NonamemanuscriptNo. (willbeinsertedbytheeditor) Weyl asymptotics of bisingular operators and Dirichlet divisor problem UbertinoBattisti 2 Received:date/Accepted:date 1 0 2 Abstract We consider a class of pseudodifferential operators, with crossed vector n valuedsymbols,definedontheproductoftwoclosedmanifolds.Westudytheasymp- a toticexpansionofthecountingfunctionofpositiveselfadjointoperatorsinthisclass. J UsingageneralTheoremofJ.Aramaki,wecandeterminethefirsttermoftheasymp- 2 1 toticexpansionofthecountingfunctionand,inaspecialcase,weareabletofindthe secondterm.We givealsosomeexamples,emphasizingconnectionswithproblems ] ofanalyticnumbertheory,inparticularwithDirichletdivisorfunction. P S Keywords Weyl’slaw·Bisingularoperators·Dirichletdivisorproblem·Spectral . h analysis t a MathematicsSubjectClassification(2010) 35P20·58J40·47A10 m [ 3 Introduction v 8 In[28]L.Rodinointroducedbisingularoperators:aclassofpseudodifferentialoper- 1 5 atorsdefinedontheproductoftwoclosedmanifoldsM1×M2,relatedtothemulti- 1 plicativepropertyofAtiyah-Singerindex,see[2].Asimpleexampleofanoperator . in this class is the tensorial product A ⊗A , where A , A are pseudodifferential 2 1 2 1 2 1 operatorson the closedmanifoldsM1, M2. Anotherexample,studied in[28], is the 0 vector-tensorproductA ⊠A .In[26],inordertoproveanindexformula,F.Nicola 1 2 1 andL. Rodinointroducedclassical, i.e.polyhomogeneous,bisingularoperatorsand : v defined Wodzicki Residue for this class of operators. The two authors defined the i residue,viaholomorphicfamilies,asin[9,25].Fortheindexofbisingularoperators X r UbertinoBattisti, a Universita`degliStudidiTorino, viaCarloAlberto10,10123Torino Tel.:+390116702877 Fax:+390116702878 E-mail:[email protected] 2 UbertinoBattisti see also theworkofV. S. Pilidi[27] andofR. V. Duducˇava[5,6]. In[23], R. Mel- rose andF. Rochonintroducedpseudodifferentialoperatorsof producttype,a class of operators close to bisingular operators. Bisingular operators are an example of operatorswithvectorvaluedsymbols;pseudodifferentialoperatorsofthistypehave been meticulously studied, see, for example, Fedosov, Schulze, Tarkhanov [8] and thereferencestherein. Theaimofthispaperistoanalyzetheasymptoticbehaviorofthecountingfunc- tion of selfadjointelliptic positive bisingularoperators.Similarly to the the case of SG-calculus[3] (seee.g.[7,29]formoredetailonSG-calculus),weusetechniques related to complex powers of operators, z -function and Tauberian Theorems. This strategy, in the setting of closed manifolds, was first used by V. Guillemin [14] in ordertogetthesocalledsoftproof ofWeyl’sformula. Here, as in the case of SG-calculus, it turns out that the z -function can have polesofordertwo.Thus,usingarefinementofTauberianTheoremduetoJ.Aramaki [1],theasymptoticbehaviorofthecountingfunctionisdetermined.Thepresenceof a pole of order two of the z -function implies that the counting functions can have asymptotictermsoforderl clogl .Suchabehaviorappearsinvarioussetting:mani- foldswithconicalsingularities[9],SG-calculusonRn[25],SG-calculusonmanifolds withcylindricalends[20].SeealsoGramchev,Pilipovic´,Rodino,Wong[10,11]on theasymptoticexpansionofthecountingfunctioninthecaseoftwistedbi-Laplacian. Furthermore,in[24],S.MoroianustudiedWeyl’slawonmanifoldswithcusps,with an approachsimilar to the one used in this paper. In a specialcase, he showed that thegrowthrateofthecountingfunctionisl clogl . We remark that it is not surprising that the z -function of a selfadjoint elliptic positive bisingular operator can have poles of order 2. Indeed, let us consider two positive elliptic pseudodifferential operators A,B defined on the closed manifolds M ,M . Fromgeneraltheoryof complexpowersof pseudodifferentialoperatorson 1 2 closedmanifolds[30], we knowthatthe z -functionofan operatorP ofthis typeis holomorphicforRe(z)<−n (n=dim M,morderofP)anditcanbeextendedasa m meromorphicfunctiontothewholeofCwithpolesoforder1.Aswenoticedatthe beginning,the tensorialproductA⊗Bisa bisingularoperatoronM ×M anditis 1 2 clearlypositiveandselfadjoint.Onecanprovethefollowing z (A⊗B,z)=z (A,z)z (B,z). (1) Ifonedefinesthez -functionusingtheeigenvalues,equality(1)becomesmoretrans- parent.To thisend,let{l j}j∈N and{m i}i∈N betheeigenvaluesofAandB,respec- tively.ThentheeigenvaluesofA⊗Bturnouttobe{l jm i}i,j∈N2.Thereforewehave z (A,z)=(cid:229) l z, Re(z)<−n1 ; j m j∈N A z (B,z)=(cid:229) m z, Re(z)<−n2 ; i m i∈N B z (A⊗B,z)= (cid:229) l zm z=z (A,z)z (B,z), Re(z)<−max n1 , n2 ; j i m m i,j∈N2 A B (cid:8) (cid:9) WeylasymptoticsofbisingularoperatorsandDirichletdivisorproblem 3 where n =dim M , n =dim M and m ,m are the ordersof A and B. Then the 1 1 2 2 A B productstructure of z (A⊗B,z) implies that it can have poles of order two. Let us nowfocusonthespecialcase n1 = n2 =z : mA mB 0 C z (A,z)= A +h (z), Re(z)<−z +e ; A 0 (z+z ) 0 C z (B,z)= B +hB(z), Re(z)<−z0+e ; (2) (z+z ) 0 C C h (z)+h (z) z (A⊗B,z)= A B + A B +h (z)h (z), Re(z)<−z +e ; (z+z )2 (z+z ) A B 0 0 0 whereC ,C are constants that depend just on the principal symbol of A,B, while A B h ,h areholomorphicfunctionswhichdependonthewholesymbolofA,B.From A B (2),itisclearthatz (A⊗B,z)hasapoleofordertwo.Moreover,weobservethatthe coefficientofthepoleoforderonedependsonthewholesymbolofAandB.Finally, applyingJ.Aramaki’sTheorem3.1,from(2)oneobtains N (l )∼CACBl z0log(l )− hA(−z0)−hB(−z0)+CACB l z0+O(l z0−d ), A⊗B z z z2 0 (cid:18) 0 0 (cid:19) (3) where d >0. Simple examples of operators A and B for which (3) holds are A= −D g+1,B=−D g′+1,whereD g,D g′ aretheLaplaceBeltramioperatorsassociated to Riemanniann structures of M , M respectively. We will extend (3) to all posi- 1 2 tivebisingularellipticoperators,expressingtheconstantsintheWeylasymptoticsin termsofthecrossedvector-valuedsymbols. Thepaperisorganizedasfollows.InSection1weshortlyrecallbasicproperties ofbisingularoperators;we referthereaderto[26,28]formoredetails.Section2is devotedtothedefinitionofcomplexpowersofsuitablebisingularoperators;wein- troducethe z -functionin this setting andwe studyits meromorphicextension.The main result, concerning the asymptotics of the counting function of selfadjoint el- liptic positivebisingular operators,is stated in section 3. In section 4, we show the connection with Dirichlet divisor problem, which we reconsider from the point of viewofSpectralTheory. 1 Bisingularoperators We startwiththedefinitionsofbisingularsymbolsandbisingularsymbolswithho- mogeneousprincipalsymbol. In the following, W always denotes a bounded open i domainofRni. Definition1.1 We define Sm1,m2(W 1,W 2) as the set of C¥ (W 1×W 2×Rn1×Rn2) functionssuchthat,forallmultiindexa ,b andforallcompactsubsetK ⊆W ,i= i i i i 1,2,thereexistsapositiveconstantCa 1,a 2,b1,b2,K1,K2 sothat |¶ xa11¶ xa22¶ xb11¶ xb22a(x1,x2,x 1,x 2)|≤Ca 1,a 2,b1,b2,K1,K2hx 1im1−|a 1|hx 2im2−|a 2|, forallxi∈Ki,x i∈Rni,i=1,2.Asusual,hx i=(1+|x |2)12. 4 UbertinoBattisti S−¥ ,−¥ (W ,W ) is the set of smoothingsymbols. Following[28], we introducethe 1 2 subclassofbisingularoperatorswithhomogeneousprincipalsymbol. Definition1.2 Leta∈Sm1,m2(W 1,W 2);ahasahomogeneousprincipalsymbolif i) thereexistsam1,·(x1,x2,x 1,x 2)∈Sm1,m2(W 1,W 2)suchthat a(x ,x ,tx ,x )=tm1a(x ,x ,x ,x ), ∀x ,x ,x , ∀|x |>1,t>0, 1 2 1 2 1 2 1 2 1 2 2 1 a−y 1(x 1)am1,·∈Sm1−1,m2(W 1,W 2), y 1cut-offfunctionoftheorigin. Moreover,a (x ,x ,x ,D )∈Lm2(W ),so,beingaclassicalsymbolonW ,it m1,· 1 2 1 2 cl 2 2 admitsanasymptoticexpansionw.r.t.thex variable. 2 ii) thereexistsa·,m2(x1,x2,x 1,x 2)∈Sm1,m2(W 1,W 2)suchthat a(x ,x ,x ,tx )=tm2a(x ,x ,x ,x ), ∀x ,x ,x , ∀|x |>1,t>0, 1 2 1 2 1 2 1 2 1 2 1 2 a−y 2(x 2)a·,m2 ∈Sm1,m2−1(W 1,W 2), y 2cut-offfunctionoftheorigin. Moreover,a (x ,x ,D ,x )∈Lm1(W ),so,beingaclassicalsymbolonW ,it ·,m2 1 2 1 2 cl 1 1 admitsanasymptoticexpansionw.r.t.thex variable. 1 iii) The symbols a and a have the same leading term, so there exists a m1,· ·,m2 m1,m2 suchthat a −y (x )a ∈Sm1,m2−1(W ,W ), m1,· 2 2 m1,m2 1 2 a·,m2−y 1(x 1)am1,m2 ∈Sm1−1,m2(W 1,W 2), and a−y a −y a +y y a ∈Sm1−1,m2−1(W ,W ). 1 m1,· 2 ·,m2 1 2 m1,m2 1 2 ThesetofsymbolswithhomogeneousprincipalsymbolisdenotedasSm1,m2(W ,W ). pr 1 2 Wewillshortlywritethattheprincipalsymbolofais{a ,a }. m1,· ·,m2 Wecanobserveasimilarity,atleastformal,betweenbisingularsymbolswithhomo- geneousprincipalsymbolandSG-classicalsymbols,see,e.g..[7,25]. We define bisingular operators via their left quantization. A linear operator A: C¥ (W ×W )→C¥ (W ×W )isabisingularoperatorifitcanbewrittenintheform c 1 2 1 2 A(u)(x ,x )=Op(a)(x ,x ) 1 2 1 2 1 = eix1·x1+ix2·x2a(x ,x ,x ,x )uˆ(x ,x )dx dx . (2p )n1+n2 ZRn1ZRn2 1 2 1 2 1 2 1 2 Ifa∈Sm1,m2(W 1,W 2)ora∈Spmr1,m2(W 1,W 2),thenwewriteA∈Lm1,m2(W 1,W 2)and A∈Lm1,m2(W ,W )respectively.Theabovedefinitioncanbeextendedtotheproduct pr 1 2 of closed manifolds; we refer to [28] for the details of the construction of global operatorsandthecorrespondingcalculus. WeylasymptoticsofbisingularoperatorsandDirichletdivisorproblem 5 Definition1.2impliesthat,foreveryoperatorA∈Lm1,m2(W ,W ),wecandefine pr 1 2 functionss m1,s m2,s m1,m2 suchthat s m1(A):T∗W \{0}→Lm2(W ) 1 1 cl 2 (x ,x )7→a (x ,x ,x ,D ), 1 1 m1,· 1 2 1 2 s m2(A):T∗W \{0}→Lm1(W ) 2 2 cl 1 (4) (x ,x )7→a (x ,x ,D ,x ), 2 2 ·,m2 1 2 1 2 s m1,m2(A):T∗W \{0}×T∗W \{0}→C 1 2 (x ,x ,x ,x )7→a (x ,x ,x ,x ). 1 2 1 2 m1,m2 1 2 1 2 Moreover, denoting by s (P)(x,x ) the principal symbol of a preudodifferential operatorPonaclosedmanifold,thefollowingcompatibilityrelationholds s (s m1(A)(x ,x ))(x ,x )=s (s m2(A)(x ,x ))(x ,x ) 1 1 1 2 2 2 2 2 1 1 (5) =s m1,m2(A)(x1,x2,x 1,x 2)=am1,m2(x1,x2,x 1,x 2). Remark1 If we considertheproductof closedmanifoldsM ×M , thenthe whole 1 2 symbolisalocalobject,ingeneral.Nevertheless,similarlytothecalculusonclosed manifolds,itispossibletogiveaninvariantmeaningtothefunctions(4)asfunctions definedonthecotangentbundle,see[28]. As in the case of the calculus on closed manifolds, it is possible to define adapted Sobolevspacesandthentoprovesomecontinuityresults. Definition1.3 LetM1,M2betwoclosedmanifolds.TheSobolevspaceHm1,m2(M1× M )isdefinedby 2 Hm1,m2(M ×M )={u∈S′(M ×M )|Op(hx im1hx im2)(u)∈L2(M ×M )}. 1 2 1 2 1 2 1 2 Ifu∈Hm1,m2(M1×M2)thenkukm1,m2 =kOp(hx 1im1hx 2im2)(u)k2.Usingtheformal- ismoftensorproduct,wecanalsowrite1 Hm1,m2(M1×M2)=Hm1(M1)⊗p Hm2(M2). SimilarlytoSobolevspacesHs(M),wehave b i) Hm1,m2(M1×M2)֒→Hm′1,m′2(M1×M2) is a continuous immersion if mi ≥m′i, i=1,2. ii) Hm1,m2(M1×M2)֒→Hm′1,m′2(M1×M2) is a compactimmersionif mi >m′i, i= 1,2. Proposition1.1 ApseudodifferentialoperatorA∈Lm1,m2(M1×M2)canbeextended toacontinuousoperator A:Hs,t(M ×M )→Hs−m1,t−m2(M ×M ). 1 2 1 2 Furthermore,thenormoftheoperatorcanbeestimatedusingtheseminormsofthe symbol.Itisalsopossibletoprovethefollowingproposition: 1 Fordefinitionof⊗p see[32]. b 6 UbertinoBattisti Proposition1.2 Let A∈Lm1,m2(M1×M2) be a bisingularoperator;if mi ≤0 (i= 1,2),thenthereexistsN∈NsuchthatkAk ≤sup|(cid:229) p(a(x ,x ,x ,x ))|,where 0,0 i≤N i 1 2 1 2 {pi(·)}i∈N aretheseminormsoftheFre´chetspaceSm1,m2(M1,M2). AnoperatorA∈Lm1,m2(M1×M2)isellipticifam1,·,a·,m2,am1,m2,thethreecom- ponentsofitsprincipalsymbol,areinvertibleintheirdomainofdefinition.Explicitly: Definition1.4 LetA∈Lm1,m2(M ×M );Aisellipticif pr 1 2 i) s m1,m2(A)(v1,v2)6=0forall(v1,v2)∈T∗M1\{0}×T∗M2\{0}; ii) s m1(A)(v )∈Lm2(M )isinvertibleforallv ∈T∗M \{0}; 1 1 cl 2 1 1 iii) s m2(A)(v )∈Lm1(M )isinvertibleforallv ∈T∗M \{0}; 2 2 cl 1 2 2 wheres m1,m2(A),s m1(A),s m2(A)areasin(4). 1 2 In[28],itisprovedthat,ifAsatisfiesDefinition1.4,thenAisaFredholmoperator. Thispropertyisacorollaryofthefollowingtheorem: Theorem1.1 LetA∈Lm1,m2(M ×M )beelliptic;thenthereexistsanoperatorB∈ pr 1 2 L−m1,−m2(M ×M )suchthat pr 1 2 AB=Id+K , 1 BA=Id+K , 2 whereIdistheidentitymapandK ,K arecompactoperators.Moreover,thesymbol 1 2 ofBisb={s m1(A)−1,s m2(A)−1}. 1 2 TheproofofTheorem1.1isaneasyconsequenceoftheglobalversionofthefollow- inglemma: Lemma1.1 LetA∈Lm1,m2(W 1×W 2)andB∈Lm′1,m′2(W 1×W 2),then {(a◦b)m1+m′1,·,(a◦b)·,m2+m′2}={am1,·◦x2bm′1,·,a·,m2◦x1b·,m′2} where (a◦x1b)(x1,x2,D1,x 2)(u)=a(x1,x2,D1,x 2)◦b(x1,x2,D1,x 2)(u) ∀u∈Cc¥ (W 1), (a◦x2b)(x1,x2,x 1,D2)(v)=a(x1,x2,x 1,D2)◦b(x1,x2,x 1,D2)(v) ∀v∈Cc¥ (W 2). In first row the composition is in the space L¥ (W ) of pseudodifferentialoperators 1 onW ,insecondrow,itisinthespaceL¥ (W ). 1 2 2 Complexpowersofbisingularoperators Inthissectionwedefinecomplexpowersofasubclassofellipticbisingularoperators. ThefirststepistogiveasuitabledefinitionL -ellipticoperatorsw.r.t.asectorofthe complexplaneL . Definition2.1 LetL beasectorofC;wesaythata∈Sm1,m2(M ,M )isL -elliptic pr 1 2 w.r.t.L ifthereexistsapositiveconstantRsuchthat WeylasymptoticsofbisingularoperatorsandDirichletdivisorproblem 7 i) s m1,m2(A)(v ,v )−l −1∈S−m1,−m2(M ,M ), 1 2 1 2 forall|vi|>R,i(cid:0)=1,2,andforalll ∈(cid:1)L . ii) s m1(A)(v )−l Id ∈Lm2(M ), 1 1 M2 cl 2 isinvertibleforall|v |>Randforalll ∈L . 1 iii) s m2(A)(v )−l Id ∈Lm1(M ), 2 2 M1 cl 1 isinvertibleforall|v |>Randforalll ∈L . 2 In thefollowing,in orderto definethe complexpowerof A, we assume thatL is a sectorofthecomplexplanewithvertexattheorigin,thatis L ={z∈C|arg(z)∈[p −q ,−p +q ]}. ✻ ❍❍❍❍ar❍g❍=❍❍p❍❍❍❥−❍q ❍ ❍ ❍ ❍ ✲ ✟✟ ✟✟ ✟✟ ✟✟ ✟✟ ✟✟✙ ✟ ✟ ✟✟arg=−p +q Lemma2.1 Leta∈Sm1,m2(W 1,W 2)beL -elliptic.ForallKi⊆W i,i=1,2,thereexist c >1andaset 0 1 W x1,x2 :={z∈C\L | c hx 1im1hx 2im2 <|z|<c0hx 1im1hx 2im2} (6) 0 suchthat spec(a(x1,x2,x 1,x 2))={l ∈C|a(x1,x2,x 1,x 2)−l =0}⊆W x1,x2, ∀x ∈W ,x ∈Rni; i i i moreover, | l −a (x ,x ,x ,x ) −1|≤C(|l |+hx im1hx im2)−1, m1,m2 1 2 1 2 1 2 |(cid:0)am1,·−l IdW 1 −1|≤C(|(cid:1)l |+hx 1im1hx 2im2)−1, |(cid:0)a·,m2−l IdW 2(cid:1)−1|≤C(|l |+hx 1im1hx 2im2)−1, ∀(cid:0)xi∈Ki,x i∈Rn(cid:1)i,l ∈C\W x1,x2,i=1,2, where am1,·−l IdW 1 −1standsforthesymboloftheoperator(am1,·(x1,x2,x 1,D2)− l IdW 1)(cid:0)−1,andsimila(cid:1)rlyfor a·,m2−l IdW 2 −1. (cid:0) (cid:1) 8 UbertinoBattisti TheproofofLemma2.1isessentiallythesameoftheoneofLemma3.5in[22]. Next, we prove that, if A L -elliptic, then we can define a parametrix of (A− l Id).Actually,weprovethat,for|l |largeenough,theresolvent(A−l Id)−1exists. Restricting ourselvesto differentialoperators,we couldfollowformallytheidea of Shubin([31],ch.II)ofparameterdependingoperators.Forgeneralpseudodifferential operators,itiswellknowthatthisideadoesnotwork,see[12]. Theorem2.1 LetA∈Lm1,m2(M ×M )beL -elliptic.ThenthereexistsR∈R+,such pr 1 2 thattheresolvent(A−l Id)−1existsforl ∈L ={l ∈L ||l |≥R}.Moreover, R k(A−l Id)−1k=O(|l |−1), l ∈L . R Proof First,welookforaninverseof(A−l Id)modulocompactoperators,thatis anoperatorB(l )suchthat: (A−l )◦B(l )=Id+R (l ), l R (l )∈L−1,−1(M ×M ), 1 1 1 2 (7) B(l )◦(A−l )=Id+R (l ), l R (l )∈L−1,−1(M ×M ), 2 2 1 2 uniformly w.r.t. l ∈L . In order to find such an operator, we make the principal symbolexplicit: a−l =psym(a)−l +c, c∈Sm1−1,m2−1(M ,M ), 1 2 wherepsym(a)=y a +y a −y y a . Aswe havenoticedinTheorem 1 m1,· 2 ·,m2 1 2 m1,m2 1.1, we can write the symbol of the inverse (modulo compact operators) of an el- lipticoperator.Inthiscasewe needto bemorecarefulbecauseoftheparameterl . FollowingthesameconstructionasinTheorem1.1,weobtain b(l )={ (s m1(A)−l Id )−1,(s m2(A)−l Id )−1}. (8) 1 M2 2 M1 Theabovedefinition(8)(cid:0)isconsistentinviewoftheL -ellipticityandofthefollowing relation s (s m1(A)−l Id )−1(x ,x ) (x ,x )=(a −l )−1(x ,x ,x ,x ), 1 M2 1 1 2 2 m1,m2 1 2 1 2 s (cid:0)(s 2m2(A)−l IdM1)−1(x2,x 2)(cid:1)(x1,x 1)=(am1,m2−l )−1(x1,x2,x 1,x 2). Using th(cid:0)e rules of the calculus and L(cid:1)emma 2.1, we can check that B(l ) satisfies conditions (7). By parameter ellipticity, we get that R (l ) and R (l ) are compact 1 2 operatorsforl ∈L ,namely (A−l Id)◦B(l )=Id+R (l ), 1 (9) (A−l Id)◦B(l )=Id+R (l ), 2 l R (l ),l R (l )∈S−1,−1(M ×M )uniformlyw.r.t.l ∈L .SoB(l )isaparametrix 1 2 1 2 anditssymbolb(l )hasthefollowingform b(l )=−(a (x ,x ,x ,x )−l )−1y (x )y (x ) m1,m2 1 2 1 2 1 2 2 1 +(a −l Id )−1(x ,x ,x ,x )y (x ) m1,· M2 1 2 1 2 1 1 +(a −l Id )−1(x ,x ,x ,x )y (x ), ·,m2 M1 1 2 1 2 2 2 WeylasymptoticsofbisingularoperatorsandDirichletdivisorproblem 9 where (a −l Id )−1(x ,x ,x ,x ) is the value of the symbol of the operator m1,· M2 1 2 1 2 (a (x ,x ,x ,D )−l Id )−1at(x ,x ),andsimilarlyfor(a −l Id )−1.Fur- m1,· 1 2 1 2 M2 2 2 ·,m2 M1 thermore,denotingbyr (l )thesymbolofR (l ),weeasilyobtain 1 1 r (l )=(a−psym(a))◦b(l )+(psym(a)◦b(l ))−1, (10) 1 hencer (l )∈S−1,−1(M ,M )istheasymptoticsumoftermsofthetype 1 1 2 ¶ a 1¶ a 2gDa 1Da 2b(l ) g∈Sm1,m2(M ,M ). x1 x2 x1 x2 1 2 Clearly(a (x ,x ,x ,x )−l )−1=O(|l |−1).Bythetheoryofpseudodifferential m1,m2 1 2 1 2 operatorsonclosedmanifolds,thesamepropertyholdsforthesymbolsoftheopera- tors(a (x ,x ,x ,D )−l Id )−1 and(a (x ,x ,D ,x )−l Id )−1 andtheir m1,· 1 2 1 2 M2 ·,m2 1 2 1 2 M1 derivatives.Thusr (l )=O(|l |−1),asaconsequenceofthecalculus.ByProposition 1 1.2,thisimplieskR k =O(|l |−1),andthesameistruefortheoperatorR .Sowe 1 L2 2 canchoosel largeenoughsuchthatR ,R havenormlessthan1.Inthisway,using 1 2 Neumannseries,weprovethat(A−l Id)isonetooneandonto,thereforeinvertible, by the Open Map Theorem. Again, by Neumann series, we obtain B˜(l ) such that (9) is fulfilled with R˜ ,R˜ smoothing and still with norm O(l −1). Now notice that 1 2 l B(l )−B˜(l ) ∈S−m1−1,−m2−1 for all l ∈L . Furthermore, if we multiply both equationsin(7)by(A−l Id)−1 weobtain (cid:2) (cid:3) (A−l Id)−1=B˜(l )+B˜(l )R (l )+R (l )(l −A)−1R (l ). 1 2 1 Hencek(A−l Id)−1k=O(|l |−1)andl 2 (A−l )−1−B˜(l ) isasmoothingoperator inL−¥ ,−¥ (M ×M ),uniformlyw.r.t.l . 1 2 (cid:2) (cid:3) Inordertodefinecomplexpowersofanellipticbisingularoperator,weintroduce somenaturalassumptions. Assumptions1 1. A∈Sm1,m2(M1,M2)isL -elliptic. 2. s (A)∩L =0/ (inparticularAisinvertible). 3. Ahashomogeneousprincipalsymbols. Remark2 If we consider a L -elliptic operator A∈Lm1,m2(M ×M ) with m > 0 pr 1 2 i (i=1,2), then s (A) is either discrete or the whole of C, because the resolvent is a compact operator ([31], Ch. I). Since by Theorem 2.1 we know that for large l the resolvent is well defined, it turns out that the spectrum s (A) is discrete. Then, moduloashiftoftheoperator,wecanfindasuitablesectorsuchthatAssumptions1 isfulfilled. Definition2.2 LetAbeanoperatorfulfillingAssumptions1.Then,wecandefine i A := l z(A−l Id)−1dl , Re(z)<0, (11) z 2p ¶L + Z e whereL e =L ∪{z∈C||z|≤e }. TheDunfordintegralin(11)isconvergentbecausek(A−l Id)−1k=O(|l |−1)forl largeenough.Asusual,wenextdefine Az:=A ◦Ak, Re(z−k)<0. z−k 10 UbertinoBattisti Remark3 In Assumptions 1 we require L ∩s (A)=0/, therefore in particular the operatormustbeinvertible.Itispossibletodefinecomplexpowersofnoninvertible operator as well, providedthe origin is an isolated pointof the spectrum, see, e.g., [4].Forexample,onecandefinethecomplexpowersofA=−D ⊗−D onthetorus S1×S1,evenifAhasaninfinitedimensionalkernel. Theorem2.2 IfA∈Lm1,m2(M1,M2)satisfiesAssumptions1,thenAz∈Lm1z,m2z(M1× M )andithashomogeneousprincipalsymbol.Moreover,byCauchyTheorem2 2 az =(a )z, m1z,m2z m1,m2 az =(a )z, (12) m1z,· m1,· az =(a )z. ·,m2z ·,m2 Proof As a consequenceof a generalversion of Fubini’s Theorem,denoting by az thesymbolofAz,weobtain i az= l z(a−l Id)−1)dl , Re(z)<0. 2p Z¶ +L e where (a−l Id)−1 is the symbol of the operator (A−l Id)−1. By Theorem 2.1, we know that l 2 (A−l Id)−1−B(l ) ∈L−¥ ,−¥ (M ×M ) so, up to smoothing 1 2 symbols,wehaveh i i az= l z(b˜(l ))dl 2p Z¶ +L e (13) i = l z(b˜(l ))dl , 2p W Z x1,x2 whereW x1,x2 isasinLemma2.1andthesecondequalityin(13)followsbyCauchy integralformula.Now,byLemma2.1andbytheexplicitformofb˜(l ),wegetAz∈ Lm1z,m2z(M1×M2).InordertoshowthatAz hashomogeneousprincipalsymbol,we write (b˜(l ))=y 1(s m1(A)−l IdM2)−1+y 2(s m2(A)−l IdM1)−1 −y y (s m1,m2(A)−l )−1+c(l ), 1 2 wherel c(l )∈S−m1−1,−m2−1(M1,M2),∀l ∈L .Wesplitintegralin(13)sothat az= 2ip ¶ +L e l zy 1(s m1(A)−l IdM2)−1 (14) +2ip R¶ +L e l zy 2(s m2(A)−l IdM1)−1dl (15) −2ip R¶ +L e l zy 1y 2(s m1,m2(A)−l )−1dl (16) R +2ip ¶ +L e l zc(l )dl . (17) The theorem follows from theory of cRomplex powers on closed manifolds for the integrals(14)and(15),andfromCauchyTheoremforintegral(16).Finally,wenotice thatintegral(17)givesasymboloforder(m z−1,m z−1). 1 2 o(afm2th1,eI·n)fzue,nq(acu·ta,imtoi2no)nzs(am1r1e2,m)c2oa(mzmA1p)z,l.·e,xaz·p,mo2wz,earzms1ozf,mt2hzeroeppererasteonrtsrses2mp1e(cAti)v,esly2m2s(1mA1)za(Andz)(,asm2m12,mz(2A)zz)i,ssthme1zc,mom2z(pAlezx),pwowhieler