MNRAS000,1–11(2017) Preprint12February2017 CompiledusingMNRASLATEXstylefilev3.0 VLBI observations of four radio quasars at z > 4: blazars or not? H.-M. Cao,1,2⋆ S. Frey,3 K. É. Gabányi,3 Z. Paragi,4 J. Yang,5,6 D. Cseh,7 X.-Y. Hong,6 and T. An6,8 1SchoolofPhysicsandElectricalInformation,ShangqiuNormalUniversity,298WenhuaRoad,Shangqiu,Henan476000,China 2XinjiangAstronomicalObservatory,ChineseAcademyofSciences,150Science1-Street,Urumqi,Xinjiang830011,China 3KonkolyObservatory,MTAResearchCentreforAstronomyandEarthSciences,POBox67,H-1525Budapest,Hungary 7 4JointInstituteforVLBIERIC,Postbus2,7990AADwingeloo,theNetherlands 1 5DepartmentofEarthandSpaceSciences,ChalmersUniversityofTechnology,OnsalaSpaceObservatory,SE-43992Onsala,Sweden 0 6ShanghaiAstronomicalObservatory,ChineseAcademyofSciences,80NandanRoad,Shanghai200030,China 2 7DepartmentofAstrophysics/IMAPP,RadboudUniversityNijmegen,POBox9010,6500GLNijmegen,theNetherlands n 8KeyLaboratoryofRadioAstronomy,ChineseAcademyofSciences,Nanjing210008,China a J 7 AcceptedXXX.ReceivedYYY;inoriginalform2016December9 1 ] A ABSTRACT Blazarsareactivegalacticnuclei(AGN)whoserelativisticjetspointnearlytothelineofsight. G Theircompactradiostructurecanbeimagedwithverylongbaselineinterferometry(VLBI) . onparsecscales. Blazars atextremelyhighredshiftsprovidea uniqueinsightintothe AGN h p phenomenaintheearlyUniverse.We observedfourradiosourcesatredshiftz > 4withthe - EuropeanVLBINetwork(EVN)at1.7and5GHz.Theseobjectswerepreviouslyclassifiedas o blazarcandidatesbasedonX-rayobservations.Oneofthem,J2134–0419isfirmlyconfirmed r t asablazarwithourVLBIobservations,duetoitsrelativisticallybeamedradioemission.Its s radiojetextendedto∼10milli-arcsecscalemakesthissourceapromisingtargetforfollow-up a [ VLBIobservationstorevealanyapparentpropermotion.Anothertarget,J0839+5112shows a compact radio structure typical of quasars. There is evidence for flux density variability 1 andits radio“core”hasa flatspectrum.However,the EVNdatasuggestthatitsemissionis v not Doppler-boosted.The remaining two blazar candidates (J1420+1205and J2220+0025) 0 show radio properties totally unexpected from radio AGN with small-inclination jet. Their 6 emissionextendstoarcsecscalesandtheDopplerfactorsofthecentralcomponentsarewell 7 below1.Theirstructuresresemblethatofdouble-lobedradioAGNwithlargeinclinationto 4 0 thelineofsight.Thisisincontrastwiththeblazar-typemodelingoftheirmulti-bandspectral . energydistributions.Ourworkunderlinestheimportanceofhigh-resolutionVLBIimagingin 1 confirmingtheblazarnatureofhigh-redshiftradiosources. 0 7 Keywords: radiocontinuum:galaxies–galaxies:active–galaxies:high-redshift 1 : v i X 1 INTRODUCTION SMBHs,i.e.masseslargerthan∼108M (e.g.Sikoraetal.2007). r ⊙ a Theradioemissionofradio-loudAGNoriginatesfromincoherent Activegalacticnuclei(AGN)areenergeticcelestialobjectspromi- synchrotron processes in the jets (e.g. Blandford&Königl 1979) nent inawiderangeofelectromagnetic bands, fromtheradioup andtheextendedlobes(e.g.Burbidge1956).Iftheanglebetween tothehighestenergies(X-raysandγ-rays).Therichobservational theapproachingjetandthelineofsight(i.e.theviewingangle)is phenomena of AGN can be understood in the framework of the small,theradiationfromtheapproachingjetisstronglyenhanced orientation-basedunifiedscheme(e.g.Urry&Padovani1995).Ap- byrelativisticbeaming.TheseAGNarecalledblazars.Blazarscan proximately 10 per cent of the optically-selected AGN areradio- bedividedintotwomainclasses:flat-spectrumradioquasars(FS- loud(Mushotzkyetal.2004).Theradio-loudfractionofAGNmay RQs)andBLLacobjects.Theformerhaveprominentopticaland evolve withredshift (Volonterietal.2011), but the causes of this ultraviolet(UV)emissionlines, whileBLLacsexhibit weak(the evolution are not well understood yet. Radio-loud AGN launch restframeequivalentwidthEW < 5Å)orevennoemissionlines powerfulpairsofrelativisticjetsintheoppositedirectionsperpen- intheirspectra(e.g.Fossatietal.1999;Massaroetal.2015). diculartotheaccretiondiskwhichsuppliesmaterialforthecentral engine,asupermassiveblackhole(SMBH,∼106−1010M ).The ⊙ FSRQs and BL Lacs are thought to have different accretion powerfulrelativisticjetsareusuallyfoundinAGNwithhigh-mass mechanisms, i.e. different types of accretion disk (Sbarratoetal. 2014).Theformerarequiteluminousinoptical,thereforecanbe ⋆ E-mail:[email protected](HMC) seen from large cosmological distances. The most distant FSRQ (cid:13)c 2017TheAuthors 2 H.-M. Cao et al. currently known is Q0906+69301 at z = 5.48 (Romani 2006; refine the cosmological model (e.g. Vermeulen&Cohen 1994; Zhangetal.2016),whileBLLacsarerarelyfoundatredshiftz>2 Kellermannetal. 1999; Britzenetal. 2008). Core–jet structures (Plotkinetal.2008).Themulti-bandlog(νS )−logνspectralen- have also been proposed as “standard ruler” to measure cosmo- ν ergy distribution (SED) of blazars shows a typical double-hump logicalmodelparametersusingtheapparentangularsize–redshift feature. In the one-zone leptonic model (Ghisellini&Tavecchio relation(e.g.Kellermann1993;Gurvits1994;Gurvitsetal.1999). 2009) which is widely employed to explain the blazar SED, the CompilinglargersamplesandincorporatingmoreVLBIobserva- low-energy hump (peaked at the infrared/X-ray bands) is due to tionsofhigh-zblazarsareessentialforsuccessfullyrevisitingthese the synchrotron radiation of the relativistic electrons in the jet, cosmological tests because model differences are the most pro- while the high-energy one (peaked at hard X-ray/γ-ray bands) is nouncedatthehighestredshifts. producedbytheinverseComptonradiation(IC)ofthesameelec- High-resolution VLBIimaging isapowerful tool todirectly tronpopulationthatcausesthesynchrontronhump.Dependingon confirmtheblazarclassificationofthecandidates.Ifasourceisin- whether the seed photons are internal or external to the jet, IC deedablazar,itshouldshowDoppler-boostedbrightnesstemper- can be further classified as Synchrotron-Self-Compton (SSC) or ature, flat-spectrum radio core, and possibly rapid and prominent External-Compton (EC) emission model. The latter is often used variation in flux density. With this method, Gabányietal. (2015) tofit theFSRQSEDs,so astoobtain the physical parameters of recently confirmed the blazar nature of a newly discovered radio the jets, e.g. the jet bulk Lorentz factor Γ and the viewing an- quasar, SDSS J0131−0321 with an extremely high luminosity at gleϑ(Ghisellini&Tavecchio2009).Highradioloudness(R>100, z=5.18foundbyYietal.(2014). ∼ whereRistheratioofrest-frame5-GHzand2500-Åfluxdensities, Inthispaper,wereportonourdual-frequencyEuropeanVLBI e.g.Sbarratoetal.2013),highX-rayluminosity(νL >1039W;the Network (EVN) observations of four high-redshift blazar candi- ν∼ inverseComptonhumpmovesintotheX-rayband)andhardX-ray dates. Our aims were to confirm their blazar nature and to probe spectrum are typical characteristics of high-redshift blazars (e.g. theirjetstructureson∼1−10masangularscales.Iftheyhavejets Sbarratoetal.2013;Ghisellini2015). on these scales, multi-epoch observations could be carried out to Systematic search for high-redshift (here and henceforth, measure proper motions. Section 2 describes our target selection “high-redshift” means z > 4) blazars have been carried out method.ThedetailsoftheVLBIexperimentandthedatareduction by Sbarratoetal. (2012, 2013) and Ghisellinietal. (2014). Their aregiveninSect.3.WepresentourresultsinSect.4,andprovide methodwastofirstselecthighlyradio-loudsources(radioloudness thediscussionandconclusionsinSect.5andSect.6,respectively. parameter R > 100) from the Sloan Digital Sky Survey (SDSS) A flat ΛCDM cosmological model with H0 = 71 kms−1Mpc−1, DataRelease7(DR7)quasarcatalogue(Schneideretal.2010)and Ωm=0.27andΩΛ =0.73(Spergeletal.2007)isadoptedthrough- thentouseX-raydatatofurtherconfirmtheblazaridentityofthe out this paper. In this model, 1 mas angular size corresponds to candidates.Blazarscouldbeusedtoinfertheirparentpopulation: 7.08pcprojectedlinearsizeatz=4. statistically, for one blazar with a viewing angle ϑ ≤ 1/Γ, there should be∼ 2Γ2 radiosourceswiththeirjetspointing elsewhere. Besides,oncethemassoftheSMBHpoweringtheblazarisknown, the number density of SMBHshosted by radio-loud quasars asa 2 TARGETSELECTION functionofredshiftcouldthenbeexplored(Sbarratoetal.2015). We searched in the recent literature (e.g. Volonterietal. 2011; Blazars are compact and bright in the radio, and thus ideal Sbarratoetal. 2015; Ghisellinietal. 2015) and found four z > 4 targetsforverylongbaselineinterferometry(VLBI).Inparticular, objectswhichwereidentifiedasblazars,havedeclinations reach- high-z blazars allow us to probe the radio emission of the AGN able for the EVN but had no published VLBI observations (Ta- intheearlyUniverse.TheVLBIimagesofblazarstypicallyshow ble 1). We call these objects blazar candidates. All of them have milli-arcsec (mas) scale compact “core” emission or a one-sided high radio loudness values (R > 100), and they were claimed as core–jet structure. However, the high-z ones rarely have promi- blazars because of their high X-ray luminosities and hard X-ray nent jets. This could be explained by taking into account the re- spectra,whichcouldnotbeexplainedbytheAGNcoronamodel. lation between the emitted (rest-frame) and observed frequencies Oneofourtargets(J2220+0025)appearedparticularlyinteresting intheexpanding Universe: ν = (1+z)ν .Whilethecorehas em obs from the point of view of its extended radio emission on arcsec typically flat spectrum (with a spectral index α ≥ −0.5, where S ∝ να and S is the flux density), the spectrum of the jet is scale,evenbeforetheacquisitionofthenewhigh-resolutiondata.It ν issomewhatresolvedinthe1.4-GHzimagetakenintheVeryLarge steep (α < −0.5). Therefore, if we observe at a fixed frequency, Array(VLA)FaintImagesoftheRadioSkyatTwenty-Centimeters thehighredshiftimpliesahigheremittedfrequencyandtherefore (FIRST)2 survey (Whiteetal. 1997), with a resolution of about theextendedsteep-spectrumemissionappearsfainterrelativetothe 5arcsec.Observedatthesamefrequencybutwithhigherresolution flat-spectrumcore(Gurvits1999).Todate,onlyonehigh-redshift (1.8arcsec)withtheVLA,thesourceshowsanextended(∼10arc- blazar (J1026+2542, z = 5.27) is known to have a pronounced sec)linearstructureintheimagefoundintheVLA–SDSSStripe jetstructureextendedto∼ 10-masscalewhichallowedFreyetal. 82survey3 (Hodgeetal.2011).However,thereisnoindicationof (2015) to estimate the apparent proper motion of the jet compo- multiplecomponentsinitsoptical(SDSS)image4.Thereforeitis nentsusingtwo-epochVLBIobservationsseparatedbymorethan unlikelythattheextendedradiostructureiscausedbygravitational 7yr. lensing.Theremaining3sourcesareunresolvedintheFIRSTsur- Blazar jets often show apparent superluminal motion, and veyimages. the apparent proper motion–redshift relation can be used to 1 Veryrecently,thissourceisclassifiedasasteep-spectrum radioquasar 2 http://sundog.stsci.edu/ based on VLBI observations, although at high rest-frame frequencies 3 http://sundog.stsci.edu/cgi-bin/searchstripe82 (Coppejansetal.2016). 4 http://www.sdss.org/dr13/ MNRAS000,1–11(2017) Fourradioquasarsat z > 4:blazarsor not? 3 Table1.Fourz>4radioquasarsclaimedasblazarsobservedinourEVNexperiment. Name Rightascension Declination S1.4 z hms ◦ ′ ′′ mJy J0839+5112 083946.204 +511202.88 41.6±4.0 4.390† J1420+1205 142048.011 +120546.40 87.3±6.6 4.034† J2134−0419 213412.012 −041909.67 311.3±18.3 4.346 J2220+0025 222032.608 +002536.03 92.7±6.4 4.205† Notes.Theequatorialcoordinates(J2000)and1.4-GHzfluxdensities(S)arefromtheFIRSTsurvey(Whiteetal.1997).Theredshifts(z)markedwith†are foundinSchneideretal.(2010),theotheroneisfromHooketal.(2002). 3 VLBIOBSERVATIONSANDDATAREDUCTION lowedtheEVNDataAnalysisGuide7.Aprioriamplitudecalibra- tionwasdoneusingtheknownantennagaincurvesandthesystem 3.1 Observations temperatures measured at the VLBI stations during the observa- OurEVNobservationswereconductedine-VLBImode(Szomoru tions or nominal system equivalent flux density values. Parallac- 2008). The data were taken at 1024 Mbps rate at each partic- ticanglecorrectionforthealtitude-azimuthmountedantennas,and ipating radio telescope, with two circular polarizations, 8 base- ionosphericcorrectionwerethenapplied.Manualphasecalibration bands(orintermediatefrequencychannels,IF)perpolarizationand andglobalfringe-fittingwereperformed.Bandpasscorrectionwas 16MHzbandwidthperbaseband,andtransferredtotheJointInsti- carried out using the corresponding fringe-finder source. For the tute for VLBI ERIC (JIVE, Dwingeloo, the Netherlands) via op- calibrationofJ2134−0419,manualphasecalibrationwasnotper- tical fiber cables. The data streams were correlated in real time formed, and the bandpass was corrected using 1156+295 at both at the EVN software correlator (SFXC, Keimpemaetal. 2015) 1.7and5GHz. with 2 s integration time and 32 spectral channels per IF. The Thecalibratedvisibilitydataforphasecalibratorsourceswere experiment was separated into 4 segments with project codes first transferred to and imaged in the Difmap program (Shepherd EC054A, EC054B, EC054C, and EC054D. Three of our targets 1997).Antenna-basedcorrectionfactorsweredeterminedforeach (J0839+5112,J1420+1205,andJ2134−0419)wereobservedwith IF in the first step of the amplitude self-calibration. These were theEVNon2015September15–16at1.7GHz,andon2015Oc- fed back into AIPS and applied to the visibilities using the task tober6–7at5GHz.Theremainingone(J2220+0025)wasfirstob- clcor. In this step, only the amplitude corrections exceeding 5 servedon2016January13at1.7GHz,andthenon2016February percentwereconsidered.Globalfringe-fittingwasthenrepeated, 3at5GHz. buttheimageofeachphasecalibratorproducedearlierinDifmap Theobservationswerecarriedoutinphase-referencingmode wastakenintoaccountthistime,tocorrectfortheresidualphases (Beasley&Conway 1995). The radio telescopes were pointed to resulting from the calibrator’s structure. Finally, the phase, delay the a priori positions taken from the FIRST catalogue (Table 1). and delay-rate solutions obtained for the phase-reference calibra- Thenearestsuitablephasecalibrators,withinabout2◦angularsep- torswereinterpolatedandappliedtotherespectivetargetsources. aration from the respective targets (see Table 2), were selected In addition to phase-referencing described above, global from the Astrogeo database5. The observing parameters, includ- fringe-fittingwasalsodirectlyandsuccessfullyperformedfortwo ingthenamesofradiotelescopesparticipatingintheprojectseg- targetsources,J2134−0419andJ0839+5112.Duetothelackofthe ments,arelistedinTable2.Thebrightfringe-finderradiosources most sensitiveEVNantenna(Ef)intheproject segment EC054B used in this experiment were 0528+134 (EC054A), 1156+295 at 5 GHz (see Table 2), a longer solution time (10 min) was ap- (EC054A and B), DA193 (EC054B), 3C454.3 (EC054C), and plied for the direct fringe-fitting on J0839+5112, rather than the CTA102(EC054D). 1.5minusedinothercases,inordertoproperlycalibratethevisi- Thetotalobservingtimewasabout3hforeachcombination bilityphasesonthelongestbaselinestoSh.Atlast,thecalibrated oftargetsourceandphasecalibratorateachfrequency.Thephase- visibilitydataofeachtargetsourcewereexportedfromAIPSand referencingdutycirclewas5minlong,with3.5minspentonthe loadedintoDifmapforimaging andfittingbrightnessdistribution targetsource.Therefore,approximately2hwerespentoneachtar- models. get,exceptforJ2134−0419.Inthiscaseweadoptedadifferentob- The traditional hybrid mapping method (cycles of modeling serving strategy, because of the high flux density of J2134−0419 thebrightnessdistributionand, ifallowedbythesufficientlyhigh (seeTable1).Toincreasetheon-targettimeto2.5h,onlyacou- signal-to-noiseratio,self-calibrationofphasesandpossiblyampli- pleofphase-referencingscansweredistributedoverthewholeob- tudes) wasemployed to produce theimages of thetarget sources servingperiod,toallowfortheprecisedeterminationofthesource presented in Sect. 4. The details of the procedure varied from position.TherestofthetimewasspentonobservingJ2134−0419 source to source, depending on their properties. For J0839+5112 only. andJ2134−0419,weusedseveralcyclesofcleancomponentmod- eling and phase (later also amplitude) self-calibration. In these caseswecouldworkwithtwotypesofdatasets:theoneobtained 3.2 Datareduction fromphase-referencing,andanotherfromdirectfringe-fitting.We also fitted Gaussian brightness distribution models to the self- ThedatacalibrationwasconductedintheNRAOAstronomicalIm- ageProcessingSystem6 (AIPS,Greisen2003),andgenerallyfol- calibrated data in the visibility domain in Difmap, to allow for a 5 http://astrogeo.org/calib/search.html 6 http://www.aips.nrao.edu/index.shtml 7 http://www.evlbi.org/user_guide/guide/userguide.html MNRAS000,1–11(2017) 4 H.-M. Cao et al. Table2.ObservationinformationoftheEVNexperiment. Projectsegment Targetsource(s) νobs Participatingtelescopes Phasecalibrator Separation GHz ◦ J0839+5112 J0849+5108 1.60 EfHhJbMcO8 EC054A J1420+1205 1.7 J1415+1320 1.71 TrWbSh J2134−0419 J2142−0437 2.12 J0839+5112 J0849+5108 1.60 HhJbMcNtO8 EC054B J1420+1205 5 J1415+1320 1.71 TrWbSh J2134−0419 J2142−0437 2.12 EfHhJbMcO8 EC054C J2220+0025 1.7 J2226+0052 1.62 TrWb EfMcNtO8Tr EC054D J2220+0025 5 J2226+0052 1.62 YsWbHh Notes.Telescopecodes:Ef–Effelsberg(Germany),Hh–Hartebeesthoek(SouthAfrica),Jb–JodrellBankMk2(UnitedKingdom),Mc–Medicina(Italy), Nt–Noto(Italy),O8–Onsala(Sweden),Tr–Torun´(Poland),Wb–Westerbork(theNetherlands),Ys–Yebes(Spain),Sh–Sheshan(China).Hhdidnot participateintheobservationsofJ0839+5112becauseofthehighdeclinationofthesource. 4.2 Imagesandbrightnessdistributionmodels Table3.Theaccurateastrometricpositionsofthefourtargetsourcesdeter- minedfromthephase-referencedEVNobservationsat5GHz. The VLBI image and model parameters obtained in Difmap are listedinTables4and5,respectively.Theerrorsofthemodelpa- Name Rightascension Declination rametersareestimatedaccordingtoLeeetal.(2008),assumingthat hms ◦ ′ ′′ the errors are stochastic and independent for each estimated pa- J0839+5112 083946.21606 +511202.8257 rameterofthecomponent(Fomalont1999).Forthefluxdensities, J1420+1205 142048.00993 +120545.9807 weassume an additional 5 per cent error added inquadrature, to J2134−0419 213412.01074 −041909.8610 account for the uncertainties of the VLBI amplitude calibration J2220+0025 222032.50276 +002537.5107 which is based on antenna system temperatures and gain curves. Alsoshown inTable5arethe source parametersand their errors derivedfromourmeasurements:brightnesstemperature,two-point quantitativedescriptionofthesourcestructuresbyobtainingesti- spectralindexbetweenourobservingfrequencies,andmonochro- matesforcomponentsizes,positionsandfluxdensities. maticluminosity of thecorecomponent inthesource restframe. For thetwoweaker sources(J1420+1205 andJ2220+0025), Note that the angular resolution at the two frequencies is differ- onlyphase-referenceddatasetswereavailable.Forproducingthe entwhichmaycausesomefluxdensitycontributionfromextended images,weusedGaussianmodelinginsteadofcleancomponents, structureat1.7GHz,leadingtoanartificialsteepeningofthede- whichgavebetterresultsduetotheextendedemissionregionsof rivedspectrum. theseobjects.Nophaseandaplitudeself-calibrationwasattempted Aninterferometercanprobesourcestructuressmallerthanthe fortheseweaksources,exceptforJ1420+1205at1.7GHz,where synthesized beam, and the minimum resolvable component size itappearedsufficientlystrongforphase-onlyself-calibrationover couldbeestimatedaccording toe.g. Kovalevetal.(2005).Inour solutionintervalsof10sec,andexcludingthelongbaselinestoHh experiment,allthefittedcomponent sizesreportedinTable5ex- andSh. ceed the minimum resolvable angular size. The images, modelfit resultsandderivedparametersaredescribed below foreachindi- vidualtargetsource. 4 RESULTS 4.1 Phase-referencedpositions 4.2.1 J0839+5112 Thephase-referenceddatasetswereusedtomeasuretheastromet- Theimagesmadefromthephase-referencedandfringe-fittedvisi- ricpositionsofthefourtargetsources.Itispossiblebecausetheco- bilitydatasetsarepracticallythesameintermsofsourcestructure, ordinatesofthereferencesourcesareaccuratelyknownintheInter- peak brightness and noise level for this source at both observing nationalCelestialReferenceFrame(Feyetal.2015).Thesources frequencies.InFig.1,weshowthe1.7-GHzimageofJ0839+5112 were first imaged in Difmap, and then the AIPS verb maxfit was producedfromthefringe-fitteddataset,whileat5GHz,thephase- usedtoderivethecoordinatesofthebrightnesspeakintheimages. referenced image is displayed. The latter is somewhat less noisy Thepositionsmeasuredat1.7and5GHzwereconsistentwitheach thanitsfringe-fittedcounterpart,duetothebettercalibratedphases otherwithintheuncertainties.Themoreaccurateresultsobtained onthelongbaselinesfromtheEuropeanantennastoSheshanmade at5GHzareshowninTable3.Theerrorsarisefromthepositional possiblebythestrongphase-referencecalibrator.Therelativeco- uncertaintyofthephasecalibrator,thethermalnoiseoftheinterfer- ordinatesintheimagesaremeasuredwithrespecttothelocationof ometerphases,andsystematicerrorsscaledbythetarget–calibrator thebrightnesspeak. separation(seee.g.Pradeletal.2006).Weestimatethat theright Asinglecomponent isseeninthe1.7-GHzimage, therefore ascensionanddeclinationcoordinatesgiveninTable3areaccurate onecircularGaussianmodelwasusedtofitthesourcebrightness within0.5mas. distribution. At5 GHz, thereisa weakjet-likecomponent tothe MNRAS000,1–11(2017) Fourradioquasarsat z > 4:blazarsor not? 5 Table4.VLBIimageparametersofthefourtargetsources. Name νobs Beamsize P.A. Peak RMS Fig. GHz mas×mas ◦ mJybeam−1 µJybeam−1 J0839+5112 1.7 15.4×3.2 15 37.35 41 1a 5 3.4×1.3 10 36.90 58 1b J2134−0419 1.7 5.9×3.3 76 163.22 363 2a 5 2.5×1.2 81 138.01 127 2b J1420+1205 1.7 3.8×3.2 61 10.41 60 3a 5 1.6×1.2 80 4.76 88 3b J2220+0025 5 8.3×4.4 141 1.92 37 4 Notes.Weonlypresent5-GHzVLBIimageforJ2220+0025(seethetextfordetails).Col.3–synthesizedbeamsize(FWHM),Col.4–positionangleofthe beammajoraxis,measuredfromnorththrougheast,Col.5–peakbrightness,Col.6–RMSbrightness,Col.7–figurenumber. Table5.ParametersofthefourtargetsourcesfromtheEVNmeasurements. Name νobs Comp. Sν ∆α ∆δ θ Tb α Lν GHz mJy mas mas mas 109K 1027WHz−1 J0839+5112 1.7 C 51.3±3.3 0 0 2.99±0.10 13.9±1.8 −0.2±0.1 2.61±0.71 5 C 41.6±3.0 0 0 0.60±0.02 30.0±4.6 2.11±0.60 E 1.4±0.4 6.1±0.1 –0.8±0.1 0.67±0.16 J2134−0419 1.7 C 192.6±15.3 0 0 1.42±0.07 230.2±20.5 −0.2±0.1 10.18±3.03 E 44.0±6.5 21.0±0.3 2.4±0.3 3.25±0.39 5 C 150.4±9.7 0 0 0.37±0.01 288.4±36.2 7.95±2.25 E 27.8±3.7 12.7±0.3 0.9±0.3 5.19±0.62 J1420+1205 1.7 C 20.9±2.1 0 0 3.45±0.26 4.0±1.0 −0.9±0.2 2.75±1.34 NW 27.0±7.7 –275.2±4.0 1299.3±4.0 22.7±6.4 5 C 8.0±1.3 0 0 1.12±0.15 1.6±0.7 1.05±0.58 J2220+0025 1.7 C 3.7±1.3 0 0 11.6±3.5 0.06±0.05 −0.4±0.5 0.23+0.48 −0.16 SE 4.5±1.7 2447.7±8.0 –1928.6±8.0 24.0±8.1 5 C 2.5±0.5 0 0 2.9±0.4 0.07±0.03 0.15+0.26 −0.10 Notes.Col.2–observingfrequency,Col.3–componentdesignation,Col.4–fluxdensity,Cols.5–6–relativerightascensionanddeclinationwithrespect tothecore,Col.7–fittedGaussiancomponentdiameter(FWHM),Cols.8–10–rest-framebrightnesstemperature,spectralindexandmonochromatic luminosityofthemain(core)component.ForJ2220+0025,thefluxdensityerrorsarelikelyoverestimated,andthecoreluminosityupperandlowerbounds arederivedbyassumingthespectralindexupperandlowerbounds. eastofthebrightcoreatabout6masseparation(Fig.1b).Inthis measured with much higher angular resolution, is 23 per cent case, we modeled the source with two circular Gaussian compo- higher than VLA value at 1.4 GHz in the FIRST survey, 41.6± nents(Table5). 4.0mJy(Table1).Giventheverycloseobservingfrequencies,this The dual-frequency observations allowed us to calculate the canonlybeexplainedbyfluxdensityvariabilitybetweenthetwo two-pointspectralindexofthedominant(core)componentpresent measurementepochs.Thecompactcore–jetradiostructure(Fig.1), inbothimages,usingthemodel-fittedfluxdensities(Table5).The theflatcorespectrumandtheimpliedvariabilityareallcharacter- valueα = −0.18indicatesaflatradiospectrum. Wealsoderived isticofblazars.Ontheotherhand,themeasuredbrightnesstemper- thecorebrightnesstemperatureinthesourcerestframe(Table5) ature,T =(3.0±0.5)×1010K(Table5)doesnotindicateDoppler- b usingtheformula boostedemission.Ifweadopttheequipartitionbrightnesstemper- Tb=1.22×1012(1+z)θ2Sνν2 [K] (1) atetumrpee(rTaetqur≈e(5T×int1)0,1th0eKD,Ropepaldehrefaadct1o9r9δ4)=aTsbth/Teiinnttbriencsoimcbersigsmhtanlelsesr obs than unity. If we assume a somewhat smaller T = 3×1010 K int (e.g.Condonetal.1982;Leeetal.2008),wherezistheredshift,Sν proposed byHomanetal.(2006),theDoppler factorisδ ≈ 1.In thefluxdensityinJy,νobs theobservingfrequencyinGHz,andθ any case, theradio emission in J0839+5112 does not seem to be thefullwidthathalf-maximum(FWHM)sizeofthecircularGaus- highlyenhancedbyrelativisticbeaming.Itispossiblethatweun- sianmodelcomponent inmas.Themonochromatic luminosityof derestimate the Doppler boosting by a factor of ∼ 2 because the thedominantcomponentinthesourcerestframe(Table5)wascal- brightnesstemperatureismeasuredatahighrest-framefrequency culatedusing (∼ 27 GHz) where the intrinsic brightness temperature may be S lower(Lee2014). L =4πD2 ν (2) ν L(1+z)1+α (Hoggetal.2002),whereD istheluminositydistanceandαthe L spectralindex. The1.7-GHzVLBIfluxdensityof51.3±3.3mJy,although MNRAS000,1–11(2017) 6 H.-M. Cao et al. 4.3GHz.This,anda7.6-GHzimageshowingthecorecomponent withamarginallyresolvedeasternextension(within∼2 mas)are 1.7 GHz availabeintheAstrogeodatabase8.Theseshort1-minVLBAsnap- shotsweretakenaftertheacceptance ofour EVNobserving pro- posal,on2015September1(projectcode:BP192),about2and6 weeksbeforeourobservationsat1.7and5GHz,respectively.The C overallcore–jetstructuretowardstheeastisthesameintheVLBA imagesandourmoresensitiveEVNimages(Fig.2). InourEVNdataat1.7GHz,thehighervisibilityamplitudes on the shortest Ef–Wb baseline indicate the presence of a large- scalestructurewhichisresolvedoutwiththeEVN.Also,theim- agenoiseissignificantlyhigherthanthetheoreticalthermalnoise level (21 µJybeam−1), suggesting some extended emission in the field.Indeed,the1.4-GHzFIRSTfluxdensity(311.3mJy,Table1) (a) is ∼32 per cent higher than the integrated flux density recovered inour VLBIcomponents (236.6 mJy, Table 5) at aclose observ- ing frequency of 1.7 GHz. This cannot be explained by spectral changes alone, and may be due to a radio structure extended to ∼0.1–1arcsecscales,or/andfluxdensityvariability. ThedominantcomponentofJ2134−0419hasaflatspectrum (α=−0.2).ItsbrightnesstemperatureisT =(28.8±3.6)×1010K, 5 GHz b wellexceedingT .TheimpliedDopplerfactorisδ≈6−10.For eq thehigherestimate,T = 3×1010 Kwasassumed(Homanetal. int 2006).TheflatcorespectrumandthelargeDopplerfactorleaveno C doubtabouttheblazaridentificationofJ2134−0419. E 4.2.3 J1420+1205 Awidedoublestructureextendedto∼1.33′′isalreadyapparentin the1.7-GHzdirtyimageofthissource.Thissizeissmallerthanthe restoringbeamoftheVLAintheFIRSTsurveyandthustheobject appearsunresolvedinFIRSTat1.4GHz.Torestorethe1.7-GHz (b) EVNimageofJ1420+1205seeninFig.3a,wefittedtwocircular Gaussianbrightnessdistributionmodelcomponentstothevisibil- ity data (Table 5). These represent the extendend emission better thancleancomponentmodelstraditionallyusedinVLBIimaging. Thebrighterandmorecompactsouth-easterncomponentwasalso Figure 1. Naturally weighted VLBI images of J0839+5112 at 1.7 and detectedat5GHz(Fig.3b).OnecircularGaussianmodelwasfit- 5GHz.Thefirstcontoursaredrawnat±3σimagenoiselevel.Theposi- ted in this case, itsbrightness temperature is low, in the order of tivecontoursincreasebyafactorof2.Thesynthesizedbeam(FWHM)is 109K(Table5).Theweaker,moreextendednorth-westerncompo- shownat thelower-left corner ofeach image. Theimage parameters are nentseeninthe1.7-GHzimageremainedundetectedat5GHzat listedinTable4. the6σimagenoiselevelof∼0.5mJybeam−1. The VLBI-recovered integrated flux density at 1.7 GHz 4.2.2 J2134−0419 (nearly 47.9 mJy, Table 5) is more than 45 per cent lower than theFIRSTvalueat1.4GHz(Table1).Thisindicatesthatmostof Theimages produced fromthephase-referenced and fringe-fitted theradioemissionoriginatesfromarcsec-scaleextendedstructures visibility data show consistent structures at both frequencies. We in J1420+1205. The optical position of the object (right ascen- present in Fig. 2 the images of J2134−0419 made after direct sion14h20m48s.01,declination+12◦05′45′.′96)fromSDSSDR13 fringe-fitting which are based on more data and have higher dy- (Albaretietal.2016)coincideswiththelocationofthemorecom- namicrange.Thejetstuctureisalignedtotheeast–westdirection. pactsouth-easternVLBIcomponent(Table3)withintheuncertain- Twocomponentsareseeninboththe1.7-and5-GHzimages,the ties.Wecanthereforeidentifythiscomponentwiththegalacticnu- westernmost one is the brighter and more compact. We identify cleus.TheheavilyresolvedVLBIcomponenttothenorth-westof thiswiththecore.Accordingtotheaccurateastrometryprovided thenucleusismostlikelyalobeinaradioquasar,ontheapproach- bythephase-referencedimages,thecorecomponentspositionally ingside.Theprojectedlineardistancebetweenthetwocomponents coincideatbothfrequencies.TwocircularGaussianmodelcompo- ofJ1420+1205inthe1.7-GHzimageis∼9.5kpc.Inthispicture, nentswerefittedtothebrightnessdistributionofthissourceat1.7 theapparentasymmetryofthestructuremaybecausedbyaview- and5GHz,respectively(Table5).Thepositionoftheeasternjet ingeffect:theradioemissionofthelobeontherecedingsideofthe component(E)isslightlydifferentat5GHz,consistentwithitsre- nucleusisbelowthedetectionthreshold.Boththeextendedstruc- solvednatureapparentinFig.2b,wherethelowsurfacebrightness tureandthelowbrightnesstemperatureofthecentralcomponent emissionalsotracesoutthejetstructuretowardstheeast. Thetwo-component structure of J2134−0419 isalsoseenin an image made with the Very Long Baseline Array (VLBA) at 8 http://astrogeo.org/cgi-bin/imdb_get_source.csh?source=J2134-0419 MNRAS000,1–11(2017) Fourradioquasarsat z > 4:blazarsor not? 7 1.7 GHz 5 GHz C C E E (a) (b) Figure2.NaturallyweightedVLBIimagesofJ2134−0419at1.7and5GHz.Thefirstcontoursaredrawnat±3σimagenoiselevel.Thepositivecontours increasebyafactorof2.Thesynthesizedbeam(FWHM)isshownatthelower-leftcornerofeachimage.TheimageparametersarelistedinTable4. indicatealargeinclinationangleofthestructurewithrespecttothe sityat1.4GHz9.Thelatterisalobeblendedwiththeweakcorethat lineofsight.Thiscanhardlybereconciledwiththeblazarscenario. wedetectedwiththeEVN.Thesetworadiolobesadduptheentire Thelobe-dominatednatureofJ1420+1205isconsistentwith FIRSTfluxdensity(92.7±6.4mJy,Table1)withinthemeasure- itssteepoverall spectrumwithα ≈ −0.6.Thetotalfluxdensities ment errors. The 1.4-GHz flux density given in the NRAO VLA ofthesourcemeasuredinabroadrangeof frequenciesareavail- SkySurvey(NVSS)is88.0±2.7(Condonetal.1998),whichalso ablefrom theliterature,at 74 MHz(750±130 mJy, Cohenetal. indicatestheabsenceofradiostructureonscaleslargerthan∼10′′. 2007), 365 MHz (248 ± 29 mJy, Douglasetal. 1996), 1.4 GHz If we assume that the structure of the double-lobed radio source (92.1±2.8mJy,Condonetal.1998),and4.85GHz(55±10mJy, isintrinsicallysymmetric,thefluxdensitydifferencebetweenthe Gregory&Condon1991). approaching jetside(S ) andthereceding counterjet side(S )is j cj causedbyDopplerbeaming.Thisallowsustoestimatetheview- ing angle of the structure (ϑ) with respect to the line of sight or 4.2.4 J2220+0025 the jet speed. According to e.g. Arshakian&Longair (2004), the viewingangleofradiosourcewithacontinuoustwinjetcouldbe ThisobjectfallsintheskyareacoveredbytheVLA–SDSSStripe estimatedas 82 survey (Hodgeetal. 2011). This survey is about three times deeper than FIRST and mostly used the A configuration of the S 1+β cosϑ 2−α VLAthatprovidesthelongest baselinesandthusthehighestres- Sj = 1−βjcosϑ! (3) cj j olution. The 1.4-GHz VLA image of J2220+0025 reproduced in Fig.4showsanelongatedstructureextendedto∼10′′.Imagingthis where βj is the jet speed expressed in the unit of light speed extendedsourcewithVLBIproveddifficult.At1.7GHz,thereis c. From a simple orientation-based unified model of radio AGN aclearindicationoftwoemissionregionsinthedirtyimage.Two (Barthel 1989), the viewing angle of quasar jets is expected at circular Gaussianbrightness distributionmodel components were or below 45◦. If we assume a typical value for spectral index fittedtothe visibilitydata (Table5). One of them coincides with α = −0.6(Arshakian&Longair2004),thenwegetβj ≈ 0.15for thecentreof thelarge-scaleradioemission, theother oneisvery J2220+0025 at ϑ ≈ 45◦. Smaller inclination angles would infer closetothebrightness peak, locatedtothesouth-east of thecen- even slower jet speed. Note that for low-redshift sources usually tre. The sum of their flux densities (8.2 mJy) is much below the βj = 0.4isassumed (Arshakian&Longair 2004).Inturn, higher 1.4-GHz FIRST value (92.7 mJy, Table 1), consistently with the βj would result in inclination angles exceeding 45◦, being incon- resolvednatureofthesource. sistentwiththequasarclassification(Schneideretal.2010),unless Only the central component was clearly detected at 5 GHz thereissubstantialchangeintheorientationoftheinnerandouter with the high resolution of the EVN. We fitted a circular Gaus- jets.Inanycase,forreasonableβj andαvalues,arobustresultis sianmodeltocharacteriseitsproperties(Table5).The5-GHzim- that the inclination angle of the arcsec-scale structure is large in age of this faint but relatively compact feature is shown in the J2220+0025. inset in Fig. 4. This component is located in the SDSS DR 13 Wecanconcludethat,asinthecaseofJ1420+1205,thecom- (Albaretietal.2016)opticalpositionofthequasar(rightascension pact radio emission decected with the EVN in this high-redshift 22h20m32s.49, declination +00◦25′37′.′49) within the astrometric source originates from an AGN as it shows brightness tempera- uncertainties. It is therefore right in the centre of a double-lobed ture well above the ∼ 105 K limit for normal galaxies (Condon radioAGNreminiscentofanFR-IItypesource(Fanaroff&Riley 1992). Also, the monochromatic radio luminosity exceeds by or- 1974)withatotalprojectedlinearextentupto∼70kpc.Inthissce- dersofmagnitudethelowerlimitof∼2×1021WHz−1typicalfor nario,thesouth-easterncomponentdetectedwiththeEVNonlyat radio AGN (Kewleyetal. 2010; Middelbergetal. 2011). On the 1.7GHzisahotspotinthelobeontheapproachingside. otherhand,TbismuchlowerthanexpectedfromaDoppler-boosted TheVLA–SDSSStripe82survey image(Fig.4)shows two majorcomponents. Thesouth-eastern oneisthebrightest(56.2± 9.5mJy),thenorth-westerncomponenthas33.3±7.7mJyfluxden- 9 http://sundog.stsci.edu/cgi-bin/searchstripe82 MNRAS000,1–11(2017) 8 H.-M. Cao et al. 1.7 GHz 5 GHz NW C 20 mas C (b) (a) 20 mas Figure3.Naturally weightedVLBIimagesofJ1420+1205at1.7and5GHz.At5GHz,onlythesouth-easterncomponentwasdetected, whichappears brighterandmorecompactinthe1.7-GHzimage.Thefirstcontoursaredrawnat±5σimagenoiselevel.Thepositivecontoursincreasebyafactorof2.The synthesizedbeam(FWHM)isshownatthelower-leftcornerofeachimage.TheimageparametersarelistedinTable4. 5 DISCUSSION EVN at 5GHz 1.4 GHz 00 25 44 5.1 ThecompactradiosourcesJ0839+5112andJ2134−0419 42 ThesourceJ0839+5112showspropertiestypicalforblazars:com- 40 pact mas-scale structure (Fig. 1), flat spectrum and flux density 20 mas variability. However, itsmoderate brightness temperatureisclose n (J2000) 38 C ttohetihreloiwnt-rbinrisgichtnveaslusestcahteara(Hctoemrisatnicettoala. 2la0r0g6e),sainmdpidleationfgAnGoNsigin- natio 36 nificant Doppler boosting. There is at least another radio quasar Decli 34 known at high redshift with similar properties. J1146+4037 at SE z=5.01hasacompactstructurewithmoderatebrightnesstemper- 32 ature(Freyetal.2010;Coppejansetal.2016)measuredwithVLBI butitsX-raydataindicateitsbalazarnature(Ghisellinietal.2014). 30 OurEVNobservationsconfirmedthatJ2134−0419isablazar. 28 VLA A-con guration Moreover,thediscoveryofitsprominentjetstructure(Fig.2)will enablefutureattemptstodetectapparentpropermotionofthecom- 22 20 33.2 33.0 32.8 32.6 32.4 32.2 32.0 Right ascension (J2000) ponents.LikeinthecaseofJ1026+2542,asofaruniqueblazarat veryhighredshift(z=5.27)withdirectlyestimatedjetcomponent Figure 4. The background image of J2220+0025 was made at 1.4 GHz propermotions(Freyetal.2015),thismaybecomefeasibleovera withtheVLAinitsAconfiguration(Hodgeetal.2011).ThecircularGaus- sianrestoringbeamsizeis1.8′′ (FWHM),thefirstcontoursaredrawnat timebaselineof5–15yrwithmulti-epochVLBImeasurementsat ±0.3mJybeam−1,thepeakbrightnessis40.05mJybeam−1.Thepositive 5GHz.Ourobservationspresentedherecouldhelpdetectingstruc- contoursincreasebyafactorof2.Thetwo+symbolsindicatethepositions tural variations which appear slower by a factor of (1+z) in the ofthetwocomponentsseeninour1.7-GHzEVNdirtymapofJ2220+0025 observer’s frame because of the cosmological time dilation. In a (notshownhere).The5-GHzEVNimageoftheonlycomponentdetected separatestudy,wewillattempttocomparethecurrentVLBIdata isdisplayed intheinset. Thedata frombaselines longerthan 50million ofJ2134−0419witharchivaldata. wavelengths(50Mλ)wereexcluded.Thefirstcontoursaredrawnat±5σ imagenoiselevel.Thepositivecontoursincreasebyafactorof2.Theimage parametersarelistedinTable4. 5.2 Radioemissionofthenon-blazarsourcesJ1420+1205 andJ2220+0025 WeobservedfourblazarcandidateswiththeEVNandfoundthat, contrarytotheexpectations,twoofthemarenotcompactandare inclinedatlargeanglestothelineofsight.ForJ2220+0025whose extendedstructureonarcsecscalewasalreadyknownfromVLA observations (Hodgeetal. 2011) we could identify a weak com- blazar jet. This, and the two-sided lobe-dominated structure in- pactcoreinthecentreofthelarge-scaleradiostructure,confirmig clinedatalargeangletothelineofsightseenintheVLAimageare thedouble-lobedmorphology.Inthesetwosources,theradioemis- strongargumentsagainsttheblazarclassificationofJ2220+0025. sionisdominatedbystructuresextendedto∼0.1−1arcsecscales. MNRAS000,1–11(2017) Fourradioquasarsat z > 4:blazarsor not? 9 TheyalsoshowclearevidenceagainstDoppler-boostedinner(mas- X-rayemissioncanalsooriginatefromtherelativisticjet.Infact, scale) jet emission. Intriguingly, these two objects (J1420+1205 theSEDisdominatedbythejetemissionoverthewidestrangeof andJ2220+0025) wereclaimedasthebestblazar candidatesina elecromagneticradiation,fromtheradiotoγ-rays.Forblazars,the complete sample of 19 extremely radio-loud quasars at z > 4 by one-zone leptonic model (Ghisellini&Tavecchio 2009) can suc- Sbarratoetal.(2015),andX-rayobservationswithSwiftseemedto cessfullyexplainthedouble-humped SED.Herethedominant X- confirmthisnotion,withestimatedjetviewinganglesofϑ≈3◦. rayemissionalsoresultsfrominverse-Comptonprocess,andcomes RecentlyCoppejansetal.(2016)collecteddataofallz> 4.5 fromasmall dissipationregion inthejet near thecentral engine, radiosourcesobservedtodatewithVLBI.Theselectioncriteriafor where a high density of photons and relativistic electrons is ex- these 30 objects partly taken from the literatureare not homoge- pected. neousbutmostofthemweretargetedwithVLBIbecausetheirra- Blazars are divided into three types according the position dioemissionisknowntobecompactinFIRST,i.e.with∼5arcsec of the synchrotron peak frequency: low, intermediate, and high angular resolution. Verysimilarlytothecaseof J1420+1205 and synchrotron-peak sources, abbreviated as LSPs, ISPs, and HSPs, J2220+0025 presentedinthispaper,thesourceJ1548+3335 (z = respectively (e.g. Fanetal. 2016). Different types may have dif- 4.68) was found to have two widely separated (∼0.8′′, ∼5.3 kpc) ferentoriginofseedphotonsfortheinverse-Compton hump(e.g. componentswiththeEVNat1.7GHzbyCoppejansetal.(2016). Kangetal.2016).Thehigh-zblazarsbelongtotheLSPs,because One of them was undetected at 5 GHz. The most plausible ex- they are very luminous, and luminosity appears to correlate with planationof theradiopropertiesof J1548+3335 isthatacore(at the frequency peak location (the “blazar sequence”, Fossatietal. both frequencies) and a hot spot (at 1.7 GHz only) in one of the 1998;Ghisellini2016).Blazarsoftenshowstrongγ-rayemission. two symmetric lobes in the kpc-scale extended structure of the However,therearenoFermidetectionsofz>4blazarsreportedso source are seen with the EVN. This is our preferred explanation far.Fortheveryhigh redshiftsources, theinverse-Compton peak forJ1420+1205 andJ2220+0025 aswell.Heretheprojected lin- movesintotheX-rayband,andalsotheγ-raysarelikelyabsorbed ear distances between the core and the brighter lobe are 9.5 and in the intergalacticspace along the path from large cosmological 21.5kpc,respectively.Alternatively,thenorth-westerncomponent distances.Onlyacoupleofγ-rayblazarsareidentifiedat3<z<4 ofJ1420+1205couldalsobeinterpretedasaforegroundorback- (Fanetal.2016). ground radio source physically unrelated to component C. Deep Can extended X-ray structures be responsible for the emis- follow-upradiointerferometricobservationswith∼ 0.1arcsecan- sion of J1420+1205 and J2220+0025? To date, kpc-scale X-ray gularresolutioncouldsettlethisquestionbydetectingasymmetric jetshavebeenfoundinmorethan100objects10,themostdistant lobestructureandpossiblyjetfeaturesconnectingthecorewiththe ofthemistheblazarJ1510+5702atz=4.3(Siemiginowskaetal. lobe(s). 2003;Cheung2004).TheirX-rayradiationmechanismisnotwell Another remarkable object in the list of 30 VLBI-imaged understood.Synchrotronemissionofasecondaryhigh-energyelec- high-redshift radio AGN compiled by Coppejansetal. (2016) is tronpopulationisfavoredatlowredshifts(e.g.Meyeretal.2015), J0311+0507 (z = 4.51).Adetailedradiointerferometricstudyof but the acceleration mechanism producing the high-energy elec- thispowerfulFR-IIsourcebyParijskijetal.(2014)foundacom- trons is unclear. The inverse-Compton scattering of cosmic mi- plex two-sided core–jet–lobe stucture. The distance between the crowave background (CMB) photons by the relativistic electrons componentidentifiedwiththegalacticnucleusandthebrighterhot inthejet(theIC/CMBscenario) mayalsoplayanimportantrole spot in the south-western lobe is ∼1.3′′(equals to about 8.7 kpc at high redshifts, where the energy density of CMB is (1 + z)4 projectedlinearseparation),comparabletowhatwasmeasuredin times higher (e.g. Schwartz 2002; Simionescuetal. 2016). If the J1420+1205 andJ1548+3335, andnearly3timessmallerthanin IC/CMB model works, then luminous X-ray jet components can J2220+0025.Theinclinationangleofthestructurewithrespectto evenoutshinetheemissionofthenucleusinhigh-zsources.How- thelineofsightcouldbecloseto45◦inJ0311+0507(Parijskijetal. ever,suchsourcesarenotfoundatz>4sofar(e.g.Wuetal.2013). 2014). Thetypicaljet-to-coreX-rayluminosityratiois∼ 0.01orsmaller Therefore our discovery of supposedly FR-II type arcsec- forlower-redshiftquasarsobservedwithChandra(Marshalletal. scale radio structures in the high-redshift AGN J1420+1205 and 2005). J2220+0025isnotunprecedented.Inthisscenario,theradiostruc- The relativisticelectrons in the radio lobes deposited by the tures can naturally be interpreted as expanding young symmetric jetscannot produce X-rayemission viasynchrotron radiation be- sourcesintheearlyUniverse,aswasalsodoneforJ0311+0507by cause they have lower energies. At redshifts above z ∼ 3, the Parijskijetal.(2014).Simplyassumingaconstantexpansionspeed CMBenergydensitymaydominateoverthemagneticfieldenergy β =0.15andamoderatejetinclinationϑ=45◦,weobtainarough density.Thisintensifiesinverse-Comptoncoolingoftheelectrons, j estimateoftheirage,whichisbelow106yr.Itisconsistentwiththe leading to an enhanced (diffuse) X-ray emission from the lobes value less than 106 yr claimed for J0311+0507 by Parijskijetal. (Ghisellinietal.2015).X-rayemissionfromradiolobeshasbeen (2014).WhatispuzzlingisthatbothJ1420+1205andJ2220+0025 observedinseveralsourcesatredshiftz < 1andisinterpretedas showpropertiestypicalofblazarsinX-rays(Sbarratoetal.2015). inverse-ComptonscatteringoffCMBphotons(e.g.Hardcastleetal. 2002).However,thereisnoevidenceforthediffusenatureofthe X-rayemissioninJ1420+1205andJ2220+0025.Onthecontrary, 5.3 X-rayemissionofJ1420+1205andJ2220+0025 Wuetal. (2013) found J1420+1205 unresolved with Chandra at Since our VLBI data do not support the blazar classification of a resolution of ∼ 1′′, which is however not much smaller than J1420+1205andJ2220+0025,thestrongandhardX-rayemission the overall size of the radio structure in our VLBI image. The and the overall SED (Sbarratoetal. 2015) call for an alternative X-ray source position measured from the image11 (right ascen- explanation. In general, AGN are prominent X-ray emitters (e.g. Rees1981;Schwartz2005).Forradio-quietAGN,theX-raysare producedbyinverse-ComptonscatteringoftheUV/softX-raydisk 10 https://hea-www.harvard.edu/XJET/ photons by the electrons in the hot corona. For radio-loud AGN, 11 AvailablefromtheChandraarchive,http://cda.harvard.edu/pop/ MNRAS000,1–11(2017) 10 H.-M. Cao et al. sion14h20m48s.040,declination+12◦05′46′.′22)ismoreconsistent sources requiresthe refinement of the broad-band SEDmodeling withthatofthecompactnuclearVLBIcomponentinFig.3a. andposesaninterestingquestionaboutthephysicaloriginoftheir ThereareinprincipletwopossibilitiesfortheoriginofX-ray high-energyemission.Ourresultsdrawtheattentiontotheutmost emission in the two sources (J1420+1205 and J2220+0025) that importance of VLBI imaging obervations for reliably classifying are clearly not blazars based on our high-resolution VLBI imag- blazarsathighredshift. ingobservations.However,noneoftheexplanationsisparticularly compelling. (1)TheX-rayemissionmaybeacombinationofthecontribution fromthe(unbeamed)innerjetandfromthekpc-scalejetsandouter ACKNOWLEDGEMENTS lobes(hotspots)oftheseexpanding,powerful,presumablyyoung The EVN is a joint facility of independent European, African, radiosources.Itistobeseenifanymeaningfulphysicalmodelcan Asian, and North American radio astronomy institutes. Scientific possiblyreproducetheobservedX-rayfluxandspectralindex,as resultsfromdatapresentedinthispublicationarederivedfromthe wellastheblazar-likeSEDoftheseAGN. followingEVNprojectcode:EC054.H.-M.C.acknowledgessup- (2)TheX-raysoriginatefromthejetlaunchnig regionveryclose portbytheprogramoftheLightinChina’sWesternRegion(Grant totheSMBH.Theapproachingjetthensuddenlychangesitsdirec- No.2016-QNXZ-B-21&YBXM-2014-02) andtheNational Sci- tiononpcscaleandappearsalreadymisalignedwithrespecttothe enceFoundationofChina(GrantNo.11573016&11503072).S.F., lineofsightandthusproducesnoDoppler-boostedradioemission K.É.G.,andD.C.thanktheHungarianNationalResearch,Develop- onthescaleprobedbyVLBI.Whilejetdirectionchangesarenot mentandInnovationOffice(OTKANN110333) forsupport.T.A. unprecedentedatlargerscalesinradioAGNduetotheinteraction thanksforthegrantsupportbytheYouthInnovationPromotionAs- with the dense intestellar medium, it is unlikely to happen here, sociationoftheChineseAcademy ofSciences(CAS).Thiswork especiallyintwosourcesfromasmallsampleoffour. wassupportedbytheChina–HungaryCollaborationandExchange Future sensitive spectral and high-resolution X-ray imaging Programme by the International Cooperation Bureau of the CAS observations of these sources, as well as the other two similar and the Program for Innovative Research Team (in Science and arcsec-scaleextended high-zsources, J0311+0507 (Parijskijetal. Technology)attheUniversityofHenanProvince.Weacknowledge 2014)andJ1548+3335(Coppejansetal.2016),wouldhelpunder- theuseofAstrogeoCenterdatabaseofbrightnessdistributions,cor- standhowtheseobjectsworkandwouldprovidethenecessaryin- related flux densities, and images of compact radio sources pro- putfordetailedmodelingoftheX-rayemission.Itispossiblethat ducedwithVLBI.ThisresearchhasmadeuseoftheNASA/IPAC otherX-rayemitting,highlyradio-loudAGNalsomimicthetypical ExtragalacticDatabase(NED)whichisoperatedbytheJetPropul- blazarproperties,yettheybelongtodifferenttypesofsources.This sionLaboratory,CaliforniaInstituteofTechnology,undercontract may contribute to the apparently larger fraction of blazars found withtheNationalAeronauticsandSpaceAdministration. in the early Universe (cf. Ghisellini&Sbarrato 2016). In the ra- diofront,sensitiveimagingatintermediate(∼100-masscale)res- olutionisessentialtomaptheextendedstructurewhichismostly resolvedoutwithVLBI,topossiblyrevealbothofthesymmetric REFERENCES lobesandthelarge-scalejets. AlbaretiF.D.etal.,2016,ApJS,submitted(arXiv:1608.02013) ArshakianT.G.,LongairM.S.,2004,MNRAS,351,727 BarthelP.D.,1989,ApJ,336,606 6 CONCLUSIONS BeasleyA.J.,ConwayJ.E.,1995,inZensusJ.A.,DiamondP.J.,Napier P.J.,eds,ASPConf.Ser.Vol.82.,VeryLongBaselineInterferometry We performed EVN observations of four high-redshift (z > 4) andtheVLBA.Astron.Soc.Pac.,SanFrancisco,p.327 blazar candidates at 1.7 and 5 GHz frequencies. Compact radio BlandfordR.D.,KöniglA.,1979,ApJ,232,34 emissionfromallfourtargetsourcesweredetectedatbothfrequen- BritzenS.etal.,2008,A&A,484,119 cies. Precise astrometric positions were determined with phase- BurbidgeG.R.,1956,ApJ,124,416 referencing to nearby calibrator sources. However, the structures CheungC.C.,2004,ApJ,600,L23 observedarespectacularlydiverseinthissmallsample.Thesource Cohen A. S.,Lane W. M.,Cotton W. D.,Kassim N. E.,Lazio T. J.W., PerleyR.A.,CondonJ.J.,EricksonW.C.,2007,AJ,134,1245 J2134−0419 isclearlyconfirmedasablazar withaflat-spectrum CondonJ.J.,1992,ARA&A,30,575 radiocoreandaDoppler-boostedjetemission.Itsjetstructureex- CondonJ.J.,CondonM.A.,GislerG.,PuschellJ.J.,1982,ApJ,252,102 tendingto∼10masscaleholdsthepromiseofdetectingjetcom- CondonJ.J.,CottonW.D.,GreisenE.W.,YinQ.F.,PerleyR.A.,Taylor ponent proper motion with multi-epoch 5-GHz VLBI imaging, a G.B.,BroderickJ.J.,1998,AJ,115,1693 rareandvaluableopportunityamonghigh-redshiftradioAGN.The CoppejansR.etal.,2016,MNRAS,463,3260 source J0839+5112 has a compact mas-scale structure with flat DouglasJ.N.,BashF.N.,BozyanF.A.,TorrenceG.W.,WolfeC.,1996, spectrum, and an indication of flux density variability. Itsbright- AJ,111,1945 ness temperature is not enhanced by relativistic beaming which FanaroffB.L.,RileyJ.M.,1974,MNRAS,167,31 mayindicatealargerinclinationangleofthejet. FanJ.-H.etal.,2016,ApJS,226,20 Surprisingly,thetwootherblazarcandidates,J1420+1205and FeyA.L.etal.,2015,AJ,150,58 J2220+0025 show arcsec-scale extended structures, with most of FomalontE.B.,1999,inTaylorG.B.,CarilliC.L.,PerleyR.A.,eds,ASP Conf.Ser.Vol.180,SynthesisImaginginRadioAstronomyII.Astron. their flux density resolved out on the long VLBI baselies. Their Soc.Pac.,SanFrancisco,p.301 weak nuclear radio emission seems incompatible with the blazar FossatiG.,MaraschiL.,CelottiA.,ComastriA.,GhiselliniG.,1998,MN- scenariowheretheinnerjetpointsnearlytothelineofsight.Fur- RAS,299,433 ther sensitive interferometric observations at intermediate resolu- FossatiG.,CelottiA.,GhiselliniG.,MaraschiL.,1999,inTakaloL.O.,Sil- tionwouldallowustobettercharacterisetheirradiostructure. lanpääA.,eds,ASPConf.Ser.Vol.159,BLLacPhenomenon.Astron. The fact that two of the candidates are clearly non-blazar Soc.Pac.,SanFrancisco,p.351 MNRAS000,1–11(2017)