W ARMING AND STRATIFICATION CHANGES IN L K , E A AKE IVU AST FRICA A THESIS SUBMITTED TO THE FACULTY OF THE GRADUATE SCHOOL OF THE UNIVERSITY OF MINNESOTA BY ARTHUR ALLEN AABERG IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE SERGEI KATSEV JULY 2013 (cid:13)c Arthur Allen Aaberg 2013 Acknowledgements I am grateful to my advisor, Dr. Sergei Katsev, for his guidance and support – as well as the opening he had for me to start on this project my first summer as a graduate assistant. I would also like to thank Professor Thomas C. Johnson for the discussions I had with him and for allowing me to borrow several books during the data analysis phase of my research. I’d like to thank Dr. Sean Crowe for the help he provided in the fieldinRwanda,aswellastheassistanceoftheboatcrewmembersthathelpedwherever they could while providing us with transportation on Lake Kivu. I also thank Dr. Jay AustinforthediscussionsI’vehadwithhimandtheknowledgehisclassesprovidedme with, as well as for having space to conduct lab testing in his research lab at the Large Lakes Observatory. I also thank Sergio Contreas for the encouragment he has provided me with during discussions I’ve had with him. I am also thankful for the dissucussions and support that Matt Kistner, Rozhan Zakaria, Messias Macuiane, Daniel Titze, Blair Elliott, Hari Chapagain, and the other students at the LLO and those on campus have providedme,as wellas forthefriendshipsformedin mytimeat UMD. ThisresearchwasfundedbytheUMNOIPSeedGrant,theUMDVCAA/Dean’sOf- ficegrantforResearchinEnergyandEnvironment,andSergeiKatsev’sstart-upfunds. I i am thankful to the Universityof Minnesota,Duluth PhysicsDepartment summerschol- arship and the OIP grant for providing me with funding support for summer research andtheMylanRadulovichGraduateFellowshipprovidedbytheDepartmentofPhysics at theUniversityofMinnesota,Duluth. ii Abstract To investigate changes in the temperature and stratification structure in Lake Kivu, we haveinstalledastringoftemperaturerecordersandperformedCTDcasts. Theobtained data havebeen compared to historicalprofiles and the heat budget for thelake was ana- lyzed. Lake Kivu is a meromictic lake characterized by an anomalous temperature distri- bution with a temperature minimum close to the base of the seasonally mixed layer. Warming rate at the depth of the temperature inversion is consistent with the historical warming rate of the surface layer of ∼0.14 ±0.02 ◦C per decade. Deep waters (greater than 350 m) exhibit variability in temperature and are currently warming at a rate of ∼0.04 ±0.02 ◦C per decade based on the increase in heat content since the 1970’s and the increase in temperature seen in the deepest measurements between our 2011 and 2012profiles. ThemonimolimnionofLakeKivucannotbeconsideredtobeinasteady state. Thedepthofwind-inducedsurfacemixingduringthedryseasonvariessignificantly betweenyears. Mixingto80m(thepresentdepthofthetemperatureinversion)requires continuous winds blowing from the south at 9–10 m s−1, whereas typical wind speed maximaarearound5–6ms−1 andcapableofmixingtoaround65mdepth. Occasional iii stronger winds cause episodic mixing closer to the inversion which removes heat, but thisdoesnothappenonaregularbasis. Asthetemperatureinversioninrecenthistorical profiles has been as shallow as 65 m, mixing to the inversion depth is possible during years with stronger than average winds. With heat diffusing towards the temperature inversion from both above and below, the temperature at the inversion will continue to rise,resultinginareduced transportofheatoutofthedeep watersthatwillincreasethe rateat whichthewatercolumniswarming. iv Contents Page Acknowledgements i Abstract iii Contents v ListofTables ix ListofFigures x 1 Introduction 1 1.1 ObjectivesofthisWork . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.2 Hypotheses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2 Background 5 2.1 LakeKivu: General Information . . . . . . . . . . . . . . . . . . . . . 5 2.2 Stratification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.2.1 Inversionintemperatureprofile . . . . . . . . . . . . . . . . . . 9 2.3 ComponentsoftheHeat and WaterBudgets . . . . . . . . . . . . . . . 10 2.3.1 ThewaterbudgetofLakeKivu . . . . . . . . . . . . . . . . . . 11 v 3 Methods 13 3.1 Samplingandmeasurements . . . . . . . . . . . . . . . . . . . . . . . 13 3.1.1 CTD Profiles . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 3.1.2 Array oftemperaturerecorders . . . . . . . . . . . . . . . . . . 17 3.2 Correctionsto Temperature, Conductivity,and Pressure . . . . . . . . . 18 3.2.1 Conductivitycorrections . . . . . . . . . . . . . . . . . . . . . 18 3.2.2 Salinityand DensityProfiles . . . . . . . . . . . . . . . . . . . 20 3.2.3 Pressureto DepthConversion . . . . . . . . . . . . . . . . . . 24 3.3 Heat fluxesaccros thelakesurface . . . . . . . . . . . . . . . . . . . . 26 3.3.1 Heat lossduetoevaporation . . . . . . . . . . . . . . . . . . . 26 3.3.2 Long-waveThermalRadiation Heat Fluxes . . . . . . . . . . . 27 3.3.3 Heat FluxDueto SensibleRadiation . . . . . . . . . . . . . . . 29 3.3.4 SolarRadiationContributionsto theHeat Budget . . . . . . . . 29 3.4 MeteorologicalData . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 3.5 Dissolvedgasmeasurementsinsiliconetubing . . . . . . . . . . . . . . 31 3.6 Simulationofalimniceruptionin lab . . . . . . . . . . . . . . . . . . 34 4 Results 39 4.1 Temperaturedistributionsinthewatercolumn . . . . . . . . . . . . . . 39 4.1.1 Temperatureprofileinversion . . . . . . . . . . . . . . . . . . . 39 4.1.2 Positionsofthermoclines . . . . . . . . . . . . . . . . . . . . . 40 4.2 Lateral variabilityintemperaturedistributions . . . . . . . . . . . . . . 41 4.2.1 Inflows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 4.3 Temporalvariabilityinthetemperatureprofiles . . . . . . . . . . . . . 46 4.3.1 Variabilitywithinthemixolimnion . . . . . . . . . . . . . . . . 46 vi 4.3.2 Temperaturevariabilityinthedeep waters . . . . . . . . . . . . 50 4.4 ConductivitydistributioninLakeKivu . . . . . . . . . . . . . . . . . . 51 4.4.1 Spatial variabilityin watercolumnconductivity . . . . . . . . . 53 4.4.2 Temporalvariabilityin watercolumnconductivity . . . . . . . . 55 4.5 Oxygendistributionsin thewatercolumn . . . . . . . . . . . . . . . . 56 4.6 Gas pressuremeasurementswithsiliconetubing . . . . . . . . . . . . . 57 4.6.1 Calibrationofsiliconetubing . . . . . . . . . . . . . . . . . . . 57 4.6.2 Field measurementsofgas pressures . . . . . . . . . . . . . . . 59 4.7 Limniceruptionsin lab . . . . . . . . . . . . . . . . . . . . . . . . . . 63 5 Discussion 65 5.1 Comparisonsofhistoricaltemperaturedistributionsinthewatercolumn 65 5.1.1 Decadal scalewarmingat thedepthoftemperature inversion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 5.2 Heat contentand temperaturechanges in thewatercolumn . . . . . . . 74 5.2.1 Heat contentchanges inthemixedlayer . . . . . . . . . . . . . 74 5.2.2 Heat contentchanges belowthetemperatureinversion. . . . . . 75 5.2.3 Implicationsofwarming . . . . . . . . . . . . . . . . . . . . . 76 5.3 WarminginLakeKivuversusothertropicallakes . . . . . . . . . . . . 77 5.4 DoubleDiffusionand itsVariability . . . . . . . . . . . . . . . . . . . 78 5.4.1 Variabilityin thedepth oftemperatureinversion . . . . . . . . . 82 5.4.2 Temperatureandenergyconservationrequirementsatandabove thetemperatureinversiondepth . . . . . . . . . . . . . . . . . . 85 5.5 StabilityoftheWaterColumn . . . . . . . . . . . . . . . . . . . . . . 88 5.6 Localweather averages andheat budget . . . . . . . . . . . . . . . . . 93 vii 5.6.1 Weatheraverages in LakeKivuregion . . . . . . . . . . . . . . 93 5.6.2 ComponentsoftheHeat Budget forLakeKivu . . . . . . . . . 94 5.7 Pycnoclinemovements . . . . . . . . . . . . . . . . . . . . . . . . . . 101 5.7.1 Historicalcomparisonsindicateverticalmovementin the boundariesofthepycnoclines . . . . . . . . . . . . . . . . . . 101 5.7.2 Temporalvariabilityexpected dueto internalwaves . . . . . . . 102 5.8 Effectsfrom conductivityand temperatureofinflows . . . . . . . . . . 108 5.9 Gas PressureMeasurementsinSiliconeTubing . . . . . . . . . . . . . 109 5.10 Limniceruptionsin lab . . . . . . . . . . . . . . . . . . . . . . . . . . 112 6 Conclusions 114 References 117 viii
Description: