ebook img

Variational Approach to Hyperbolic Free Boundary Problems PDF

99 Pages·2022·1.899 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Variational Approach to Hyperbolic Free Boundary Problems

SpringerBriefs in Mathematics Seiro Omata · Karel Svadlenka · Elliott Ginder Variational Approach to Hyperbolic Free Boundary Problems SpringerBriefs in Mathematics SeriesEditors NicolaBellomo,Torino,Italy MicheleBenzi,Pisa,Italy PalleJorgensen,Iowa,USA TatsienLi,Shanghai,China RoderickMelnik,Waterloo,Canada OtmarScherzer,Linz,Austria BenjaminSteinberg,NewYork,USA LotharReichel,Kent,USA YuriTschinkel,NewYork,USA GeorgeYin,Detroit,USA PingZhang,Kalamazoo,USA SpringerBriefs present concise summaries of cutting-edge research and practical applications across a wide spectrum of fields. Featuring compact volumes of 50 to 125 pages, the series covers a range of content from professionalto academic. Briefsarecharacterizedbyfast,globalelectronicdissemination,standardpublishing contracts, standardized manuscript preparation and formatting guidelines, and expeditedproductionschedules. Typicaltopicsmightinclude: A timely report of state-of-the art techniques A bridge between new research results,aspublishedinjournalarticles,andacontextualliteraturereviewAsnapshot ofahotoremergingtopicAnin-depthcasestudyApresentationofcoreconcepts thatstudentsmustunderstandinordertomakeindependentcontributions SpringerBriefs in Mathematics showcases expositions in all areas of mathe- matics and applied mathematics. Manuscripts presenting new results or a single new result in a classical field, new field, or an emerging topic, applications, or bridges between new results and already published works, are encouraged. The series is intended for mathematicians and applied mathematicians. All works are peer-reviewedtomeetthehigheststandardsofscientificliterature. Titles from this series are indexed by Scopus, Web of Science, Mathematical Reviews,andzbMATH. Seiro Omata • Karel Svadlenka • Elliott Ginder Variational Approach to Hyperbolic Free Boundary Problems SeiroOmata KarelSvadlenka KanazawaUniversity KyotoUniversity Kanazawa,Japan Kyoto,Japan ElliottGinder MeijiUniversity Tokyo,Japan ISSN2191-8198 ISSN2191-8201 (electronic) SpringerBriefsinMathematics ISBN978-981-19-6730-6 ISBN978-981-19-6731-3 (eBook) https://doi.org/10.1007/978-981-19-6731-3 ©TheAuthor(s),underexclusivelicensetoSpringerNatureSingaporePteLtd.2022 Thisworkissubjecttocopyright.AllrightsaresolelyandexclusivelylicensedbythePublisher,whether thewhole orpart ofthematerial isconcerned, specifically therights oftranslation, reprinting, reuse ofillustrations, recitation, broadcasting, reproductiononmicrofilmsorinanyotherphysicalway,and transmissionorinformationstorageandretrieval,electronicadaptation,computersoftware,orbysimilar ordissimilarmethodologynowknownorhereafterdeveloped. Theuseofgeneraldescriptivenames,registerednames,trademarks,servicemarks,etc.inthispublication doesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevant protectivelawsandregulationsandthereforefreeforgeneraluse. Thepublisher,theauthors,andtheeditorsaresafetoassumethattheadviceandinformationinthisbook arebelievedtobetrueandaccurateatthedateofpublication.Neitherthepublishernortheauthorsor theeditorsgiveawarranty,expressedorimplied,withrespecttothematerialcontainedhereinorforany errorsoromissionsthatmayhavebeenmade.Thepublisherremainsneutralwithregardtojurisdictional claimsinpublishedmapsandinstitutionalaffiliations. ThisSpringerimprintispublishedbytheregisteredcompanySpringerNatureSingaporePteLtd. The registered company address is: 152 Beach Road, #21-01/04 Gateway East, Singapore 189721, Singapore Preface Thisvolumedealswithfreeboundaryproblemsforpartialdifferentialequationsof hyperbolic type. The focus is on hyperbolic problems with variational structure. Then a weak solution can be constructed as a limit of approximate solutions, whichareinturnobtainedastime-interpolatedminimizersofvariationalfunctionals with space variableskept continuousand time variable discretized. We attempt to summarize all that is known to date about this analytical approach. In the second part of the book, we pursue extensions to more complicated, in particular vector- valued, problems.For example, we discuss the problem of a rotating elastic body contactingasolidobstacle,theproblemofabouncingelasticshell,ortheoscillatory motionbymeancurvatureofanetworkofinterfaceswithjunctions. Kanazawa,Japan SeiroOmata Kyoto,Japan KarelSvadlenka Tokyo,Japan ElliottGinder July2022 v Contents 1 Introduction ................................................................... 1 2 PhysicalMotivation........................................................... 3 2.1 MembraneCollisionwithanObstacle ................................. 3 2.2 PeelingofAdhesiveTape ............................................... 5 2.2.1 EnergyatEquilibrium ......................................... 6 2.2.2 Time-DependentProblem ..................................... 7 2.2.3 RegularizedEquationandItsLimit ........................... 9 2.3 DropletMotion:AVolume-PreservingProblem ....................... 13 2.3.1 Volume-ConstrainedProblem Without Free Boundary ....................................................... 13 2.3.2 Volume-ConstrainedProblemwithFreeBoundary .......... 15 2.3.3 ACoupledModelofMembraneandFluidMotion .......... 17 3 DiscreteMorseFlow.......................................................... 21 3.1 DiscreteMorseFlowfortheLinearWaveEquation ................... 21 3.2 Energy-PreservingSchemefortheLinearWaveEquation ............ 28 3.3 Volume-ConstrainedHyperbolicProblem ............................. 31 4 DiscreteMorseFlowwithFreeBoundary ................................. 39 4.1 WeakSolutionandDiscreteMorseFlow .............................. 39 4.2 ConstructionofApproximateSolutions ................................ 43 4.2.1 Assumptions ................................................... 43 4.2.2 StatementofSemi-discreteProblem .......................... 43 4.2.3 MinimizersAreNonnegative ................................. 44 4.2.4 ExistenceofMinimizers....................................... 44 4.2.5 EnergyEstimate ............................................... 46 4.2.6 SubsolutionProperty .......................................... 47 ∞ 4.2.7 L -Boundedness .............................................. 50 4.2.8 HölderContinuity ............................................. 52 4.2.9 Euler–LagrangeEquation ..................................... 54 4.2.10 ApproximateWeakSolution .................................. 55 vii viii Contents 4.3 ExistenceofWeakSolutioninOneDimension ........................ 56 4.3.1 ConvergentSubsequence ...................................... 56 4.3.2 LimitProcess .................................................. 57 5 Energy-PreservingDiscreteMorseFlow................................... 61 5.1 ModifiedDiscreteMorseFlowScheme ................................ 61 5.2 EvolutionofEnergy ..................................................... 62 5.3 ApproximateWeakSolution ............................................ 65 5.4 NumericalResults ....................................................... 72 6 NumericalExamplesandApplications..................................... 77 6.1 FiniteElementApproximation ......................................... 77 6.2 ExamplesofApplications ............................................... 80 6.2.1 Volume-PreservingHyperbolicMeanCurvature Flow ............................................................ 81 6.2.2 ElastodynamicContactProblem .............................. 84 6.2.3 ElasticShellImpact ........................................... 86 References.......................................................................... 91 Symbols Ck(D) spaceoffunctionswithcontinuousk-thderivatives C0,α(D) spaceofHöldercontinuousfunctions ∞ C (D) space of infinitely differentiablefunctions with a compact sup- 0 portinD C([0,T];V) theBanachspaceofcontinuousmappings[0,T]→V Hn n-dimensionalHausdorffmeasure Hk(D) theSobolevspaceWk,2(D) Hk(D) thesubspaceofHk(D)withzerotraceon∂D 0 (cid:4)·(cid:4) normofSobolevspaceHk(D) Hk(D) H1(0,T;V) theSobolev–BochnerspaceW1,2(0,T;V) Ln n-dimensionalLebesguemeasure |D| LebesguemeasureofasetD Lp(D) the Lebesgue space of functions with integrable p-powers for 1≤p <∞ ∞ L (D) theLebesguespaceofessentiallyboundedfunctions p L (D) theLebesguespaceoffunctionswithlocallyintegrablep-powers loc (cid:4)·(cid:4)Lp(D) normofLebesguespaceLp(D) Lp(0,T;V) the space of Bochner measurable p-integrable functions (0,T)→V Wk,p(D) theSobolevspaceoffunctionswithallk-thderivativesinLp(D) Wk,p(0,T;V) theSobolev–Bochnerspaceoffunctions(0,T)→V χ thecharacteristicfunctionofasetA A ∂D theboundaryofasetD Dη theJacobianmatrixofafunctionη (cid:6)·,·(cid:7) theinnerproductinL2(D) {u>0} setofallpointszsuchthatu(z)>0 → strongconvergenceinanormedlinearspace (cid:6) weakconvergenceinanormedlinearspace ⇒ uniformconvergence sptf supportofacontinuousfunctionf A\B setdifferenceofsetsAandB D(cid:8) (cid:3)D setD(cid:8) iscompactlyincludedinasetD ix Chapter 1 Introduction This volume is devoted to the study of hyperbolic free boundary problems. Such problemscan be used to model, among others, the motion of a dropleton a solid obstacle,themotionofabubbleonawatersurfaceorthevibrationofastringhitting anobstacle.Forthepurposeofexplanation,werestrictourselvestothescalarcase, wherethe membranesurroundingthe water or the air in the case of a dropletor a bubblecanbeexpressedasthegraphofafunction.However,sincethemathematical analysisoftheinteractionbetweenthemembraneandtheobstaclecanbeextended tothevector-valuedcase,weshalllateronpresentspecificexamplesinvestigating suchproblems. In general,the membraneformsa positive contactanglewith the obstacle, and therefore the Laplacian or other differential operator describing the shape of the membraneis onlya measuresupportedin theboundaryofthe contactset, usually called a free boundary.We will show how to derive mathematicalproblemsfor a few physicalsystems starting froman action functional.Then we will discuss the mathematicaltheory,andintroduceapproximationmethodsforobtainingnumerical solutionsofthemodelequations. SuchproblemswerefirstinvestigatedbyTa-TsienLiandhiscollaborators(see, e.g., [43–46]), where a local, and later global, existence theory for a class of one-dimensional quasilinear hyperbolic free boundary problems was established. Althoughthestudywassuccessfulinobtainingrathergeneralexistenceresults,we remarkthatthemotivationoftheirresearchistounderstandproblemssuchasshock behavior in the generalized Riemann problem for isentropic flow. This viewpoint specifiestheproblemsettingandtheunderlyingassumptionforwhichtheirtheory isapplicable. The current study focuses on a different class of hyperbolic free boundary problems:thosewhicharecharacterizedbythepresenceofavariationalstructure. By discretizing time, our hyperbolicproblems can then be recast as sequences of minimizationproblems,andthisenablesustoemploymoderntechniquesfromthe calculusofvariations.An advantageof this approachis thatits frameworkcan be ©TheAuthor(s),underexclusivelicensetoSpringerNatureSingaporePteLtd.2022 1 S.Omataetal.,VariationalApproachtoHyperbolicFreeBoundaryProblems, SpringerBriefsinMathematics,https://doi.org/10.1007/978-981-19-6731-3_1

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.