ebook img

Update on Heavy-Meson Spectrum Tests of the Oktay--Kronfeld Action PDF

0.23 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Update on Heavy-Meson Spectrum Tests of the Oktay--Kronfeld Action

Update on Heavy-Meson Spectrum Tests of the Oktay–Kronfeld Action Jon A. Bailey, Yong-Chull Jang∗†, Weonjong Lee‡ LatticeGaugeTheoryResearchCenter,CTP,andFPRD, DepartmentofPhysicsandAstronomy,SeoulNationalUniversity,Seoul,151-747,SouthKorea E-mail†:[email protected] 6 E-mail‡:[email protected] 1 0 Carleton DeTar 2 DepartmentofPhysicsandAstronomy,UniversityofUtah,SaltLakeCity,UT84112,USA n E-mail: [email protected] a J Andreas S. Kronfeld 8 TheoreticalPhysicsDepartment,Fermilab,Batavia,IL60510,USA 1 InstituteforAdvancedStudy,TechnischeUniversitätMünchen,85748Garching,Germany ] E-mail: [email protected] t a l Mehmet B. Oktay - p e DepartmentofPhysicsandAstronomy,UniversityofIowa,IowaCity,IA52242,USA h [ Fermilab Lattice, MILC, and SWME Collaborations 1 Wepresentupdatedresultsofanumericalimprovementtestwithheavy-mesonspectrumforthe v 9 Oktay–Kronfeld(OK)action. TheOKactionisanextensionoftheFermilabimprovementpro- 5 gramformassiveWilsonfermionsincludingalldimension-sixandsomedimension-sevenbilinear 7 4 terms. ImprovementtermsaretruncatedbyHQETpowercountingatO(Λ3/m3)forheavy-light Q 0 systems, and by NRQCD power counting at O(v6) for quarkonium. They suffice for tree-level . 1 matchingtoQCDtothegivenorderinthepower-countingschemes. Toassesstheimprovement, 0 6 wegeneratenewdatawiththeOKandFermilabactionthatcoversbothcharmandbottomquark 1 massregionsonaMILCcoarse(a≈0.12fm)2+1flavor,asqtad-staggeredensemble. Weup- : v datetheanalysesoftheinconsistencyquantityandthehyperfinesplittingsfortherestandkinetic i X masses. With one exception, the results clearly show that the OK action significantly reduces r a heavy-quarkdiscretizationeffectsinthemesonspectrum. Theexceptionisthehyperfinesplitting of the heavy-light system near the B meson mass, where statistics are too low to draw a firm s conclusion,despitepromisingresults. The33rdInternationalSymposiumonLatticeFieldTheory 14-18July2015 KobeInternationalConferenceCenter,Kobe,Japan ∗Speaker. (cid:13)c Copyrightownedbytheauthor(s)underthetermsoftheCreativeCommons Attribution-NonCommercial-NoDerivatives4.0InternationalLicense(CCBY-NC-ND4.0). http://pos.sissa.it/ TestsoftheOktay–KronfeldAction Yong-ChullJang 1. Introduction Nowadays,latticeQCDachievesveryhighprecisionforcalculationsoflight-quarkprocesses[1]. However,simulatingheavyquarksinlatticeQCDisstillachallenge[2,3]. Amajorchallengeinin- creasingtheprecisionoflatticeQCDcalculationsofheavy-quark,candb,quantitiesiscontrolling heavy-quark discretization errors. Because the heavy-quark masses and the accessible ultraviolet cutoffa−1 arecomparable,specialcareisneededtohandleheavy-quarkdiscretizationeffects. The Fermilab method was introduced to address these issues [4]. The Oktay-Kronfeld (OK) action [5] is an improvement (in the Symanzik sense) of the this approach that incorporates the dimension-six and -seven bilinear operators needed for tree-level matching to QCD. It explicitly treats corrections through O(λ3), where λ ∼Λ /m or Λ a, in HQET power counting for QCD Q QCD heavy-lightmesons,andO(v6),wherevistherelativequark-antiquarkvelocity,inNRQCDpower countingforquarkonium. Forasmallmassm a(cid:28)1,theimprovementisequivalenttoO(a2)with Q some O(a3) terms with Symanzik power counting [6]. Based on semiquantitative arguments, it is expectedthatthebottomandcharmquarkdiscretizationerrorscouldbereducedbelowthecurrent 1%levelwiththeOKaction[5]. Weaimtotesttheimprovementquantitatively. For the heavy-light and quarkonium spectra of c- and b-mesons, we present results for the inconsistency quantity [7, 8] and hyperfine splittings, which test how well the Fermilab and OK actionsreduceheavy-quarkdiscretizationerrorsinpractice. Fortheworkreportedhere,wegener- ate data using the tadpole-improved Fermilab and OK actions for a range of heavy-quark masses encompassingcharmandbottom. WeextendourpreliminaryanalysisonaMILCasqtad-staggered N =2+1 coarse ensemble with a≈0.12 fm [9]. Near both charm and bottom masses, we gen- f eratedatawithfour(two)differentvaluesofthehoppingparameterfortheOK(Fermilab)action, forcomparison. Weuseanoptimizedconjugategradient(CG)inverter[10]. Tadpoleimprovement ofalltermsisfullyimplementedinthisprogram,completingearlywork[11]. 2. MesonCorrelator We use the MILC asqtad-staggered N =2+1 gauge ensemble which has dimensions N3× f L N =203×64,β =6.79,tree-leveltadpolefactoru =0.8688,andlatticespacinga≈0.12fm[12]. T 0 Theasqtad-staggeredaction[12]isusedforthelightdegenerateseaquarkswithmassam =0.02 l and strange sea quark with mass am = 0.05. For the tests reported here, we use N = 500 s cfg configurationsoftheapproximately2000configurationsavailable. Foreachconfiguration,weuse sixsourcesh(rrr,t)forcalculatingvalencequarkpropagators. Thespatialsourcecoordinatesrrr are i i i randomly chosen within the spatial cube. The source times t are evenly spaced along the lattice i witharandomizedoffsett ∈[0,20)foreachconfiguration. 0 Wecomputetwo-pointcorrelatorsasdescribedinRef.[9]at10mesonmomenta, ppp=2πnnn/N a, L withnnn=(0,0,0),(1,0,0),(1,1,0),(1,1,1),(2,0,0),(2,1,0),(2,1,1),(2,2,0),(2,2,1),(3,0,0)— includingallpermutationsofthecomponents. ThedefinitionofthehoppingparameterfortheOKactionisgiveninEq.(2.1)ofRef.[11]. For theFermilabaction,theEq.(2.2)ofRef.[4]definesthehoppingparameter. Thehoppingparameter valuesusedtosimulatecandbquarksaregiveninTable1. Wefixthevalencelightquarkmassfor theheavy-lightmesoncorrelatorstothestrangeseaquarkmassam . Hence,werefertotheheavy- s 2 TestsoftheOktay–KronfeldAction Yong-ChullJang Table1: Hoppingparameterκ fortheOKactionandκ fortheFermilabaction. Theκ arevertically OK FL FL alignedtotheκ ,whichyieldtheclosestheavy-lightmesonkineticmassM . SeealsoFig.1. OK 2 Q b c κ 0.039 0.040 0.041 0.042 0.0468 0.048 0.049 0.050 OK κ 0.083 0.091 0.121 0.127 FL light mesons as “B ” or “D ,” depending on the hopping parameter. In anticipation of tuning runs s s for the OK action, we generate B and D correlators by using the OK action with four different s s valuesforthehoppingparameterκ . Forpurposesofcomparison,wesimulatewiththeFermilab OK actionwithtwovaluesforthehoppingparameterκ yieldingquarkmassesinthesameranges. FL ThegroundstateenergiesE areextractedfromcorrelatorfitstothefunction f(t)=Ae−Et(cid:8)1−(−1)tre−∆Et(cid:9)+Ae−E(T−t)(cid:8)1−(−1)tre−∆E(T−t)(cid:9), (2.1) where A is the ground state amplitude. We also incorporate the staggered parity partner state with amplitude Ap and energy Ep for the ground state into the fit function. In practice, we take an amplitude ratio r =Ap/A and energy difference ∆E =Ep−E as fit parameters instead of Ap and Ep. We set the Bayesian prior ∆E =0.2(5). The parity partner is not involved in the fit for quarkonium,becausebothheavyquarksaredescribedbyeithertheOKorFermilabaction. Hence, weusedasimplerfitfunctionforquarkoniumwithr≡0inEq.(2.1). We perform correlated fits. The inverse covariance matrix is estimated with singular value decomposition (SVD). Before performing SVD, the covariance matrix is normalized by the max- imum component on the diagonal, so that the largest eigenvalue λ is of O(1). Then singular max valuesλ belowthenumericaltoleranceλ/λ ≤10−15 areremoved. Oneortwosingularvalues i i max areremovedfromthedatawithb-quarkhoppingparametervaluesgiveninTable1. Toincreasestatistics, eachcorrelatorisaveragedoverpositiveandnegativetimeseparations. Then, we take the fit interval [t ,t ], where 0 ≤t <t < T/2, equal to [10,19] for the min max min max heavy-lightsystemsand[15,20]forthequarkonia. Wefixtheseintervalsforfitstoallcorrelators, independentofthehoppingparameterκ,momentum ppp,andaction. Thet arechosenbyrequir- max ingthatthenoise-to-signalratiointhetwo-pointcorrelatorbelessthanabout20%forallmomenta, which,inpractice,issetatthelargermomenta,wherethecorrelatorisnoisier. Thet arechosen min byobservingtheeffectivemasscalculatedfromthedefinitionm (t)=(cid:2)ln(cid:8)CM(t)/CM(t+2)(cid:9)(cid:3)/2, eff aswellascomparingthefitresultsE withm (t). Toestimatethestatisticalerrors,weuseasingle- eff eliminationjackknife. 3. MesonMasses We fit the ground state energy E in Eq. (2.1) for each momentum ppp to the non-relativistic dispersionrelationE(ppp),includingtermsuptoO((appp)6), ppp2 (ppp2)2 E =M + − +E(cid:48) +E +E(cid:48), (3.1) 1 2M 8M3 4 6 6 2 4 a3W (ppp2)3 a5W a5W(cid:48) E(cid:48) =− 4∑p4, E = , E(cid:48) =− 6∑p6+ 6ppp2∑p4, (3.2) 4 6 i 6 16M5 6 3 i 2 i i 6 i i 3 TestsoftheOktay–KronfeldAction Yong-ChullJang toobtaintherestmassM andkineticmassM ofeachmeson. Themismatchbetweentherestand 1 2 kinetic meson masses can be exploited to test the improvement of nonrelativistically interpreted actions. TheM aregeneralizedmasses. TheO(3)rotationsymmetrybreakingtermsareE(cid:48) and 4,6 4 E(cid:48). Inthecontinuumlimit,thecoefficientsW ,W((cid:48))→0andM →M . ThefitparametersM , 6 4 6 1,4,6 2 1 M−1,M−3,M−5,W ,W ,andW(cid:48)areobtainedbywithalinearfit. Weusethefullcovariancematrix 2 4 6 4 6 6 amongallmomenta. We investigate variations by excluding some or all the higher-order correction terms E(cid:48) and 4 E((cid:48)). WefindthattheE(cid:48) termisnecessary,andE((cid:48)) termsreducetheχ2. Wealsoinvestigatefitsby 6 4 6 droppinghigh-momentumdata. Fortheimprovementtests,weselecttheresultsfromthedispersion fits using only the lowest eight momenta without Bayesian constraints on the fit parameters. The rest mass M and the kinetic mass M from the chosen fits are statistically consistent with other 1 2 fits that we performed: the dispersion fits with Bayesian constraints on the fit parametersW(cid:48) and 4 ((cid:48)) W , and the dispersion fits with meson spectra which are obtained from uncorrelated fits for the 6 two-pointcorrelators. 4. InconsistencyParameter Toassesstheimprovement,weusetheinconsistencyquantity[7,8], 2δM −(δM +δM ) 2δB −(δB +δB ) Qq QQ qq Qq QQ qq I≡ = , (4.1) 2M 2M 2Qq 2Qq where the mass differences δM ≡M −M ,(X =Qq,QQ), are obtained from the dispersion X 2X 1X relationfits. Becauselightquarksalwayshavema(cid:28)1,theO((ma)2)distinctionbetweenrestand kineticmassesisnegligible. WethereforeomitδM ≡M −M (orδB ). q¯q 2qq 1qq q¯q ThemesonmassesM canbewrittenasasumoftheperturbativequarkmassesm andthe 1,2 1,2 bindingenergiesB . Foraheavy-lightsystem,therelationreads 1,2 M =m +m +B , M =m +m +B , (4.2) 1Qq 1Q 1q 1Qq 2Qq 2Q 2q 2Qq andsimilarlyfora(light)quarkonium. TheseformulasdefineB andB . Substitutingthemintothe 1 2 definitionofI inEq.(4.1),thequarkmassescancelout,andweobtaintherelationamongbinding energydifferencesδB=B −B inEq.(4.1). 2 1 In a relativistically invariant theory, the binding energies B and B are equal. The “incon- 1 2 sistency”I isolatesthebinding-energydifferenceδB=B −B (cid:54)=0. Attheleadingorder, O(ppp2), 2 1 itisduetodiscretizationerrorsfromthehigher-dimensionoperatorsintheactionofO((appp)4),or O(v4)inNRQCDpowercounting,whichenterB [8]. Thisleading-orderinconsistencyvanishesat 2 tree-levelfortheOKaction,butnotfortheFermilabaction[8,13,9]. Hence,byconstruction,the inconsistency quantity I is good for probing how well the OK action removes these discretization errorsinthemesonspectra. The results for the inconsistency I from the pseudoscalar meson spectra are shown in Fig. 1. WefindthatI isclosetothecontinuumlimit,I=0,fortheOKactioneveninthebottommassre- gion,whereastheFermilabactionproducesaverylargedeviation,I≈−0.6. ThesmallI shownin Fig.1fortheOKactionresultsmainlyfromthehigherorderkineticoperatorsofO(v4)inNRQCD, 4 TestsoftheOktay–KronfeldAction Yong-ChullJang 0.2 0.1 0.0 50 49 48 47 42 41 40 39 127 121 50 −0.2 D+ 0.0 49 48 s 47 I I −0.4 127 91 −0.6 −0.1 121 B0 s 83 −0.8 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 1.0 1.5 aM aM 2Q¯q 2Q¯q (a) (b) Figure 1: Inconsistency I for pseudoscalar mesons. A magnified view of the boxed region in Fig. 1(a) is given in Fig. 1(b). Data labels denote κ×103 values. The square (green) represents the Fermilab action data, andthecircle(purple)representsOKactiondata. Fortuningpurposes, wealsoindicatethephysical B andD masseswithverticallinesanderrorbands[14];theerrorsaredominatedbytheerrorofthelattice s s spacing. IalmostvanishesfortheOKaction,butfortheFermilabactionitdoesnot. Thisbehaviorsuggests thattheOKactionissignificantlyclosertothecontinuumlimit,I=0,whichisrepresentedbythehorizontal line(red). Theerrorsarefromthejackknife. or O(λ2) in HQET, power counting [5]. These terms suffice to tune the quark dispersion relation toO((appp4)). Thisoutcomeprovidesgoodnumericalevidencethattheimprovementexpectedwith theOKactionisrealizedinpractice. 5. HyperfineSplittings The hyperfine splitting ∆ is defined to be the difference in the masses of the vector (M∗) and pseudoscalar(M)mesons: ∆ =M∗−M , ∆ =M∗−M . (5.1) 1 1 1 2 2 2 Spin-independent contributions to the binding energies cancel in the difference of hyperfine split- tings∆ −∆ =δB∗−δB[9]. Comparingtothecontinuumlimit,∆ =∆ ,diagnosestheimprove- 2 1 2 1 ment of the spin-dependent terms in the OK action [5] of O(v6) in NRQCD, or O(λ3) in HQET powercounting. As one can see in Fig. 2(a), the OK action shows clear improvement for quarkonium. The data points from the OK action lie much closer to the continuum limit ∆ =∆ (the red line) for 2 1 all simulated values of κ . In addition, the deviation is smaller for the charmonium region, near OK κ =0.049andκ =0.127,thanforthebottomoniumregion,nearκ =0.041andκ =0.083. OK FL OK FL The heavy-light results in Fig. 2(b) also show clear improvement in the region near the D mass. s TheresultswiththeOKactionremainconsistentwiththecontinuumexpectationthroughouttheB s massregion, buttheimprovementisnotsignificantforκ ≤0.041, becausethestatisticalerrors OK arelarge. Evenhere,however,theresultsaresuggestiveofimprovement. Forbothquarkoniaandheavy-lightmesons,thehyperfinesplittingofthekineticmass(∆ )has 2 a larger error than that of the rest mass (∆ ), mainly because the kinetic mass requires correlators 1 5 TestsoftheOktay–KronfeldAction Yong-ChullJang 0.60 0.60 83 0.40 0.40 127 83 127 ∆2 0.20 ∆2 0.20 49 r1 49 r1 0.00 0.00 41 41 −0.20 −0.20 0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.00 0.05 0.10 0.15 0.20 0.25 0.30 r ∆ r ∆ 1 1 1 1 (a) Quarkonium (b) Heavy-lightmeson Figure2:Hyperfinesplitting∆ obtainedfromthekineticmassesvs.∆ ,thatobtainedfromtherestmasses. 2 1 The square (green) represents the Fermilab action data, and the circle (purple) represents OK action data. Thelabelsareκ×103, correspondingtokineticmassesclosetothephysicalB (83, 41)andD (49, 127) s s masses,asshowninFig.1.Thecontinuumlimitisrepresentedbytheline(red)∆ =∆ .Errorsareestimated 2 1 withthejackknifemethod. with ppp(cid:54)=000, which are noisier than those with ppp=000. The statistical errors shown in Fig. 2 are comparable for the OK and Fermilab action, except for ∆ for heavy-light mesons with κ = 2 OK 0.041,0.042,whichareinterestingly30–50%smallerthanthosewithκ =0.083,0.091. FL 6. Conclusion The inconsistency quantity shows that the OK action improves the O(ppp2) effects in the bind- ingenergy,becauseitimprovestheO(ppp4)partoftheeffectiveLagrangian,inpracticeaswellasin theory. Thehyperfinesplittingsclearlyshowtheimprovementfromthehigher-dimensionchromo- magneticinteractionterms,exceptintheB massregion,wherestatisticsareatpresentinsufficient s toreachanydefiniteconclusion. 7. Acknowledgments J.A.B.issupportedbytheBasicScienceResearchProgramoftheNationalResearchFounda- tionofKorea(NRF)fundedbytheMinistryofEducation(2015024974). C.D.issupportedinpart by the U.S. Department of Energy under grant No. DE-FC02-12ER-41879 and the U.S. National Science Foundation under grant PHY10-034278. A.S.K. is supported in part by the German Ex- cellenceInitiativeandtheEuropeanUnionSeventhFrameworkProgrammeundergrantagreement No. 291763 as well as the European Union’s Marie Curie COFUND program. Fermilab is oper- ated by Fermi Research Alliance, LLC, under Contract No. DE-AC02-07CH11359 with the U.S. DepartmentofEnergy. TheresearchofW.L.issupportedbytheCreativeResearchInitiativesPro- gram(No.2015001776)oftheNRFgrantfundedbytheKoreangovernment(MEST).W.L.would like to acknowledge the support from KISTI supercomputing center through the strategic support programforthesupercomputingapplicationresearch[No.KSC-2014-G3-002]. Thecomputations werecarriedoutinpartontheDAVIDGPUclustersatSeoulNationalUniversity. 6 TestsoftheOktay–KronfeldAction Yong-ChullJang References [1] S.Aoki,Y.Aoki,C.Bernard,T.Blum,G.Colangelo,etal.,1310.8555. [2] A.X.El-Khadra,PoSLATTICE2013(2014)001,[1403.5252]. [3] C.M.Bouchard,PoSLATTICE2014(2015)002,[1501.03204]. [4] A.X.El-Khadra,A.S.Kronfeld,andP.B.Mackenzie,Phys.Rev.D55(1997)3933–3957, [hep-lat/9604004]. [5] M.B.OktayandA.S.Kronfeld,Phys.Rev.D78(2008)014504,[0803.0523]. [6] K.Symanzik,Nucl.Phys.B226(1983)187. [7] S.Collins,R.Edwards,U.M.Heller,andJ.Sloan,Nucl.Phys.BProc.Suppl.47(1996)455–458, [hep-lat/9512026]. [8] A.S.Kronfeld,Nucl.Phys.BProc.Suppl.53(1997)401–404,[hep-lat/9608139]. [9] J.A.Bailey,Y.-C.Jang,W.Lee,C.DeTar,A.S.Kronfeld,etal.,PoSLATTICE2014(2014)097, [1411.1823]. [10] Y.-C.Jangetal.,SWME,MILC,FermilabLattice,PoSLATTICE2013(2014)030,[1311.5029]. [11] C.DeTar,A.Kronfeld,andM.Oktay,PoSLATTICE2010(2010)234,[1011.5189]. [12] A.Bazavovetal.,Rev.Mod.Phys.82(2010)1349–1417,[0903.3598]. [13] C.Bernardetal.,FermilabLatticeCollaboration,MILCCollaboration,Phys.Rev.D83(2011) 034503,[1003.1937]. [14] K.A.Oliveetal.,ParticleDataGroup,Chin.Phys.C38(2014)090001. 7

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.