ebook img

Weyl asymptotics of Bisingular Operators and Dirichlet Divisor Problem PDF

0.18 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Weyl asymptotics of Bisingular Operators and Dirichlet Divisor Problem

NonamemanuscriptNo. (willbeinsertedbytheeditor) Weyl asymptotics of bisingular operators and Dirichlet divisor problem UbertinoBattisti 2 Received:date/Accepted:date 1 0 2 Abstract We consider a class of pseudodifferential operators, with crossed vector n valuedsymbols,definedontheproductoftwoclosedmanifolds.Westudytheasymp- a toticexpansionofthecountingfunctionofpositiveselfadjointoperatorsinthisclass. J UsingageneralTheoremofJ.Aramaki,wecandeterminethefirsttermoftheasymp- 2 1 toticexpansionofthecountingfunctionand,inaspecialcase,weareabletofindthe secondterm.We givealsosomeexamples,emphasizingconnectionswithproblems ] ofanalyticnumbertheory,inparticularwithDirichletdivisorfunction. P S Keywords Weyl’slaw·Bisingularoperators·Dirichletdivisorproblem·Spectral . h analysis t a MathematicsSubjectClassification(2010) 35P20·58J40·47A10 m [ 3 Introduction v 8 In[28]L.Rodinointroducedbisingularoperators:aclassofpseudodifferentialoper- 1 5 atorsdefinedontheproductoftwoclosedmanifoldsM1×M2,relatedtothemulti- 1 plicativepropertyofAtiyah-Singerindex,see[2].Asimpleexampleofanoperator . in this class is the tensorial product A ⊗A , where A , A are pseudodifferential 2 1 2 1 2 1 operatorson the closedmanifoldsM1, M2. Anotherexample,studied in[28], is the 0 vector-tensorproductA ⊠A .In[26],inordertoproveanindexformula,F.Nicola 1 2 1 andL. Rodinointroducedclassical, i.e.polyhomogeneous,bisingularoperatorsand : v defined Wodzicki Residue for this class of operators. The two authors defined the i residue,viaholomorphicfamilies,asin[9,25].Fortheindexofbisingularoperators X r UbertinoBattisti, a Universita`degliStudidiTorino, viaCarloAlberto10,10123Torino Tel.:+390116702877 Fax:+390116702878 E-mail:[email protected] 2 UbertinoBattisti see also theworkofV. S. Pilidi[27] andofR. V. Duducˇava[5,6]. In[23], R. Mel- rose andF. Rochonintroducedpseudodifferentialoperatorsof producttype,a class of operators close to bisingular operators. Bisingular operators are an example of operatorswithvectorvaluedsymbols;pseudodifferentialoperatorsofthistypehave been meticulously studied, see, for example, Fedosov, Schulze, Tarkhanov [8] and thereferencestherein. Theaimofthispaperistoanalyzetheasymptoticbehaviorofthecountingfunc- tion of selfadjointelliptic positive bisingularoperators.Similarly to the the case of SG-calculus[3] (seee.g.[7,29]formoredetailonSG-calculus),weusetechniques related to complex powers of operators, z -function and Tauberian Theorems. This strategy, in the setting of closed manifolds, was first used by V. Guillemin [14] in ordertogetthesocalledsoftproof ofWeyl’sformula. Here, as in the case of SG-calculus, it turns out that the z -function can have polesofordertwo.Thus,usingarefinementofTauberianTheoremduetoJ.Aramaki [1],theasymptoticbehaviorofthecountingfunctionisdetermined.Thepresenceof a pole of order two of the z -function implies that the counting functions can have asymptotictermsoforderl clogl .Suchabehaviorappearsinvarioussetting:mani- foldswithconicalsingularities[9],SG-calculusonRn[25],SG-calculusonmanifolds withcylindricalends[20].SeealsoGramchev,Pilipovic´,Rodino,Wong[10,11]on theasymptoticexpansionofthecountingfunctioninthecaseoftwistedbi-Laplacian. Furthermore,in[24],S.MoroianustudiedWeyl’slawonmanifoldswithcusps,with an approachsimilar to the one used in this paper. In a specialcase, he showed that thegrowthrateofthecountingfunctionisl clogl . We remark that it is not surprising that the z -function of a selfadjoint elliptic positive bisingular operator can have poles of order 2. Indeed, let us consider two positive elliptic pseudodifferential operators A,B defined on the closed manifolds M ,M . Fromgeneraltheoryof complexpowersof pseudodifferentialoperatorson 1 2 closedmanifolds[30], we knowthatthe z -functionofan operatorP ofthis typeis holomorphicforRe(z)<−n (n=dim M,morderofP)anditcanbeextendedasa m meromorphicfunctiontothewholeofCwithpolesoforder1.Aswenoticedatthe beginning,the tensorialproductA⊗Bisa bisingularoperatoronM ×M anditis 1 2 clearlypositiveandselfadjoint.Onecanprovethefollowing z (A⊗B,z)=z (A,z)z (B,z). (1) Ifonedefinesthez -functionusingtheeigenvalues,equality(1)becomesmoretrans- parent.To thisend,let{l j}j∈N and{m i}i∈N betheeigenvaluesofAandB,respec- tively.ThentheeigenvaluesofA⊗Bturnouttobe{l jm i}i,j∈N2.Thereforewehave z (A,z)=(cid:229) l z, Re(z)<−n1 ; j m j∈N A z (B,z)=(cid:229) m z, Re(z)<−n2 ; i m i∈N B z (A⊗B,z)= (cid:229) l zm z=z (A,z)z (B,z), Re(z)<−max n1 , n2 ; j i m m i,j∈N2 A B (cid:8) (cid:9) WeylasymptoticsofbisingularoperatorsandDirichletdivisorproblem 3 where n =dim M , n =dim M and m ,m are the ordersof A and B. Then the 1 1 2 2 A B productstructure of z (A⊗B,z) implies that it can have poles of order two. Let us nowfocusonthespecialcase n1 = n2 =z : mA mB 0 C z (A,z)= A +h (z), Re(z)<−z +e ; A 0 (z+z ) 0 C z (B,z)= B +hB(z), Re(z)<−z0+e ; (2) (z+z ) 0 C C h (z)+h (z) z (A⊗B,z)= A B + A B +h (z)h (z), Re(z)<−z +e ; (z+z )2 (z+z ) A B 0 0 0 whereC ,C are constants that depend just on the principal symbol of A,B, while A B h ,h areholomorphicfunctionswhichdependonthewholesymbolofA,B.From A B (2),itisclearthatz (A⊗B,z)hasapoleofordertwo.Moreover,weobservethatthe coefficientofthepoleoforderonedependsonthewholesymbolofAandB.Finally, applyingJ.Aramaki’sTheorem3.1,from(2)oneobtains N (l )∼CACBl z0log(l )− hA(−z0)−hB(−z0)+CACB l z0+O(l z0−d ), A⊗B z z z2 0 (cid:18) 0 0 (cid:19) (3) where d >0. Simple examples of operators A and B for which (3) holds are A= −D g+1,B=−D g′+1,whereD g,D g′ aretheLaplaceBeltramioperatorsassociated to Riemanniann structures of M , M respectively. We will extend (3) to all posi- 1 2 tivebisingularellipticoperators,expressingtheconstantsintheWeylasymptoticsin termsofthecrossedvector-valuedsymbols. Thepaperisorganizedasfollows.InSection1weshortlyrecallbasicproperties ofbisingularoperators;we referthereaderto[26,28]formoredetails.Section2is devotedtothedefinitionofcomplexpowersofsuitablebisingularoperators;wein- troducethe z -functionin this setting andwe studyits meromorphicextension.The main result, concerning the asymptotics of the counting function of selfadjoint el- liptic positivebisingular operators,is stated in section 3. In section 4, we show the connection with Dirichlet divisor problem, which we reconsider from the point of viewofSpectralTheory. 1 Bisingularoperators We startwiththedefinitionsofbisingularsymbolsandbisingularsymbolswithho- mogeneousprincipalsymbol. In the following, W always denotes a bounded open i domainofRni. Definition1.1 We define Sm1,m2(W 1,W 2) as the set of C¥ (W 1×W 2×Rn1×Rn2) functionssuchthat,forallmultiindexa ,b andforallcompactsubsetK ⊆W ,i= i i i i 1,2,thereexistsapositiveconstantCa 1,a 2,b1,b2,K1,K2 sothat |¶ xa11¶ xa22¶ xb11¶ xb22a(x1,x2,x 1,x 2)|≤Ca 1,a 2,b1,b2,K1,K2hx 1im1−|a 1|hx 2im2−|a 2|, forallxi∈Ki,x i∈Rni,i=1,2.Asusual,hx i=(1+|x |2)12. 4 UbertinoBattisti S−¥ ,−¥ (W ,W ) is the set of smoothingsymbols. Following[28], we introducethe 1 2 subclassofbisingularoperatorswithhomogeneousprincipalsymbol. Definition1.2 Leta∈Sm1,m2(W 1,W 2);ahasahomogeneousprincipalsymbolif i) thereexistsam1,·(x1,x2,x 1,x 2)∈Sm1,m2(W 1,W 2)suchthat a(x ,x ,tx ,x )=tm1a(x ,x ,x ,x ), ∀x ,x ,x , ∀|x |>1,t>0, 1 2 1 2 1 2 1 2 1 2 2 1 a−y 1(x 1)am1,·∈Sm1−1,m2(W 1,W 2), y 1cut-offfunctionoftheorigin. Moreover,a (x ,x ,x ,D )∈Lm2(W ),so,beingaclassicalsymbolonW ,it m1,· 1 2 1 2 cl 2 2 admitsanasymptoticexpansionw.r.t.thex variable. 2 ii) thereexistsa·,m2(x1,x2,x 1,x 2)∈Sm1,m2(W 1,W 2)suchthat a(x ,x ,x ,tx )=tm2a(x ,x ,x ,x ), ∀x ,x ,x , ∀|x |>1,t>0, 1 2 1 2 1 2 1 2 1 2 1 2 a−y 2(x 2)a·,m2 ∈Sm1,m2−1(W 1,W 2), y 2cut-offfunctionoftheorigin. Moreover,a (x ,x ,D ,x )∈Lm1(W ),so,beingaclassicalsymbolonW ,it ·,m2 1 2 1 2 cl 1 1 admitsanasymptoticexpansionw.r.t.thex variable. 1 iii) The symbols a and a have the same leading term, so there exists a m1,· ·,m2 m1,m2 suchthat a −y (x )a ∈Sm1,m2−1(W ,W ), m1,· 2 2 m1,m2 1 2 a·,m2−y 1(x 1)am1,m2 ∈Sm1−1,m2(W 1,W 2), and a−y a −y a +y y a ∈Sm1−1,m2−1(W ,W ). 1 m1,· 2 ·,m2 1 2 m1,m2 1 2 ThesetofsymbolswithhomogeneousprincipalsymbolisdenotedasSm1,m2(W ,W ). pr 1 2 Wewillshortlywritethattheprincipalsymbolofais{a ,a }. m1,· ·,m2 Wecanobserveasimilarity,atleastformal,betweenbisingularsymbolswithhomo- geneousprincipalsymbolandSG-classicalsymbols,see,e.g..[7,25]. We define bisingular operators via their left quantization. A linear operator A: C¥ (W ×W )→C¥ (W ×W )isabisingularoperatorifitcanbewrittenintheform c 1 2 1 2 A(u)(x ,x )=Op(a)(x ,x ) 1 2 1 2 1 = eix1·x1+ix2·x2a(x ,x ,x ,x )uˆ(x ,x )dx dx . (2p )n1+n2 ZRn1ZRn2 1 2 1 2 1 2 1 2 Ifa∈Sm1,m2(W 1,W 2)ora∈Spmr1,m2(W 1,W 2),thenwewriteA∈Lm1,m2(W 1,W 2)and A∈Lm1,m2(W ,W )respectively.Theabovedefinitioncanbeextendedtotheproduct pr 1 2 of closed manifolds; we refer to [28] for the details of the construction of global operatorsandthecorrespondingcalculus. WeylasymptoticsofbisingularoperatorsandDirichletdivisorproblem 5 Definition1.2impliesthat,foreveryoperatorA∈Lm1,m2(W ,W ),wecandefine pr 1 2 functionss m1,s m2,s m1,m2 suchthat s m1(A):T∗W \{0}→Lm2(W ) 1 1 cl 2 (x ,x )7→a (x ,x ,x ,D ), 1 1 m1,· 1 2 1 2 s m2(A):T∗W \{0}→Lm1(W ) 2 2 cl 1 (4) (x ,x )7→a (x ,x ,D ,x ), 2 2 ·,m2 1 2 1 2 s m1,m2(A):T∗W \{0}×T∗W \{0}→C 1 2 (x ,x ,x ,x )7→a (x ,x ,x ,x ). 1 2 1 2 m1,m2 1 2 1 2 Moreover, denoting by s (P)(x,x ) the principal symbol of a preudodifferential operatorPonaclosedmanifold,thefollowingcompatibilityrelationholds s (s m1(A)(x ,x ))(x ,x )=s (s m2(A)(x ,x ))(x ,x ) 1 1 1 2 2 2 2 2 1 1 (5) =s m1,m2(A)(x1,x2,x 1,x 2)=am1,m2(x1,x2,x 1,x 2). Remark1 If we considertheproductof closedmanifoldsM ×M , thenthe whole 1 2 symbolisalocalobject,ingeneral.Nevertheless,similarlytothecalculusonclosed manifolds,itispossibletogiveaninvariantmeaningtothefunctions(4)asfunctions definedonthecotangentbundle,see[28]. As in the case of the calculus on closed manifolds, it is possible to define adapted Sobolevspacesandthentoprovesomecontinuityresults. Definition1.3 LetM1,M2betwoclosedmanifolds.TheSobolevspaceHm1,m2(M1× M )isdefinedby 2 Hm1,m2(M ×M )={u∈S′(M ×M )|Op(hx im1hx im2)(u)∈L2(M ×M )}. 1 2 1 2 1 2 1 2 Ifu∈Hm1,m2(M1×M2)thenkukm1,m2 =kOp(hx 1im1hx 2im2)(u)k2.Usingtheformal- ismoftensorproduct,wecanalsowrite1 Hm1,m2(M1×M2)=Hm1(M1)⊗p Hm2(M2). SimilarlytoSobolevspacesHs(M),wehave b i) Hm1,m2(M1×M2)֒→Hm′1,m′2(M1×M2) is a continuous immersion if mi ≥m′i, i=1,2. ii) Hm1,m2(M1×M2)֒→Hm′1,m′2(M1×M2) is a compactimmersionif mi >m′i, i= 1,2. Proposition1.1 ApseudodifferentialoperatorA∈Lm1,m2(M1×M2)canbeextended toacontinuousoperator A:Hs,t(M ×M )→Hs−m1,t−m2(M ×M ). 1 2 1 2 Furthermore,thenormoftheoperatorcanbeestimatedusingtheseminormsofthe symbol.Itisalsopossibletoprovethefollowingproposition: 1 Fordefinitionof⊗p see[32]. b 6 UbertinoBattisti Proposition1.2 Let A∈Lm1,m2(M1×M2) be a bisingularoperator;if mi ≤0 (i= 1,2),thenthereexistsN∈NsuchthatkAk ≤sup|(cid:229) p(a(x ,x ,x ,x ))|,where 0,0 i≤N i 1 2 1 2 {pi(·)}i∈N aretheseminormsoftheFre´chetspaceSm1,m2(M1,M2). AnoperatorA∈Lm1,m2(M1×M2)isellipticifam1,·,a·,m2,am1,m2,thethreecom- ponentsofitsprincipalsymbol,areinvertibleintheirdomainofdefinition.Explicitly: Definition1.4 LetA∈Lm1,m2(M ×M );Aisellipticif pr 1 2 i) s m1,m2(A)(v1,v2)6=0forall(v1,v2)∈T∗M1\{0}×T∗M2\{0}; ii) s m1(A)(v )∈Lm2(M )isinvertibleforallv ∈T∗M \{0}; 1 1 cl 2 1 1 iii) s m2(A)(v )∈Lm1(M )isinvertibleforallv ∈T∗M \{0}; 2 2 cl 1 2 2 wheres m1,m2(A),s m1(A),s m2(A)areasin(4). 1 2 In[28],itisprovedthat,ifAsatisfiesDefinition1.4,thenAisaFredholmoperator. Thispropertyisacorollaryofthefollowingtheorem: Theorem1.1 LetA∈Lm1,m2(M ×M )beelliptic;thenthereexistsanoperatorB∈ pr 1 2 L−m1,−m2(M ×M )suchthat pr 1 2 AB=Id+K , 1 BA=Id+K , 2 whereIdistheidentitymapandK ,K arecompactoperators.Moreover,thesymbol 1 2 ofBisb={s m1(A)−1,s m2(A)−1}. 1 2 TheproofofTheorem1.1isaneasyconsequenceoftheglobalversionofthefollow- inglemma: Lemma1.1 LetA∈Lm1,m2(W 1×W 2)andB∈Lm′1,m′2(W 1×W 2),then {(a◦b)m1+m′1,·,(a◦b)·,m2+m′2}={am1,·◦x2bm′1,·,a·,m2◦x1b·,m′2} where (a◦x1b)(x1,x2,D1,x 2)(u)=a(x1,x2,D1,x 2)◦b(x1,x2,D1,x 2)(u) ∀u∈Cc¥ (W 1), (a◦x2b)(x1,x2,x 1,D2)(v)=a(x1,x2,x 1,D2)◦b(x1,x2,x 1,D2)(v) ∀v∈Cc¥ (W 2). In first row the composition is in the space L¥ (W ) of pseudodifferentialoperators 1 onW ,insecondrow,itisinthespaceL¥ (W ). 1 2 2 Complexpowersofbisingularoperators Inthissectionwedefinecomplexpowersofasubclassofellipticbisingularoperators. ThefirststepistogiveasuitabledefinitionL -ellipticoperatorsw.r.t.asectorofthe complexplaneL . Definition2.1 LetL beasectorofC;wesaythata∈Sm1,m2(M ,M )isL -elliptic pr 1 2 w.r.t.L ifthereexistsapositiveconstantRsuchthat WeylasymptoticsofbisingularoperatorsandDirichletdivisorproblem 7 i) s m1,m2(A)(v ,v )−l −1∈S−m1,−m2(M ,M ), 1 2 1 2 forall|vi|>R,i(cid:0)=1,2,andforalll ∈(cid:1)L . ii) s m1(A)(v )−l Id ∈Lm2(M ), 1 1 M2 cl 2 isinvertibleforall|v |>Randforalll ∈L . 1 iii) s m2(A)(v )−l Id ∈Lm1(M ), 2 2 M1 cl 1 isinvertibleforall|v |>Randforalll ∈L . 2 In thefollowing,in orderto definethe complexpowerof A, we assume thatL is a sectorofthecomplexplanewithvertexattheorigin,thatis L ={z∈C|arg(z)∈[p −q ,−p +q ]}. ✻ ❍❍❍❍ar❍g❍=❍❍p❍❍❍❥−❍q ❍ ❍ ❍ ❍ ✲ ✟✟ ✟✟ ✟✟ ✟✟ ✟✟ ✟✟✙ ✟ ✟ ✟✟arg=−p +q Lemma2.1 Leta∈Sm1,m2(W 1,W 2)beL -elliptic.ForallKi⊆W i,i=1,2,thereexist c >1andaset 0 1 W x1,x2 :={z∈C\L | c hx 1im1hx 2im2 <|z|<c0hx 1im1hx 2im2} (6) 0 suchthat spec(a(x1,x2,x 1,x 2))={l ∈C|a(x1,x2,x 1,x 2)−l =0}⊆W x1,x2, ∀x ∈W ,x ∈Rni; i i i moreover, | l −a (x ,x ,x ,x ) −1|≤C(|l |+hx im1hx im2)−1, m1,m2 1 2 1 2 1 2 |(cid:0)am1,·−l IdW 1 −1|≤C(|(cid:1)l |+hx 1im1hx 2im2)−1, |(cid:0)a·,m2−l IdW 2(cid:1)−1|≤C(|l |+hx 1im1hx 2im2)−1, ∀(cid:0)xi∈Ki,x i∈Rn(cid:1)i,l ∈C\W x1,x2,i=1,2, where am1,·−l IdW 1 −1standsforthesymboloftheoperator(am1,·(x1,x2,x 1,D2)− l IdW 1)(cid:0)−1,andsimila(cid:1)rlyfor a·,m2−l IdW 2 −1. (cid:0) (cid:1) 8 UbertinoBattisti TheproofofLemma2.1isessentiallythesameoftheoneofLemma3.5in[22]. Next, we prove that, if A L -elliptic, then we can define a parametrix of (A− l Id).Actually,weprovethat,for|l |largeenough,theresolvent(A−l Id)−1exists. Restricting ourselvesto differentialoperators,we couldfollowformallytheidea of Shubin([31],ch.II)ofparameterdependingoperators.Forgeneralpseudodifferential operators,itiswellknowthatthisideadoesnotwork,see[12]. Theorem2.1 LetA∈Lm1,m2(M ×M )beL -elliptic.ThenthereexistsR∈R+,such pr 1 2 thattheresolvent(A−l Id)−1existsforl ∈L ={l ∈L ||l |≥R}.Moreover, R k(A−l Id)−1k=O(|l |−1), l ∈L . R Proof First,welookforaninverseof(A−l Id)modulocompactoperators,thatis anoperatorB(l )suchthat: (A−l )◦B(l )=Id+R (l ), l R (l )∈L−1,−1(M ×M ), 1 1 1 2 (7) B(l )◦(A−l )=Id+R (l ), l R (l )∈L−1,−1(M ×M ), 2 2 1 2 uniformly w.r.t. l ∈L . In order to find such an operator, we make the principal symbolexplicit: a−l =psym(a)−l +c, c∈Sm1−1,m2−1(M ,M ), 1 2 wherepsym(a)=y a +y a −y y a . Aswe havenoticedinTheorem 1 m1,· 2 ·,m2 1 2 m1,m2 1.1, we can write the symbol of the inverse (modulo compact operators) of an el- lipticoperator.Inthiscasewe needto bemorecarefulbecauseoftheparameterl . FollowingthesameconstructionasinTheorem1.1,weobtain b(l )={ (s m1(A)−l Id )−1,(s m2(A)−l Id )−1}. (8) 1 M2 2 M1 Theabovedefinition(8)(cid:0)isconsistentinviewoftheL -ellipticityandofthefollowing relation s (s m1(A)−l Id )−1(x ,x ) (x ,x )=(a −l )−1(x ,x ,x ,x ), 1 M2 1 1 2 2 m1,m2 1 2 1 2 s (cid:0)(s 2m2(A)−l IdM1)−1(x2,x 2)(cid:1)(x1,x 1)=(am1,m2−l )−1(x1,x2,x 1,x 2). Using th(cid:0)e rules of the calculus and L(cid:1)emma 2.1, we can check that B(l ) satisfies conditions (7). By parameter ellipticity, we get that R (l ) and R (l ) are compact 1 2 operatorsforl ∈L ,namely (A−l Id)◦B(l )=Id+R (l ), 1 (9) (A−l Id)◦B(l )=Id+R (l ), 2 l R (l ),l R (l )∈S−1,−1(M ×M )uniformlyw.r.t.l ∈L .SoB(l )isaparametrix 1 2 1 2 anditssymbolb(l )hasthefollowingform b(l )=−(a (x ,x ,x ,x )−l )−1y (x )y (x ) m1,m2 1 2 1 2 1 2 2 1 +(a −l Id )−1(x ,x ,x ,x )y (x ) m1,· M2 1 2 1 2 1 1 +(a −l Id )−1(x ,x ,x ,x )y (x ), ·,m2 M1 1 2 1 2 2 2 WeylasymptoticsofbisingularoperatorsandDirichletdivisorproblem 9 where (a −l Id )−1(x ,x ,x ,x ) is the value of the symbol of the operator m1,· M2 1 2 1 2 (a (x ,x ,x ,D )−l Id )−1at(x ,x ),andsimilarlyfor(a −l Id )−1.Fur- m1,· 1 2 1 2 M2 2 2 ·,m2 M1 thermore,denotingbyr (l )thesymbolofR (l ),weeasilyobtain 1 1 r (l )=(a−psym(a))◦b(l )+(psym(a)◦b(l ))−1, (10) 1 hencer (l )∈S−1,−1(M ,M )istheasymptoticsumoftermsofthetype 1 1 2 ¶ a 1¶ a 2gDa 1Da 2b(l ) g∈Sm1,m2(M ,M ). x1 x2 x1 x2 1 2 Clearly(a (x ,x ,x ,x )−l )−1=O(|l |−1).Bythetheoryofpseudodifferential m1,m2 1 2 1 2 operatorsonclosedmanifolds,thesamepropertyholdsforthesymbolsoftheopera- tors(a (x ,x ,x ,D )−l Id )−1 and(a (x ,x ,D ,x )−l Id )−1 andtheir m1,· 1 2 1 2 M2 ·,m2 1 2 1 2 M1 derivatives.Thusr (l )=O(|l |−1),asaconsequenceofthecalculus.ByProposition 1 1.2,thisimplieskR k =O(|l |−1),andthesameistruefortheoperatorR .Sowe 1 L2 2 canchoosel largeenoughsuchthatR ,R havenormlessthan1.Inthisway,using 1 2 Neumannseries,weprovethat(A−l Id)isonetooneandonto,thereforeinvertible, by the Open Map Theorem. Again, by Neumann series, we obtain B˜(l ) such that (9) is fulfilled with R˜ ,R˜ smoothing and still with norm O(l −1). Now notice that 1 2 l B(l )−B˜(l ) ∈S−m1−1,−m2−1 for all l ∈L . Furthermore, if we multiply both equationsin(7)by(A−l Id)−1 weobtain (cid:2) (cid:3) (A−l Id)−1=B˜(l )+B˜(l )R (l )+R (l )(l −A)−1R (l ). 1 2 1 Hencek(A−l Id)−1k=O(|l |−1)andl 2 (A−l )−1−B˜(l ) isasmoothingoperator inL−¥ ,−¥ (M ×M ),uniformlyw.r.t.l . 1 2 (cid:2) (cid:3) Inordertodefinecomplexpowersofanellipticbisingularoperator,weintroduce somenaturalassumptions. Assumptions1 1. A∈Sm1,m2(M1,M2)isL -elliptic. 2. s (A)∩L =0/ (inparticularAisinvertible). 3. Ahashomogeneousprincipalsymbols. Remark2 If we consider a L -elliptic operator A∈Lm1,m2(M ×M ) with m > 0 pr 1 2 i (i=1,2), then s (A) is either discrete or the whole of C, because the resolvent is a compact operator ([31], Ch. I). Since by Theorem 2.1 we know that for large l the resolvent is well defined, it turns out that the spectrum s (A) is discrete. Then, moduloashiftoftheoperator,wecanfindasuitablesectorsuchthatAssumptions1 isfulfilled. Definition2.2 LetAbeanoperatorfulfillingAssumptions1.Then,wecandefine i A := l z(A−l Id)−1dl , Re(z)<0, (11) z 2p ¶L + Z e whereL e =L ∪{z∈C||z|≤e }. TheDunfordintegralin(11)isconvergentbecausek(A−l Id)−1k=O(|l |−1)forl largeenough.Asusual,wenextdefine Az:=A ◦Ak, Re(z−k)<0. z−k 10 UbertinoBattisti Remark3 In Assumptions 1 we require L ∩s (A)=0/, therefore in particular the operatormustbeinvertible.Itispossibletodefinecomplexpowersofnoninvertible operator as well, providedthe origin is an isolated pointof the spectrum, see, e.g., [4].Forexample,onecandefinethecomplexpowersofA=−D ⊗−D onthetorus S1×S1,evenifAhasaninfinitedimensionalkernel. Theorem2.2 IfA∈Lm1,m2(M1,M2)satisfiesAssumptions1,thenAz∈Lm1z,m2z(M1× M )andithashomogeneousprincipalsymbol.Moreover,byCauchyTheorem2 2 az =(a )z, m1z,m2z m1,m2 az =(a )z, (12) m1z,· m1,· az =(a )z. ·,m2z ·,m2 Proof As a consequenceof a generalversion of Fubini’s Theorem,denoting by az thesymbolofAz,weobtain i az= l z(a−l Id)−1)dl , Re(z)<0. 2p Z¶ +L e where (a−l Id)−1 is the symbol of the operator (A−l Id)−1. By Theorem 2.1, we know that l 2 (A−l Id)−1−B(l ) ∈L−¥ ,−¥ (M ×M ) so, up to smoothing 1 2 symbols,wehaveh i i az= l z(b˜(l ))dl 2p Z¶ +L e (13) i = l z(b˜(l ))dl , 2p W Z x1,x2 whereW x1,x2 isasinLemma2.1andthesecondequalityin(13)followsbyCauchy integralformula.Now,byLemma2.1andbytheexplicitformofb˜(l ),wegetAz∈ Lm1z,m2z(M1×M2).InordertoshowthatAz hashomogeneousprincipalsymbol,we write (b˜(l ))=y 1(s m1(A)−l IdM2)−1+y 2(s m2(A)−l IdM1)−1 −y y (s m1,m2(A)−l )−1+c(l ), 1 2 wherel c(l )∈S−m1−1,−m2−1(M1,M2),∀l ∈L .Wesplitintegralin(13)sothat az= 2ip ¶ +L e l zy 1(s m1(A)−l IdM2)−1 (14) +2ip R¶ +L e l zy 2(s m2(A)−l IdM1)−1dl (15) −2ip R¶ +L e l zy 1y 2(s m1,m2(A)−l )−1dl (16) R +2ip ¶ +L e l zc(l )dl . (17) The theorem follows from theory of cRomplex powers on closed manifolds for the integrals(14)and(15),andfromCauchyTheoremforintegral(16).Finally,wenotice thatintegral(17)givesasymboloforder(m z−1,m z−1). 1 2 o(afm2th1,eI·n)fzue,nq(acu·ta,imtoi2no)nzs(am1r1e2,m)c2oa(mzmA1p)z,l.·e,xaz·p,mo2wz,earzms1ozf,mt2hzeroeppererasteonrtsrses2mp1e(cAti)v,esly2m2s(1mA1)za(Andz)(,asm2m12,mz(2A)zz)i,ssthme1zc,mom2z(pAlezx),pwowhieler

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.