalBiology(2009)71:189–210 DOI10.1007/s11538-008-9359-5 ORIGINAL ARTICLE Within-Host Virus Models with Periodic Antiviral Therapy PatrickDeLeenheer DepartmentofMathematics,UniversityofFlorida,Gainesville,USA Received:28January2008/Accepted:11September2008/Publishedonline:13December2008 ©SocietyforMathematicalBiology2008 Abstract Thispaperinvestigatestheeffectofdrugtreatmentonthestandardwithin-host virusmodel,assumingthattherapyoccursperiodically.Itisshownthateradicationispos- sibleundertheseperiodicregimens,andwequantitativelycharacterizesuccessfuldrugs ordrugcombinations,boththeoreticallyandnumerically.Wealsoconsidercertainopti- mizationproblems,motivatedforinstance,bythefactthateradicationshouldbeachieved atacceptable toxicity levelstothepatient.Itturnsoutthattheseoptimization problems canbesimplifiedconsiderably,andthismakescalculationsoftheoptimaafairlystraight- forwardtask.AllourresultswillbeillustratedonanHIVmodelbymeansofnumerical examplesbasedonup-to-dateknowledgeofparametervaluesinthemodel. Keywords Within-hostvirusmodels·HIV·HBV·HCV·Influenza·Malaria· Periodicdrugtreatment·Optimization 1. Introduction Forthepasttwodecades,within-hostvirusmodelsdescribingviralinfectionshaveplayed animportantroleintheunderstandingofviruses,andthewaysinwhichtheyescapenot only the immune system, but also the various drugs that have been developed to sup- pressviralreplication.Testingspecifichypothesesbasedonclinicaldataisoftendifficult sincesamplescannotalwaysbetakentoofrequentlyfrompatients,orbecausedetection techniquesofthevirusmaynotbeaccurate.Thisjustifiesthecentralroleplayedbymath- ematicalmodelsinthisareaofresearch. In this paper, we will revisit the standard model of within-host virus infections (Perelson and Nelson, 1999; Nowak and May, 2000) which encompasses several im- portantinfectionssuchasHIV(Richman, 2004),hepatitis B(GanemandPrince, 2004; LocarniniandLai,2003)andC(SpecialissueonvirologyandclinicaladvancesofHCV infection,2006),influenza(Earnetal.,2002),andeventhemalariaparasiteP.falciparum (Molineaux and Dietz, 2000), and we will explore the consequences of periodic antivi- ral treatment. We will characterize analytically and numerically the periodic treatment schedulesthatleadtoviraleradication.However,ourresultsshouldbeinterpretedwith E-mailaddress:[email protected]fl.edu. SupportedinpartbyNSFgrantDMS-0614651. 190 DeLeenheer a healthy dose of caution. Indeed, in the case of HIV, for example, we know that viral eradicationwiththecurrentlyavailabledrugsisnotpossible,evenwhenpatientsadhere tothestricttreatmentregimens.Thismeansthateitherthemathematicalmodeldoesnot capturealltherelevantdynamicsoftheinterplayofthevirusanditshostcells,orthatthe drugsarenotpotentenoughforviraleradication.Itseemsreasonabletospeculatethata mixofbothofthesefactorsistoblame,andadditionalmodelingeffortsarenecessary. In the case of HIV, several explanations for treatment failure have been proposed, suchasthepre-existenceofdrug-resistantstrains(RibieroandBonhoeffer,2000),orthe emergence of resistant strains after initiation of drug therapy (Bonhoeffer and Nowak, 1997;Larderetal.,1989;Richmanetal.,1994).Theabilityofthevirustomutatequickly intoformswhichmaybelesssensitivetodrugshasbeen,andcontinuestobe,thefocusof muchattention;seetherecentcontributions(Balletal.,2007;DeLeenheerandPilyugin, 2008) that study the behavior of multistrain viral models. According to Siliciano et al. (2003), treatment failure is due to the presence of a latent reservoir of HIV in resting memoryCD4+Tcells. Otherresearchhasgravitatedaroundthefactthattheperiodicregimeninwhichdrugs are taken daily (or more frequently), puts a very high strain on the patient, calling for therapiesminimizingthetreatmentburdenonthepatient(Kirschneretal.,1997),andalso leadingtoinvestigationsoftheuseofStructuredTreatmentInterruptions(STIs)(Bajaria etal.,2004;KrakovskaandWahl,2007;Ortizetal.,2001). Recallthatthestandardmodel(PerelsonandNelson,1999;NowakandMay,2000)is athree-dimensionalnonlinearODE.InthecaseofHIV,itsstateconsistsoftheconcentra- tionsofhealthyCD4+Tcells(thetargetsoftheHIV),infectedTcells,andviralparticles. UponinfectionofahealthyTcell,oneofthefirstordersofbusinessistomakeacopyof theviralRNA,usingtheenzymereversetranscriptase.Thisstep,whichiserror-proneand leads to mutations, can beblocked by aclass of drugs called reverse transcriptase (RT) inhibitors.Oncetheviralcopyhasbeenproduced,thedoublestrandedviralDNAinte- gratesinthecell’snucleusasprovirus.Theusualgeneexpressionnowdoestherest,and viralproteinsareproducedaccordingtothegeneticinformationencodedintheprovirus. These proteins are assembled, mature, and ultimately new viruses bud off from the in- fected cell’s surface which go on to infect other T cells. During the maturation stage, theproteaseenzymeisusedtocleavelongproteinchains,andtheso-calledprotease(P) inhibitorsaredrugsthattargetthisstep.Ifeffective,theygiverisetodefectivevirus. Forotherviruses,despitedifferencesintheinfectionandreplicationmechanisms,and in the drugs used against them, the standard model is still a popular model for describ- ingthedynamicsoftheinfection.ForhepatitisBorC,thetargetcellsarelivercellsand someofthedrugsusedarelamivudine,adefovirandentecavir(forHBV),ribavirin(for HCV)andinterferon(forHBVandHCV).Theinfluenzavirusinfectsepithelialcellsand istreatedwithneuraminidaseinhibitors(suchasoseltamivirandzanamivir)andM2in- hibitors(suchasamantadineandrimantadine).Finally,themalariaparasiteP.falciparum infectserythrocytes(redbloodcells)andmalariahascommonlybeentreatedbychloro- quine. The purpose of this paper is to assess theoretically and quantitatively what the im- pactisofperiodicdrugtreatmentonthedynamicbehaviorofthestandardmodel,andin particular to determine what it takes to get rid of the infection. Mathematically, we ob- tainanonlinearperiodicODE,forwhichingeneralitisdifficulttoproveglobalstability Within-HostVirusModelswithPeriodicAntiviralTherapy 191 and this explains why much research has traditionally resorted to simulations. Surpris- ingly though, solutions to the standard model ultimately are bounded by solutions of a monotonesystem,aspointedoutbyd’Onofrio(2005),andthisallowstoconcludeglobal stabilityforthenonlinearperiodicmodel. We will first consider a simple case of HIV treatment, where only RT inhibitors are administered,andwhereitisassumedthatthedrugisofthebang-bangtype,i.e.,ateach momentduringtheperiodofthetreatmentcycle,thedrugisinoneoftwostates:Either itisactiveatafixedefficiencylevel,oritisinactive.Thedrugisthuscharacterized by twoparameters:itsefficiencylevelwhenactive,andthedurationoftheactivity.Amajor roleinouranalysisisplayedbythespectralradiusofanon-negativematrix(namelyof thefundamentalmatrixsolution,evaluatedoveronetreatmentcycle,ofthelinearization attheinfection-freeequilibrium),whichisshowntopossessexpectedmonotonicityprop- ertiesintermsofthetwoparametersthatcharacterizethedrug.Specifically,thisspectral radius—whichalsocontrolsthespeedofconvergencetotheinfection-freeequilibrium— islowerwhenthedrugismorepotentorwhenitisactivelonger.Equivalently,conver- gencetotheinfection-freeequilibriumisfasterwithamorepotentdrug,oradrugwhose activitylastslonger.WewillseethattheseresultscanbegeneralizedtothecaseofPin- hibitors,ortoamixofbothRTandPinhibitors.Thislatterscenarioreflectsmoreclosely thestandardpracticeofadministeringcocktailsofdrugstoHIVinfectedpatients. Inreality,theefficiencyofadrugisnotofthebang-bangtype.Infact,currentresearch isinvestigatingtheeffectofincludingpharmacokineticsintothepicture,andhasrevealed that the efficiency is a periodic signal with an initial steep rise right after drug intake, followed by a slower decay over a period; see the work of Dixit and Perelson (2004), Rongetal.(2007)fordetailedmodels.Therefore,weturntothismoregeneralcase,by approximatingtheefficiencybyamoregeneralpiecewiseconstantperiodicsignal.Itturns outthatthepreviousresultsremainvalid. Finally,weturntooptimizationproblemsthatinvolveeithermaximizingthespeedof convergencetotheinfection-freeequilibriumwhilemakingsurethatacceptabletoxicity levelsarenotexceeded,orbyminimizingtoxicitylevels,whilemakingsurethespeedof convergencedoesnotfallbelowacertainthreshold. Allourresultswillbeillustratedbymeansofnumericalexamplesofwithin-hostHIV models whose parameters are chosen in accordance with current prevailing knowledge basedonclinicaldataandextensiveexperimentalevidence.Ourresultshavethepotential to suggest which drug, or which combination of drugs, are optimal for a given patient. Theycanalsobeusedtoexploretheconsequencesofchangingthetreatmentfrequency. Theinvestigationoftheimpactofperiodictreatmentcyclesonmulti-strainmodels,orthe effectofSTIsisthesubjectofongoingresearch. Notation FormatricesAandB,0≤A,0<AmeansthatAisa(entry-wise)nonneg- ative,positivematrix,respectively,andA≤B meansthat0≤B−A.Amatrixiscalled quasi-positiveifallitsoff-diagonalentriesarenonnegative.Thespectralradiusofama- trix A is defined as the largest modulus of all eigenvalues of A and will be denoted by ρ(A).Wewillalsousethem(cid:2)atrixexponentialofasquarematrixA,whichisdefinedby theconvergentmatrixseries ∞ 1Ai,andwillbedenotedbyEXP[A]. i=0i! 192 DeLeenheer 2. Within-hostvirusmodelwithtreatment Webrieflyrecallthewell-knownstandardmodel(PerelsonandNelson,1999;Nowakand May,2000).Let T˙ =f(T)−kVT, T˙∗=kVT −βT∗, (1) V˙ =NβT∗−γV, whereT,T∗,V denotetheconcentrationsofhealthyandinfectedcells,andvirusparti- cles, respectively. The notation T,T∗,V is borrowed from the HIV literature (Perelson andNelson,1999;NowakandMay,2000),wheretheyrepresentconcentrationsofCD4+ T-cells,infectedT-cells,andHIVvirus.Butwestressthatothervirusandparasiteinfec- tionsaredescribedwiththesamemodelasexplainedintheIntroduction. Allparametersareassumedtobepositive.Theparametersβ andγ arethedeathrates ofinfectedcellsandvirusparticles,respectively.Theinfectionisrepresentedbyamass actiontermkVT,andN istheaveragenumberofvirusparticlesbuddingoffaninfected cellduringitslifetime.The(net)growthrateoftheuninfectedcellpopulationisgivenby thesmoothfunctionf(T):R+→R,whichisassumedtosatisfythefollowing: ∃T >0:f(T)(T −T )<0 forT (cid:7)=T , and f(cid:8)(T )<0. (2) 0 0 0 0 We have chosen to make the class of allowable f(T)’s as large as possible, since the growthrateishardtodetermine.Inaddition,mostmathematicalresultsapparentlyremain validforthislargeclass.Finally,wenoticethatthetwomostpopularchoicesforf(T), namelya−bT forsomepositivea andb;seeNowakandMay(2000)ands+rT(1− T/T ) for some positive s,r and T , see Perelson and Nelson (1999) (here, s is a max max sourcetermmodelingcellproduction—whichinthecaseofHIVoccursinthethymus— andr andT arethemaximalpercapitagrowthrateandcarryingcapacityrespectively max describinglogisticgrowthofcells),satisfytheprecedingconditions. Sincecontinuityoff impliesthatf(T )=0,itfollowsthat 0 E =(T ,0,0), 0 0 isanequilibriumof(1),andwewillrefertoitastheinfection-freeequilibrium. Asecond,positiveequilibrium(correspondingtoaninfection)mayexistifthefollow- ingquantitiesarepositive: ¯ ¯ T¯ = γ , T¯∗= f(T), V¯ = f(T). (3) ¯ kN β kT Notethatthisisthecaseifff( γ )>0,orequivalentlyby(2)thatT¯ = γ <T .Interms kN kN 0 ofthebasicreproductionnumber kN R := T , 0 γ 0 Within-HostVirusModelswithPeriodicAntiviralTherapy 193 existenceofapositiveequilibriumisthereforeequivalentwith 1<R , (4) 0 whichwillbeastandingassumptionthroughouttherestofthispaper.Indeed,ifwewould assume that R <1, then it would follow from De Leenheer and Smith (2003) that the 0 infection-freeequilibriumE isgloballyasymptoticallystable(GAS),andhenceinthis 0 casetheinfectionwouldalwaysbeclearedwithouttreatment. WedenotethepositiveequilibriumthatcorrespondstoaninfectionbyE=(T¯,T¯∗,V¯). LinearizationatE showsthatitisunstable,andconditionsonf(T)areknownthatguar- 0 anteethatEisGAS(excludingofcourseinitialconditionscorrespondingtoahealthy,un- infectedindividual;thesecoincidewiththeT-axis,whichisthestablemanifoldofE ). 0 However,itisalsopossiblethatthemodelexhibitssustainedoscillatorysolutionswhich canbeasymptoticallystable.Regardlessofthedynamicalcomplexityofthesolutionsof the model, in general, if left untreated, the infection will persist in a patient. All these resultsfollowfromDeLeenheerandSmith(2003). Obviously, the purpose of treatment is to clear the infection, hopefully by making E GASbysuitablemodificationsofmodel(1)whichreflecttheeffectofdrugs.Letus 0 specializetoHIVbyexaminingtheeffectofRTinhibitors.TheeffectofusingPinhibitors willbeconsideredlater.UsingmonotherapybasedonRTinhibitors,model(1)ismodified to: (cid:3) (cid:4) T˙ =f(T)−k 1−(cid:5)(t) VT, (cid:3) (cid:4) T˙∗=k 1−(cid:5)(t) VT −βT∗, (5) V˙ =NβT∗−γV, where(cid:5)(t)∈[0,1]isthe(time-varying)drugefficiencyoftheRTinhibitors.Thedrugis noteffectivewhen(cid:5)(t)=0and100%effectivewhen(cid:5)(t)=1.NoticethatE isstillan 0 equilibriumofthemodifiedmodel(5),regardlessofthedrugefficiency. Assuming that the efficiency is constant over time, we set (cid:5)(t)=e∈(0,1]. Then to cleartheinfection,itsufficestochooseesuchthatthemodifiedbasicreproductionnum- berR ((cid:5))islessthan1,where 0 k(1−e)N R ((cid:5)):= T . 0 γ 0 Indeed,theresultsmentionedpreviouslyareapplicabletothismodifiedmodel,andthey implythatifR ((cid:5))<1,thenE isGASfor(5).Equivalently,iftheefficiencyesatisfies 0 0 1 e>e :=1− , (6) crit R 0 thentreatmentwillbesuccessfulinthiscase.Ifthedrugwouldbeeffective100%sothat e=1,thentreatmentwouldalwaysbesuccessful.CurrentRTinhibitorsclearlydonotfit this profile. Moreover, in practice, the drug efficiency is not constant through time, and themainpurposeofthispaperistoinvestigatethequantitativeconsequencesofthisfact. 194 DeLeenheer 3. Periodicdrugefficiency Wenowmaketheassumptionthat(cid:5)(t)isperiodic: (cid:5)(t)=(cid:5)(t+τ), forallt, for some period τ >0. This is closer to reality where patients ideally adhere to a strict periodic treatment schedule, taking medication daily (τ =1 day) or twice a day (τ = 0.5day)forinstance. The shape of (cid:5)(t) over one treatment cycle is determined by the pharmacokinetics which will not be modeled here. Roughly speaking, pharmacokinetics describes what happenstoadrugafterthemomentofintake,butbeforeitstartsbeingactiveatthein- fectionsite.Thestandardmodelcanbecoupledwithadetailedpharmacokineticsmodel; see,forinstance,theworkofDixitandPerelson(2004),Rongetal.(2007),whereitwas shownthatatleastqualitatively,thegraphoftheperiodicfunction(cid:5)(t)isroughlylikethe onedepictedinFig.1.Itischaracterizedbyaquickriseoftheefficiencytoapeakvalue rightafterdrugintake,followedbyaslowerdecay.Thisissignificantlydifferentfromthe casewheretheefficiencyisconstant,thesituationwedescribedintheprevioussection. Inpharmacokinetics,theefficiency(cid:5)(t)istraditionallydefinedas y(t) (cid:5)(t)= , K+y(t) forsomepositiveconstantK,wherey(t)isastatecomponentofacompartmentallinear system. For our purposes, we do not need to know the details of the pharmacokinetics process,exceptforthefactthatthesignaly(t)(andhencealso(cid:5)(t))convergestoaperi- odicsignalwiththesameperiodasthetreatmentschedule. Thus,wewillassumethattheefficiency (cid:5)(t) isperiodic,andwestartbylinearizing system(5)attheequilibriumE : 0 x˙=B(t)x, (7) where ⎛ ⎞ f(cid:8)(T ) 0 −k(1−(cid:5)(t))T 0 0 ⎜ ⎟ B(t)=⎜⎝ 0 −β k(1−(cid:5)(t))T0 ⎟⎠. 0 Nβ −γ Fig.1 Periodicdrugefficiency(cid:5)(t). Within-HostVirusModelswithPeriodicAntiviralTherapy 195 Itiswellknownthatthestabilitypropertiesoftheoriginof(7)(andgenericallythelocal stabilitypropertiesoftheequilibrium E forsystem(5))aredeterminedbytheFloquet 0 multipliersof(7).Theblock-triangularstructureofB(t)impliesthattheseare ef(cid:8)(T0)τ and λ , λ , 2 3 whereλ andλ aretheFloquetmultipliersoftheplanarτ-periodicsystem: 2 3 (cid:11) (cid:12) (cid:11) (cid:12)(cid:11) (cid:12) x˙2 = −β k(1−(cid:5)(t))T0 x2 . (8) x˙3 Nβ −γ x3 In particular, since f(cid:8)(T )<0 by (2), it follows that the three Floquet multipliers of 0 system (7) are contained in the interior of the unit disk of the complex plane, which in turnimpliesthat E islocallyasymptoticallystableforsystem(5)—if |λ |,|λ |<1.In 0 2 3 fact,byabeautifulargumentduetod’Onofrio(2005),itturnsoutthatthesameconditions implythemuchstrongerresultofglobalasymptoticstabilityofE forsystem(5). 0 Proposition1(d’Onofrio,2005). LettheFloquetmultipliersofsystem(7)becontained intheinterioroftheopenunitdiskofthecomplexplane.ThenE isGASforsystem(5), 0 hencetheinfectioniscleared. ThisresultshowshowrelevantandimportantitistodeterminetheFloquetmultipliersof system(7).Unfortunately,forgeneral functions (cid:5)(t),thisisanotoriouslydifficulttask. Therefore, we will consider the simpler case where (cid:5)(t) is piecewise constant, bearing in mind that piecewise constant functions are often good approximations to continuous functions.Wewillstartwithanevensimplercasewhere(cid:5)(t)isofthebang-bangtype. 3.1. Periodicdrugefficiencyofthebang-bangtype We make the following simplifying assumption regarding the shape of the graph of the τ-periodicfunction(cid:5)(t),whichisillustratedinFig.2: (cid:13) e, t∈[0,p], (cid:5)(t)= (9) 0, t∈(p,τ), Fig.2 Periodicdrugefficiency(cid:5)(t)ofthebang-bangtype. 196 DeLeenheer where p∈(0,τ) is the time duration during which the drug is supposed to be active with efficiency e∈[0,1].During the remaining part of the treatment period the drug is assumedtobetotallyinefficient.Clearly,thisisaverycrudewayofapproximatingthe morerealisticshapeof(cid:5)(t)depictedinFig.1,butsomekeypropertiesaretobelearned fromthiscase,andtheycarryovertomoregeneralcasesthatdescriberealitybetter,as wewilldiscoverlater. Therearetwopossibleparameterswhichcanbevariedin(9),namelyeandp,andthe purposeoftherestofthissubsectionistoinvestigatetheireffectontheFloquetmultipliers of system (8) with (9). These Floquet multipliers are the eigenvalues of the following matrix (cid:14) (cid:15) (cid:14) (cid:15) Φ(e,p)=EXP (τ−p)A(0) EXP pA(e) , (10) where (cid:16) (cid:17) −β k(1−e)T A(e):= 0 . (11) Nβ −γ SincebothA(e)andA(0)arequasi-positivematricestheirmatrixexponentialsarenon- negativematrices.1 Thus, Φ(e,p) isanonnegativematrixandbythePerron–Frobenius theorem(BermanandPlemmons,1994);itsspectralradiusρ(Φ(e,p))isaneigenvalueof Φ(e,p).Thus,theFloquetmultipliersofsystem(8)with(9)arecontainedintheinterior oftheunitdiskofthecomplexplaneifandonlyifρ(Φ(e,p))<1.Thisguaranteesthat theinfectioniscleared(globally)byProposition1. The following proposition—whose proof is deferred to the Appendix—reveals that ρ(Φ(e,p))hastheexpectedmonotonicityproperties:itdecreaseswithe(moreefficient treatment)andwithp(drugiseffectivelonger). Proposition2. Lete,e(cid:8)∈[0,1]andp,p(cid:8)∈[0,τ].Thenthemap(e,p)→ρ(Φ(e,p))is continuous, (cid:3) (cid:4) (cid:3) (cid:4) e<e(cid:8), p(cid:7)=0⇒ρ Φ(e(cid:8),p) <ρ Φ(e,p) , (12) and (cid:3) (cid:4) (cid:3) (cid:4) p<p(cid:8), e(cid:7)=0⇒ρ Φ(e,p(cid:8)) <ρ Φ(e,p) . (13) Moreover, (cid:3) (cid:4) (cid:3) (cid:4) (cid:3) (cid:14) (cid:15)(cid:4) ρ Φ(e,0) =ρ Φ(0,τ) =ρ EXP τA(0) >1 foralle∈[0,1]andallp∈[0,τ](notreatment) (14) and 1Proof: Let A be quasi-positive. Then B=A+αI is a nonnegative matrix for all sufficiently large values of α, implying that EXP[tB] is a nonnegative matrix for all t ≥0. But since EXP[tA]= EXP[−αt]EXP[tB],thesameconclusionholdsforEXP[tA]. Within-HostVirusModelswithPeriodicAntiviralTherapy 197 Fig.3 Spectralradiusofρ(Φ(e,p))asafunctionofefficiencyeandtreatmentdurationp.Thehorizontal surfacecorrespondstoρ=1. (cid:3) (cid:4) (cid:3) (cid:14) (cid:15)(cid:4) (cid:18) (cid:19) ρ Φ(1,τ) =ρ EXP τA(1) =max EXP[−βτ],EXP[−γτ] <1 (constant,100%effectivetreatment). (15) Sinceρ(Φ(e,p))(provideditislessthan1)isameasureofhowfastsolutionsof(5) with(9)approachE (atleastlocallynearE ),thisresultmaybeinterpretedasfollows: 0 0 Letthetreatmentbeperiodic,ofthebang-bangtype,andcapableofclearingtheinfection. Ifitismoreefficient,orlastslonger,thentheinfectionisclearedmorequickly.Weillus- trateProposition2inFigs.3and4.TheparametersusedaretakenfromRongetal.(2007), and they are as follows: f(T)=a−bT with a=104ml−1day−1 and b=0.01day−1 (whichimpliesthat T =106ml−1), k=2.4×10−8mlday−1, β=1day−1, N =3000, 0 γ =23day−1.Theperiodofthetreatmentτ is1day. InRongetal.(2007),forarelatedmodel,itisarguedthattheaveragedrugefficiency, (cid:20) 1 τ ep (cid:5)(t)dt= , τ τ 0 isagoodindicatortoassessthesuccessorfailureofperiodictreatmentregimens,inthe sensethattheoutcomeofconstant(nonperiodic)treatmentwithdrugefficiencyatalevel equaltotheaveragedrugefficiencyoftheperiodicregimen,willpredicttheoutcomeof theperiodicregimen. WeshowinFigs.5and6thatthisclaimshouldbeinterpretedwithsomecaution,asit isonlyapproximatelytrue. Usingthesamemodelparameters asbefore,weseeforinstancethat thelevelcurve ep =0.67 for the average drug efficiency (recall that τ =1 day) intersects the level 198 DeLeenheer Fig.4 Contourplotofthespectralradiusρ(Φ(e,p))asafunctionofefficiencyeandtreatmentduration p:ρ(Φ(e,p))>1inred(dark)regionand<1ingreen(light)region. curve ρ(Φ(e,p))=1. Thus, all points on this level curve and above (below) the curve ρ(Φ(e,p))=1correspondtotreatmentsuccess(failure).Oneparticularpointforwhich treatment fails isthepoint (e,p)=(0.67,1) which correspondsto aconstant (nonperi- odic)treatmentregimen.Recalling(6),wenoticethattreatmentfailureforthisparticular pointcouldalsohavebeenconcludedfromthefactthat 1 0.67<e =1− ≈0.681. crit R 0 Wecaninfactgeneralizethisconclusion,anddeterminenumericallyalllevelcurves fortheaveragedrugefficiencywhichcontainpointscorrespondingtobothtreatmentfail- ureandsuccess;seeFig.6.Thesearethelevelcurvesep=c,wherec∈(0.659,0.681), sincetheyintersectthecurveρ(Φ(e,p))=1.Pointsontheselevelcurvesthatarebelow (above) the latter curve correspond to treatment failure (success). The efficiency levels e=0.659ande=e ≈0.681constituteanintervalof crit e −0.659 crit ≈3.3% e crit neare forwhichcautionshouldbeexertedinclaimingthattheaveragedrugefficiency crit isagoodmeasurefortreatmentfailureorsuccess.Fortunately,thisisonlyasmallinterval forthisexample,andthustheaveragedrugefficiencyisapproximatelyagoodmeasure fortreatmentsuccessorfailure. Forcompleteness,wealsopresentinFigs.7and8theresultsofasimulationrunthat illustratewhathappenswhenbothaperiodicdrugtreatmentregimen,anditscorrespond- ingconstant(nonperiodic)treatmentregimenwiththesameaveragedrugefficiencyfail.

Description:
We will characterize analytically and numerically the periodic treatment pact is of periodic drug treatment on the dynamic behavior of the standard
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.