Unveiling LOX-1 receptor interplay with nanotopography: mechanotransduction SUBJECTAREAS: and atherosclerosis onset NANOSCALEBIOPHYSICS BIOMATERIALS-CELLS CarmineDiRienzo1,2,EmanuelaJacchetti1,FrancescoCardarelli2,RanieriBizzarri1, TISSUEENGINEERINGAND REGENERATIVEMEDICINE FabioBeltram1&MarcoCecchini1 IMPLANTS 1NEST,IstitutoNanoscienze-CNRandScuolaNormaleSuperiore;PiazzaSanSilvestro12,56127Pisa(ITALY),2Centerfor NanotechnologyInnovation@NEST,IstitutoItalianodiTecnologia,PiazzaSanSilvestro12,I-56127Pisa,Italy. Received 3December2012 Lectin-likeox-LDLreceptors(LOX-1)playacrucialroleintheox-LDL–inducedpathological Accepted transformationofvessel-wallcomponents,acrucialearlystepinatherogenesis.LOX-1dynamicsis 17December2012 quantitativelyinvestigatedinhumanendothelialcells(HUVECs)exposedtoenvironmental nanotopographies.Wedemonstratedistinctnanotopography-inducedcellphenotypes,characterizedby Published differentmorphology,LOX-1diffusivityandoligomerizationstate:HUVECsonflatsurfacesexhibitthe 25January2013 behaviorfoundinpro-atherogenicconditions,whilegrowthonnanogratingscaninterferewithLOX-1 dynamicsandleadtoabehaviorcharacteristicofnormal,non-pathologicalconditions. Correspondenceand requestsformaterials Atherosclerosisoccursinlargeandmedium-sizearterieswherelesionscontaininglipids,proteinanddeath cells can form1. The appearance of atherosclerotic plaques in defined spatial regions suggests a local shouldbeaddressedto inclinationtowardspro-atheroscleroticpathwaysconcomitanttoadiffuseactivationofanti-atheroscler- M.C.(marco. oticpathways2.Oxidizedlowdensitylipoproteins(ox-LDLs)areconsideredamongthemosteffectiveactivators [email protected]) ofthepro-atheroscleroticpathwaysandwerelinkedtoatherogenesisandplaquerupture1,3.Inthiscontext,the orR.B.(r.bizzarri@sns. endotheliallectin-likeox-LDLreceptor(LOX-1)playsacrucialroleintheox-LDL–inducedpathologicaltrans- it) formationofvessel-wallcomponents,acrucialearlystepinatherogenesis4,5.Anumberofinvestigationshave linkedLOX-1toatherogenesis.Itwasshown,forinstance,thatmicelackingLOX-1againstabackgroundofnull LDLreceptorsexhibitsignificantlyreducedatheroscleroticplaqueformationcomparedtomiceharboringLOX-1 insimilarbackgroundconditions6.Bycontrast,miceoverexpressingLOX-1againstanapolipoproteinE(apoE)- deficientbackgroundexhibitanenhancedatheroscleroticplaqueformation7.Theseobservationsindicatethat ox-LDLbindingtoLOX-1acceleratesformationandprogressionofatheroscleroticplaques. Fromamolecularpointofview,itisworthnotingthatwell-knownchemicalstimuliinvolvedinatherogenesis arealsoabletoregulateLOX-1expressiononthecellmembrane8–13.Inthiscontext,ithasbeenrecentlyreported thattheLOX-1dimerisnecessaryforefficientox-LDLuptake.Furthermore,thedimerizationprocessiscon- centration-dependentanditdoesnotneedox-LDLstimulation14–16.Thus,LOX-1isexpressedatlowconcen- trationandkeptmonomericinanormalendothelium,whileitisoverexpressedandstartstoaggregateduring theearlystagesofatherosclerosis17,18.Therecurrentdispositionofatheroscleroticplaques(i.e.closetoarterial bifurcations) suggests that their formation results from a highly regulated interplay between homogenously distributedchemicalstimuli(e.g.ox-LDL)andlocalizedpro-atheroscleroticevents,asithasbeendemonstrated in detail for physical stresses19. Here, cytoskeleton-mediated and integrins-mediated mechanotransduction clearlyemergesasoneofthemaindrivingforcesinendothelialdysfunctionattheearlieststepsinatherogen- esis2,20,21.Theeffectivenessofmechanotransductiondependsonseveralexternalregulators,includingshearstress, cell-cellinteractions,andcell-matrixinteractions19,22–25 Inspiteofthesefindings,noonehasyetadequatelydescribedthecorrelationbetweentheextracellularmatrix topographic features and atherogenesis onset. Indeed, ECM topography stands as one of the most relevant modulators of cell physiology and provides a ‘‘non-chemical’’ activation pathway to tune cell functionality/ properties26–28. Accordingly, in this work artificial scaffolds with controlled nano-/micro-topography were appliedtoinvestigatehowcell-ECMinteractionsinfluenceLOX-1behaviour.Morespecifically,wereporton LOX-1receptordynamicsandaggregationonthecellmembraneanditsinteractionwiththecytoskeletonandthe extracellularenvironmentindifferenttopographiccontexts.NotablyweusedaGFP-taggedvariantofLOX-129 SCIENTIFICREPORTS |3:1141|DOI:10.1038/srep01141 1 www.nature.com/scientificreports along a preferential axis that follows the substrate directionality (Fig. 1 b and Suppl. Fig. 2 a–b). In order to quantify the polari- zation on the different employed geometries (Suppl. Fig. 1), we measured cell spreading (adhesion area), cell elongation (L) and cell alignment to substrate directionality (Q) (Fig. 2 and Suppl. Fig. 3). The mean adhesion area of HUVECs on FLAT substrates is 1600 6 200 mm2, in good agreement with literature data37. Conversely, HUVECs covered T1 samples with a significantly reduced area compared to the FLAT surfaces (40%, Suppl. Fig. 3 a). Significantly, on longer-period topographies (T2, T4) cells showed spreading areas similar to FLAT surfaces (Fig. 2 and Suppl. Fig. 2 a). As previously stated, HUVECs showed increased elongationalongthepatterndirectiononT1,T2,andT4,compared to FLAT values (Suppl. Fig. 3 b and c). Maximum elongation was detectedontheT2substrates(L52.260.2comparedtoL51.06 0.1onFLAT,Fig.2b)togetherwithoptimalalignmenttosubstrate directionality(Q510.0u60.5u,Fig.2c).Takentogether,thesedata demonstratethatT2performedbestduringHUVECspreadingand contactguidance.Forthisreason,weselectedT2forthefollowing experiments,andkepttheFLATasananisotropiccontrolcondition. Wetestedhownon-physiologicalconditionsassociatedwithspecific cytoskeletaldegradationaffectthemorphologyofHUVECsattached toflatorpatternedsubstrates.Firstweinvestigatedtheeffectofmicro- tubuledisruptionbyadministratingnocodazole(NCZ).OnT2NCZ- Figure1|EffectoftopographyonHUVECmorphologyandLOX-1 treated cells showed a reduction in alignment from Q510.0u60.5u spatialdistribution. RepresentativebrightfieldimagesofHUVECs (non-treatedcells)toQ516u62u(Suppl.Fig.4c),and,inelongation, adheredon(a)FLATand(b)nanogratings.RepresentativeTIRFMimages from L52.260.2 (non-treated cells) to L51.160.1 (Suppl. Fig. 4 b). ofLOX-1-GFPtransfectedHUVECson(c)FLATand(d)nanogratings. Notably,NCZ-treatedcellsshowedareducedelongationfactorwithall Scalebar10mm.Whitearrowsindicatethesubstratedirectionality. substrates(Suppl.Fig.4b).Then,wetestedtheeffectofactin-filament disruptiononpolarization.CytochalasinD-treatedcellsshowedneg- ligible variations of elongation and alignment, although a detectable that can be transiently transfected into human endothelial cells reduction (about 40%) of the adhesion area on both T2 and FLAT (HUVECs)andisnotactivatedbyexternalligands,thusproviding substrates was observed (Suppl.Fig. 3a). Finally,we tested the con- the ideal model to study the sole influence of cytoskeletal factors tractility depletion effect by treating HUVECs with blebbistatin. andexternaltopographyonthereceptormobilityandaggregation. Treated cells showed no significant difference in spreading area on Receptor dynamics was quantitatively investigated by combining FLAT or T2 (Fig. 2 (a)). On the other hand, we measured strongly high-resolution fluorescence microscopy, fluorescence correlation reducedelongationonT2surfacecomparedtothephysiologicalstate techniques, and micro-/nano-fabrication methodologies. First, we (Fig.2(b))whichledtovaluescomparabletothecellelongationon testedtheeffectsofmechano-topographicalstimulionLOX-1diffu- FLAT.Atthesametimeweobservedreducedalignmentbetweenthe sivity in cells using an original approach that combines advanced cellsandthepattern(Fig.2(c)). fluorescence correlation techniques30,31 and micro-/nano-fabrica- tion. Next, we investigated the relation between cellular function/ LOX-1-GFPlocalizationanddiffusivity.Inafurthersetofexperi- structureandLOX-1diffusivitybytreatingcellswithcytoskeleton- ments, we investigated how adhesion on FLAT or T2 modulates disruptingagents.Finally,welinkedourresultsonLOX-1diffusion localization and single-molecule mobility of LOX-1-GFP. Single- invarioustopographicconditionstoitsoligomerizationstateinliv- moleculemobilitywasassessedbyfluorescencecorrelationspectro- ingcellsbasedonafluctuationspectroscopictechniquenamednum- scopy (FCS) measurements. Average membrane mobility of the berandbrightness(N&B)analysis32.Ourresultsclearlydemonstrate receptor in each point was determined by correlating images of a the existence of distinct topography-induced endothelial pheno- temporal stack, according to the time image correlation technique types,characterizedbydifferentcellmorphology,reactive-oxygen- (tICS)31.Line-scanningFCSwasappliedtodeterminethedirectional specie (ROS) production, LOX-1 diffusivity and oligomerization mobility of the receptor between two given points in a segment30. state.Mostimportantly,thedataallowustoidentifypeculiarpro-/ Additionally, the extent of autocorrelation at each point along the anti-atheroscleroticconditionsthatmighttakeplaceduringathero- lines allowed estimating the relative concentration values, since sclerosisonset. correlation amplitude and molecular concentration are inversely proportional38. Results Figure1canddshowsrepresentativeimagesofHUVECstran- MorphologyofHUVECsonnanostructuredsurfaces.Inthefirst siently transfected withGFP-tagged LOX-1 onFLAT and T2 sub- setofexperiments,westudiedthemorphologyofHUVECsonFLAT strates,respectively.LOX-1-GFPdistributionisuniformonFLAT. and patterned surfaces. In order to determine suitable substrate By contrast, a non-uniform membrane distribution can be clearly geometry for efficient HUVEC mechanotransduction, we initially seenonthepatternedsubstrates(furtherevidenceofthiseffectisalso assayednanogratingsofthreedifferentperiods,namely1mm(T1), reportedinSuppl.Fig.2forothergeometries).Inparticular,‘ridge’ 2mm(T2)and4mm(T4)(seeMaterialsandMethodsfordefinitions regionsarealwayscharacterizedbysignificantlyhigherfluorescence andcharacteristics).Figure1andSuppl.Fig.2providerepresentative intensity compared to ‘groove’ regions, as detected by TIRF and imagesofHUVECs attachedonFLAT, T1,T2andT4.OnFLAT, confocalimaging.Line-scanningFCSallowedattributingthehigher cells were found to spread without polarization and showed the fluorescence to higher LOX-1-GFP concentration on the ridges typical star-like shape (Fig. 1 a). By contrast, on patterned sub- (Suppl. Fig. 3). Indeed, correlation amplitudes in grooves were strates they showed polarized morphology, with the cell stretched alwayshigherthanontheridges. SCIENTIFICREPORTS |3:1141|DOI:10.1038/srep01141 2 www.nature.com/scientificreports Next, we measured average LOX-1-GFP diffusivity by tICS. By pCFcalculatedatthedistanceof1mmparalleltothesubstratedirec- fittingtICSdatatoa2Dmodelofdiffusionsuitableformembrane tionality(redcurve,Fig.3b)yieldsacorrelationpeakearlierintime studies39,40, it was found that D50.08160.004 mm2/s on FLAT withrespecttothatcalculatedorthogonally(bluecurve,Fig.3b).This (Fig.2(d)),avalueinagreementwiththosedisplayedbymembrane indicates that LOX-1-GFP moves faster along ridges and grooves proteins of similar size41,42. Remarkably, on T2 we measured an than across them. This effect was quantified by the mobility ratio almosttwofoldincreaseinthediffusivityofLOX-1-GFP[D50.143 R(ratiobetweenthetimeofCFpeaksrelevanttoparallelandortho- 60.006 mm2/s, Fig. 2(d)]. In order to strengthen and support our gonaldirectionstopattern,respectively).ForT2,R51.860.8,indi- analysis, we also performed the same experiment on T1 and T4, catingasignificantanisotropyinLOX-1-GFPmobilityonpatterned obtainingsimilarvalues(Suppl.Fig.3d). substrates. As a control, the same analysis was repeated on FLAT UponNCZtreatment,wefoundD50.12460.006mm2/sonT2, (Fig. 3c):thepCFscalculated intwoorthogonal directionsyielded andD50.08260.004mm2/sonFLAT(Suppl.Fig.3d).Thisslight correlation maxima with no clear difference in their timing. This reduction of diffusivity on T2 substrates compared to the physio- suggeststhatthereisnopreferentialroutetakenbyLOX-1-GFPin logicalstatehasnohighstatisticalsignificance.Thesametrendwas HUVECsadheredonFLAT.Accordingly,wefoundameanmobility observeduponCytochalasinDtreatment(D50.12460.007mm2/s ratioR51.060.3forFLAT.ThisresultreinforcestheideathatLOX- onT2,andD50.0860.01mm2/sonFLAT,Suppl.Fig.3d).Thus,the 1-GFPmobilityissignificantlyinfluencedbythespatialdistribution membranemobilityofLOX-1-GFP wasfoundtobeunaffectedby ofridgesandgroovesthatarepresentinthepatternedsurfaces. microtubule and actin depolymerization both on FLAT and pat- ternedsurfaces.Conversely,themobilityofLOX-1-GFPonT2was LOX-1-GFP aggregation state in living cells. It is by now widely significantlyhampered(D50.1060.01mm2/s,Fig.2d)byblebbis- accepted that LOX-1 homodimerization is needed for ox-LDL tatin and became statistically indistinguishable from FLAT values internalization in living cells14, and that its oligomerization state (D50.1060.02mm2/s,Fig.2d).Thissuggestsakeyroleofcontract- may be locally regulated by receptor density15. Thedata presented ility in the topography-induced modulation of LOX-1-GFP so far pointed out detectable differences between LOX-1-GFP mobility. behavior on FLAT as compared with nanogratings. To investigate Inordertofurtherinvestigatetheinfluenceofpatternedsubstrates whetherthismayberelatedtoitsoligomerizationstateweperformed on the membrane mobility of LOX-1-GFP, we adopted the pair the number and brightness analysis (N&B)32 on stacks of fluore- correlationfunction(pCF)approachtolineFCS30,43.Indeed,byana- scence images. The results obtained are displayed in Fig. 4. As a lyzing the spatial correlation of fluorescence fluctuations at a pair reference for ‘monomeric’ molecular brightness on the membrane ofpointsineachsampleseparatedbyadistancecomparabletothe we transiently transfected HUVECs with a farnesyl-conjugated topographyperiod,wewereabletoprobethesingle-moleculemobil- GFP39 (Fig. 4 a, central panel). As expected we found a homo- ityanddirectionalityofLOX-1-GFPmembranetrafficwithrespect geneous distribution of the monomer on the membrane (Fig. 4 a, tothesubstratestructure.Allexperimentswerecarriedoutatphysio- left panel, points in the green rectangle) with a corresponding logicalconditions:arepresentativepCFmeasurementisreportedin average molecular brightness (e ) of 0.06660.003 counts/ monomer Fig. 3. For simplicity, we focused on pair correlations along two molecule/pixel-dwell-time. This value was taken as reference for directions: perpendicular (blue arrow, Fig. 3a) and parallel (red analogous measurements on cells transiently transfected with arrow, Fig. 3a) to the substrate pattern directionality. For T2, the LOX-1-GFPonFLATandT2substrates(Fig.4e–fand4h–i). Figure2|EffectofcontractilityinhibitiononHUVECsMorphologyandLOX-1diffusivityonFLATandT2substrates. Thehistogramsreport (a)theadhesionarea,(b)elongationand(c)alignmentofLOX-1transfectedcells,and(d)LOX-1diffusivity.Experimentswereperformedwithand withoutblebbistatinadministration.Dataarereportedasmean6standarderrorof4experiments.275cellswereanalyzed.Significantdifferences betweenthepopulationmeansarereported. SCIENTIFICREPORTS |3:1141|DOI:10.1038/srep01141 3 www.nature.com/scientificreports Figure3|AnisotropicLOX-1diffusion. (a)SchemeofLOX-1-GFP-transit-timemeasurewheretEistheLOX-1meantimetocross1mmalong thepatterndirectionandt\isthesamecoefficientalongtheorthogonalone.(b–c)RepresentativeLOX-1pCFalongthetwodirections(parallelred curve,perpendicularbluecurve)ofasingleHUVECcelladheredon(b)T2and(c)FLATsubstrates.Theinsetsrepresentthetwoanalyzeddirections. Inlinewiththeliterature,N&BanalysisofLOX-1-GFPonFLAT endothelial activation, dysfunction and injury46. Recently, a novel substratesshowsacoexistenceofmonomersanddimers,resultingin lectin-like scavenger receptor for ox-LDL (LOX-1) was identified, a mean molecular brightness of 0.10260.008, approximately 1.5 primarilyintheendothelialvascularsmoothmuscle,lymphoidcells timeshigherthanthemonomericreferencevalue.Thisresultsug- (including macrophages) andplatelets, whichallows theuptake of gests that LOX-1-GFP transfection yields membrane protein con- ox-LDL and cell activation4,47–49. Also, recent transgenic animal centration values above the dimerization threshold (Fig.4 e–f). model studies show that LOX-1 plays a significant role in athero- Remarkably,asimilaranalysisdemonstratesthatthedimericpopu- sclerotic plaque initiation and progression6,7,50. Administration of lation almost completely disappears when cells are plated on T2 LOX-1 antibodies in cellular and animal models consistently sug- substrates,showingaconcomitantincreaseofthemonomericform gests that such intervention inhibits atherosclerosis51. Despite its fraction(e50.07060.004,Fig.4g–i). important role in the process of atherogenesis, the most effective means of targeting and disrupting OxLDL-LOX-1 endocytosis Reactive oxygen specie (ROS) production of HUVECs remains elusive. Promisingly, Ishigaki et al showed that LOX-1 on nanostructured surfaces. In order to study the effect of expressed ectopically in the liver via adenovirus administration nanotopography on HUVEC oxidative stress, cytoplasmic ROS reducesthelevelsofcirculatingOxLDLandinhibitstheformation concentration was measured for cells grown on T2 and FLAT. of atherosclerotic lesions52. Gene therapy with possible genomic Using a combination of two dyes and fluorescence microscopy manipulationofscavengerreceptorexpressionbydeliveryoftrans- (TBHP and c-H2DCFDA, see Materials and Methods for details), genesorbyblockadeofgeneexpressionwasalsosuggested53.Inour oxidative stress could be quantitatively evaluated. Regardless of opinion,suchcomplexinvivoapproachescanbeusefullysupported the presence of nanopatterning, our substrates did not induce byinvitrostudies,wheremanymoleculardetailsofLOX-1activity significant stress in HUVECs. Indeed, ROS concentration on relevant to pathogenesis (e.g. diffusion, oligomerization state, etc.) FLATwasreducedtoone-thirdwithrespecttothepositivecontrol canbeisolatedandstudiedindetailatthesingle-moleculelevel.To inducedbyTBHP.Nonetheless,wefoundthatcellsonT2showeda thisaimweexpressedaGFP-labeledvariantofLOX-1inlivehuman marked decrease (44610 %, p , 0.05, Mann–Whitney U test) in endothelial cells and studied its behavior by means of high- ROSproductionwithrespecttocellsontheFLAT.Thisindicatesthat resolution/highsensitivityfluorescencemicroscopy.Thisvariantof thepresenceofnanopatterningcanleadtoalessstressfulcondition LOX-1isunabletobindtoox-LDLalthoughitretainsallfeaturesof forendothelialcellsthanstandardflatsurfaces. nativeLOX-1anditisthereforetheidealsystemtovisualizethesole effectofECMtopographyonLOX-1-dependentcelldysfunction. Discussion Experimentally, a toolbox of correlation-based techniques was Thereisstrongevidenceforaroleofoxidativestressinallstagesof used to quantitatively address LOX-1-GFP local diffusivity (by atherosclerosis44,45. Oxidized low density lipoprotein (ox-LDL), a tICS),spatialheterogeneityofflow(bypair-correlation)andoligo- markerofoxidativestress,ispresentintheplasmaandintheathero- merizationstate(byNumberandBrightnessanalysis).Atthesame sclerotic arteries of patients with atherosclerosis. Ox-LDL leads to time, by micro-/nano-fabrication methodologies we prepared SCIENTIFICREPORTS |3:1141|DOI:10.1038/srep01141 4 www.nature.com/scientificreports Figure4|LOX-1aggregationstate. (a–c)CalibrationofmonomericGFPbrightnessusingfarnesyl-GFP.(a)fluorescenceintensityimageofacell expressingfarnesyl-GFPshowswidespreaddistributionoftheproteinonthemembrane(b)Selectionofpixelswithbrightnesscorrespondingtothe monomers(green,B51.066,e50.066)andtothebackground(blue)(c)brightnessvsintensityplotshowingthe‘‘green’’and‘‘blue’’selections. (d–f)RepresentativeN&BanalysisofaHUVECcellonFLATwithLOX-1initsdimericform.(d)intensityimage(e)Selectionofpixelswithbrightness correspondingtothedimers(red,B51.12,e50.12)andtobackground(blue)(f)cumulativeresults:percentageofcellsshowingtheLOX-1monomer (anddimer)onFLAT.(g–i)RepresentativeN&BanalysisofaHUVECcellonT2withLOX-1initsmonomericform(g)intensityimage(h)Selectionof pixelswithbrightnesscorrespondingtothemonomers(green,B51.07,e50.07)andtothebackground(blue).Cumulativeresults:inthiscaseaboutthe 90%oftheanalyzedcellsindicatesthepresenceoftheLOX-1monomeronly. controlled-patternsubstratesallowinginvestigatingdifferentenvir- indirectingLOX-1diffusioninmembranes.Accordingly,bothcon- onmentalconditionsforcellattachment,spreading,andgrowth.By tractilitydepletionandflatsubstratesareabletoabolishtheobserved thisintegratedapproachwedemonstratedtheinterplaybetweencell anisotropic increase in LOX-1 diffusivity. In this context, a recent spreading/polarization,LOX-1dynamics/oligomerizationstate,and workontheCD36macrophagescavengerreceptordemonstratesthe LOX-1interactionswiththecytoskeletonandwiththeextracellular existenceofdifferentdiffusivebehaviors,suchasisotropicdiffusion environment. In particular, as schematized in Fig. 5, we identified andlineardiffusion,‘‘guided’’bycytoskeletonelements.Thelatter two distinct conditions: i) when placed in isotropic environments motion, interestingly, confers a higher effective diffusivity to the (cellsculturedonflatsurfaces)LOX-1isevenlysplitintoahomo- receptorandcorrelatestoitsfunctionalaggregationstate42. dimericandmonomericform,itishomogenouslydistributedwithin It is well known that LOX-1 homodimerization is required for themembranewhereinitdiffusesisotropically,and,ii)wheninan receptoractivationandsubsequentox-LDLinternalization14.Based anisotropicenvironment(polarizedcellsadheredonnanogratings) on this and on the results discussed above, the endothelial cells LOX-1showspreferentialaccumulationinregionsofhigheradhe- adhered on flat substrates can be considered more atherogenesis- sion (ridge) and is preferentially locked in its monomeric form pronethenendothelialcellsadheredonnanogratings(e.g.T2)where throughoutthemembrane.ThemonomericformofLOX-1displays LOX-1islockedinaninactiveform(Fig.6).Inourresults,cellswith higher diffusivity values that are dependent on contractility and similar LOX-1 expression levels yield remarkable differences in topography. It is worth mentioning that topography orientation LOX-1 aggregation/activation state as a function of the substrate drives the main orientation of the cytoskeleton components. This used.Overall,theseresultssuggestthatitispossibletoregulatethe inturnsuggeststhatsuchorderedcellularstructuresmayplayarole LOX-1oligomerizationstate(andthenitsdispositiontointernalize SCIENTIFICREPORTS |3:1141|DOI:10.1038/srep01141 5 www.nature.com/scientificreports atherosclerosis55.Basaloxidativestresscouldbemodulatedbychem- icalenvironmentbutalsobytheECMtopographyand,inparticular, ourresultsshowthatT2nanogratingisabletoreducetheendothelial celloxidativestress.Alongthisreasoning,thetwoidealconditions tested here (periodic grating vs smooth surface) may be related, respectively, to the non-atherosclerotic intima, where endothelial cellsareexposedtoanorderedmeshofcollagenfibers,andtothe aged/atherosclerotictissue,wherethesamecellsareinsteadexposed toacontinuousdepositionofamorphoussubstances,suchaselastin andcollagen56–58. Webelievethattheseresultsshouldbetakenintoaccountforthe rationalengineeringofstentsforcardiovascularsurgery.Amongthe drawbacks limiting their more widespread use is the long-term endothelial dysfunction and inability to adapt to growth58. Many studies demonstrate that topographical features modulate surface endothelialization and endothelial integration with fluxes37,59. Our results contribute to this picture by isolating and investigating the role of nanotopographical modulation on protein activity in endothelialdysfunctionandatherosclerosis. Methods Substratefabrication.Nanogratings(alternatinglinesofgroovesandridgeswith submicrometerlateraldimension)werefabricatedbythermalnanoimprint lithography(NIL)aspreviouslydescribed33.Copolymer2-norborneneethylene [cyclicolefincopolymer(COC)]foils(IBIDI.Martinsried,Germany)wasselectedas thermoplasticmaterialbecauseoffavorablebiocompatibilityandopticalproperties34. Theimprintingprocesscomprises5steps:(1)thesubstrateisplacedbetweenthe moldandaglasscoverslipinsidetheNILsystem;(2)thetemperatureisraisedto Figure5|ROSproductionindifferenttopographicalcondition. 150uC;(3)50-bar-pressureisappliedfor5min;(4)thesystemiscooledto70uC; Representativefluorescenceimagesofcellstreatedwithc-H DCFDAon (5)finally,thepressureisreleased.TheimprintedfoilsareremovedfromtheNIL 2 FLAT(a)andT2(b),respectively.Cellcontoursareshownforclarity. system,detachedfrommoldandthenattachedbyusingsiliconeglue(RS Components,Italy)tothebottomofhollowed35mmPetridishes.Weproduced Thewhitearrowindicatessubstratedirectionality.Scalebar10mm. nanogratingscharacterizedbyperiodsof1mm(T1),2mm(T2)and4mm(T4),and (c)NormalizedaverageROSconcentrationinHUVECsonFLATandT2. depthof350nm. 651cellswereanalyzed.Dataarereportedasmean6standarderrorof Beforeeachexperiment,thesubstratesweresterilizedinethanolfor15min,and 3experiments. thenwashedtwiceinPBSandinculturemedium. Cellculture,transfectionandtreatments.Low-passagehumanumbilicalvein ox-LDL)manipulatingthecellularenvironment.GenerationofROS endothelialcells(HUVECs)weregrowninM200mediumsupplementedwith2%v/v is inevitable for aerobic organisms54, but healthy cells maintain a fetalbovineserum(FBS),1mg/mlhydrocortisone,10ng/mlhumanepidermalgrowth factor(EGF),3ng/mlbasicfibroblastgrowthfactor(FGF),and10mg/mlheparin controlled rate of ROS levels. An increase can be correlated to an alterationofmembranelipids,proteins,andnucleicacidsandisalso (allreagentsfromInvitrogen,Carlsbad,USA)andmaintainedat37uCand5%CO2. Cellswereseededatadensityof23104cells/cm2andculturemediumwasreplaced associated with a wide variety of pathological events including 24hoursafterseedingtoremoveresiduals.TheGFP-taggedvariantofLOX-1was Figure6|Pro-atherogenicandpro-physiologicaltopographicalenvironments. (a)HUVECsonflatsurfacesadhereinanotpolarizedway.Inthis conditionLOX-1hasadimericformanddiffusesmoreslowlyinmembrane.Itisactiveinox-LDLbindingandinternalization,disposingHUVECsto aproatherogeniccondition.(b)HUVECsonnanogratingsadhereinapolarizedway,showingastretchedandalignedmorphology.LOX-1diffuses fasterandinacontractility-dependentway;furthermoreitisblockedinamonomericformthatisconsideredunabletobindandinternalizeox-LDL, protectingHUVECsagainstox-LDLinducedatherogenesis. SCIENTIFICREPORTS |3:1141|DOI:10.1038/srep01141 6 www.nature.com/scientificreports transientlytransfectedusingelectroporation(Neon,DigitalBio),accordingto calibratethelaserpowerandscanningconditionsrequiredforthemeasurementof manufacturer’sinstructions. amonomericproteindiffusingwithinmembranes,wemeasuredthebrightnessof Formicrotubuleandactin-filamentdisassemblyexperiments,cellsweretreated HUVECstransientlyexpressingthenon-aggregatingfarnesyl-EGFPadduct with50nMnocodazole(NCZ)and1mMcytochalasinD,respectively,for15min (EGFP-F).TheseconditionswerethenusedfortheLOX-1-GFPexperiments. beforewashingwithfreshmediumandstartingthemeasurements.Forcontractility inhibitionexperiments,cellsweretreatedfor30minwith50mMblebbistatinbefore Statisticalanalyses.Allthevaluesreportedaremean6standarderrorofatleast3 washingwithfreshmediumandstartingthemeasurements(reagentsfrom independentexperiments.Inordertotestiftheobservedpopulationofvaluesfor Sigma-Aldrich,USA). eachmeasuredparameterbelongstothesamedistributionweperformeda Mann–WhitneyUtestusingtheGraphPadPrism(GraphPadSoftware)commercial Morphologyanalysis.ImagesofthebasalmembraneacquiredfortICSanalysis(see software.Werejectthenullhypothesisifp,0.05.Inthesecases,‘***’,‘**’,and‘*’ below)werealsousedformorphologyanalysis.Cellareaandorientationanglewere indicatep,0.001,p,0.01andp,0.05,respectively. obtainedusingthe‘‘Area’’and‘‘Feret’sdiameter’’toolsofImageJ,respectively. AdhesionarearesultswerenormalizedtotheFLATcorrespondingvalues.The substratedirectionalityanglewassubtractedfromthecellorientationangle:therange 1. Ross,R.Atherosclerosis—AnInflammatoryDisease.NewEnglandJournalof ofpossiblecell/substratealignmentangles‘Q’variedbetween0uand90u.The‘‘Feret’s Medicine340,115–126(1999). diameter’’toolalsoprovidesthemajor(‘‘Feret’’)andminor(‘‘MinFeret’’)cellaxis 2. Hahn,C.&Schwartz,M.A.Mechanotransductioninvascularphysiologyand lengths:thesevalueswereusedtoquantifythecellelongationfactor‘L’,definedas atherogenesis.Naturereviews.Molecularcellbiology10,53–62(2009). L5[(Feret/MinFeret)21]. 3. Glass,C.K.&Witztum,J.L.Atherosclerosis.Cell104,503–516(2001). 4. Sawamura,T.etal.Anendothelialreceptorforoxidizedlow-densitylipoprotein. Reactive-Oxygen-Specie(ROS)detection.HUVECsweretreatedwith1mM Nature386,73–7(1997). carboxy-H2DCFDA(5-(and-6)-carboxy-29,79-dichlorodihydrofluoresceindiacetate 5. Cheng,C.etal.TheRoleofShearStressinAtherosclerosis:ActionThroughGene )solution(MolecularProbes,Milan,Italy)at37uCwhileprotectedfromlight.After ExpressionandInflammation?CellBiochemistryandBiophysics41,279–294 30minthesampleswerewashedinPBSandcellculturemediumwasadded.Ten (2004). imageswereacquiredinbrightfieldandfluorescencebyusingaNikonTi-eclipse 6. Mehta,J.L.etal.DeletionofLOX-1reducesatherogenesisinLDLRknockout microscopeequippedwithanimmersion-oil40xobjective(NA1.3).Tert-butyl micefedhighcholesteroldiet.Circulationresearch100,1634–42(2007). hydroperoxide(TBHP,Invitrogen,Milan,Italy)wasusedforthepositivecontrol35. 7. Inoue,K.,Arai,Y.,Kurihara,H.,Kita,T.&Sawamura,T.Overexpressionof Thefluorescencebackgroundwassubtractedfromeachimage.Atleast100cellswere lectin-likeoxidizedlow-densitylipoproteinreceptor-1inducesintramyocardial analysedperexperiment.Singlecellprofilesweremanuallytracedbyusingthe vasculopathyinapolipoproteinE-nullmice.Circulationresearch97,176–84 bright-fieldimagesandtheaveragefluorescenceforeachROIwasthencalculated. (2005). ResultswerenormalizedtothefluorescencevaluemeasuredforFLAT. 8. Hermonat,P.L.,Zhu,H.,Cao,M.&Mehta,J.L.LOX-1Transcription. Cardiovasculardrugsandtherapy/sponsoredbytheInternationalSocietyof TemporalImageCorrelationSpectroscopy(tICS)andpairCorrelationFunction CardiovascularPharmacotherapy25,393–400(2011). (pCF)analysis.tICSandpCFmeasurementswerecarriedoutwithaLeicaAF6000 9. Kume,N.etal.Inducibleexpressionoflectin-likeoxidizedLDLreceptor-1in fluorescencemicroscopeintotalinternalreflectionmode(TIRFM),witha vascularendothelialcells.Circulationresearch83,322–7(1998). penetrationdepthoftheevanescentwaveoflessthan100nm.Imageswereacquired 10.Li,D.Y.,Zhang,Y.C.,Philips,M.I.,Sawamura,T.&Mehta,J.L.Upregulationof byilluminatingthesamplewitha488nmlaserwhileusinga100x(NA1.47) oil-immersionobjectivetocollectfluorescenceandacooledEM-CCDHamamatsu endothelialreceptorforoxidizedlow-densitylipoprotein(LOX-1)incultured C1900-13forrecording.Foreachcellbetween800to2000frameswerecollectedwith humancoronaryarteryendothelialcellsbyangiotensinIItype1receptor afrequencyof8to12Hz.tICSwasusedtoquantifythediffusioncoefficient(D, activation.Circulationresearch84,1043–9(1999). mm2/s)oftheproteinineachpixelofanimageseries.Foreachcell,membranepixels 11.Li,L.,Roumeliotis,N.,Sawamura,T.&Renier,G.C-reactiveproteinenhances weremanuallyselectedandautocorrelationfunctionswerecalculatedusing LOX-1expressioninhumanaorticendothelialcells:relevanceofLOX-1to previouslypublishedMatlabcode31,whichwerethenfittedintheMatlab C-reactiveprotein-inducedendothelialdysfunction.Circulationresearch95, environment.ThepaircorrelationfunctionpCF(n)isacross-correlationfunctionof 877–83(2004). thefluorescencetime-traceattwodifferentpointsthatdifferbyadistanceof‘n’ 12.Morawietz,H.etal.AngiotensinIIinducesLOX-1,thehumanendothelial pixels30.ThepCF(n)functionatagivenpixeldistance‘n’isgivenbythefollowing receptorforoxidizedlow-densitylipoprotein.Circulation100,899–902(1999). expression: 13.Nagase,M.etal.Redox-sensitiveregulationoflox-1geneexpressioninvascular hFðt,0Þ:Fðtzt,drÞi endothelium.Biochemicalandbiophysicalresearchcommunications281, pCFðnÞ~Gðt,drÞ~ {1 ð1Þ 720–5(2001). hFðt,0ÞihFðt,drÞi 14.Xie,Q.etal.Humanlectin-likeoxidizedlow-densitylipoproteinreceptor-1 functionsasadimerinlivingcells.DNAandcellbiology23,111–7(2004). whereF(t,n)isthefluorescenceintensityattimetatpixelnalongthescanline,tisthe 15.Matsunaga,S.etal.Lectin-likeoxidizedlow-densitylipoproteinreceptor(LOX-1) timeshiftanddristhedistancebetweenpixels.Inthepresentexperimentsthe functionsasanoligomerandoligomerizationisdependentonreceptordensity. distancebetweenadjacentpixelsis228nm.WeusedthemaximumofthepCF(n)to Experimentalcellresearch313,1203–14(2007). determinetheaveragetimeamoleculetakestotravelagivendistance.Thistimeis 16.Ohki,I.etal.Surfaceplasmonresonancestudyonfunctionalsignificanceof differentifthereisanobstacleorbarrieralongthelineofmeasurement.Herewe typicallycorrelatepairsofpointsatadistanceof1mmbothparallelandperpendicular clusteredorganizationoflectin-likeoxidizedLDLreceptor(LOX-1).Biochimica tothesubstratedirectionality.Bycontrast,inthecaseoftheFLATsubstrate,thesetwo etbiophysicaacta1814,345–54(2011). directionsarearbitrarilychosenwithrespecttothecellmorphology.ThepCFpeak 17.Chen,M.etal.IncreasedExpressionofLectinlikeOxidizedLowDensity positionsandheightsareestimatedbyinterpolatingthecorrelationcurvewitha LipoproteinReceptor-1inInitialAtheroscleroticLesionsofWatanabeHeritable 4-degreepolynomialfunction.Theobtainedvaluesarethenusedforthecalculation HyperlipidemicRabbits.ArteriosclerThrombVascBiol20,1107–1115(2000). ofthemobilityratioR,definedas: 18.Kataoka,H.etal.Expressionoflectinlikeoxidizedlow-densitylipoprotein R~t\ ð2Þ 19.Hreacehpnt,oCr-.1&inSchhuwmaartnz,aMth.erAo.sMcleercohtaicnloetsriaonnssd.uCcitricounlaitniovnas9c9u,la3r11p0h–y7si(o1lo9g9y9)a.nd tE atherogenesis.Naturereviews.Molecularcellbiology10,53–62(2009). wheret\andtEindicatethetimepositionofthepCF(n)peakinthedirection 20.Noma,K.,Kihara,Y.&Higashi,Y.StrikingcrosstalkofROCKsignalingwith perpendicularandparalleltothesubstratedirectionality,respectively.ThusR51 endothelialfunction.Journalofcardiology60,1–6(2012). indicatesthatmoleculesneedthesametimetotravelinthetwochosendirections(as 21.Zaragoza,C.,Ma´rquez,S.&Saura,M.Endothelialmechanosensorsofshearstress expectedforisotropicdiffusion).Instead,R,1,indicatesthatmoleculesmovefaster asregulatorsofatherogenesis.Currentopinioninlipidology23,446–52(2012). inthedirectionparalleltothesubstratedirectionality. 22.Miao,H.etal.Effectsofflowpatternsonthelocalizationandexpressionof VE-cadherinatvascularendothelialcelljunctions:invivoandinvitro NumberandBrightness(N&B)analysis.TheN&Bexperimentswerecarriedout investigations.Journalofvascularresearch42,77–89(2005). withanOlympusFluoView1000-ASW-2.0confocallaserscanningmicroscopeusing 23.Orr,A.W.etal.ThesubendothelialextracellularmatrixmodulatesNF-kappaB a63x(NA1.4)planApooil-immersionobjective.Thepinholewassetto1AiryUnit. activationbyflow:apotentialroleinatherosclerosis.TheJournalofcellbiology Wesetthemicroscopetothepseudo-photoncountingmodeofdataacquisition.In 169,191–202(2005). thismode,theparametersneededforN&Banalysisarethedetectoroffset,thefactorS 24.Hahn,C.,Orr,A.W.,Sanders,J.M.,Jhaveri,K.A.&Schwartz,M.A.The thatconvertsphotoncountstodigitallevelsandthereadoutvariances2.Forthe subendothelialextracellularmatrixmodulatesJNKactivationbyflow.Circulation 0 analysisofthiswork,thevaluesoftheseparameterswerecalibratedaccordingtothe research104,995–1003(2009). principlesdescribedinRef.36.WeobtainedandusedS53.5,s250,andoffset50 25.Funk,S.D.etal.Matrix-specificproteinkinaseAsignalingregulatesp21-activated 0 forallexperiments.2563256imagesat12bitswerecollectedwithapixeldwelltime kinaseactivationbyflowinendothelialcells.Circulationresearch106, of40ms.Atimeseriesof150frameswithnoprogrammeddelaybetweenimageswas 1394–403(2010). usedtoreducestatisticalerror.Lowlaserpowerwaschosentoavoidphotobleaching. 26.Ferrari,A.etal.Nanotopographiccontrolofneuronalpolarity.Nanoletters11, TheN&BanalysiswasperformedusingtheSimFCSsoftware(www.lfd.uci.edu).To 505–11(2011). SCIENTIFICREPORTS |3:1141|DOI:10.1038/srep01141 7 www.nature.com/scientificreports 27.Chen,W.etal.NanotopographyInfluencesAdhesion,Spreading,and 48.Yoshida,H.,Kondratenko,N.,Green,S.,Steinberg,D.&Quehenberger,O. Self-RenewalofHumanEmbryonicStemCells.ACSnano(2012).doi:10.1021/ Identificationofthelectin-likereceptorforoxidizedlow-densitylipoproteinin nn3004923. humanmacrophagesanditspotentialroleasascavengerreceptor. 28.Schvartzman,M.etal.Nanolithographiccontrolofthespatialorganizationof TheBiochemicaljournal334(Pt1),9–13(1998). cellularadhesionreceptorsatthesingle-moleculelevel.Nanoletters11,1306–12 49.Chen,M.etal.Activation-dependentsurfaceexpressionofLOX-1inhuman (2011). platelets.Biochemicalandbiophysicalresearchcommunications282,153–8 29.Chen,M.&Sawamura,T.Essentialroleofcytoplasmicsequencesforcell-surface (2001). sortingofthelectin-likeoxidizedLDLreceptor-1(LOX-1).Journalofmolecular 50.Hu,C.etal.LOX-1deletiondecreasescollagenaccumulationinatherosclerotic andcellularcardiology39,553–61(2005). plaqueinlow-densitylipoproteinreceptorknockoutmicefedahigh-cholesterol 30.Digman,M.A.&Gratton,E.Imagingbarrierstodiffusionbypaircorrelation diet.Cardiovascularresearch79,287–93(2008). functions.Biophysicaljournal97,665–73(2009). 51.Morawietz,H.LOX-1andatherosclerosis:proofofconceptinLOX-1-knockout 31.Kolin,D.L.&Wiseman,P.W.Advancesinimagecorrelationspectroscopy: mice.Circulationresearch100,1534–6(2007). measuringnumberdensities,aggregationstates,anddynamicsoffluorescently 52.Ishigaki,Y.etal.Impactofplasmaoxidizedlow-densitylipoproteinremovalon labeledmacromoleculesincells.Cellbiochemistryandbiophysics49,141–64 atherosclerosis.Circulation118,75–83(2008). (2007). 53.Stephen,S.L.etal.Scavengerreceptorsandtheirpotentialastherapeutictargetsin 32.Digman,M.A.,Dalal,R.,Horwitz,A.F.&Gratton,E.Mappingthenumberof thetreatmentofcardiovasculardisease.Internationaljournalofhypertension moleculesandbrightnessinthelaserscanningmicroscope.Biophysicaljournal 2010,646929(2010). 94,2320–32(2008). 54.Batandier,C.,Fontaine,E.,Ke´riel,C.&Leverve,X.M.Determinationof 33.Meucci,S.,Tonazzini,I.,Beltram,F.&Cecchini,M.Biocompatiblenoisy mitochondrialreactiveoxygenspecies:methodologicalaspects.Journalofcellular nanotopographieswithspecificdirectionalityforcontrolledanisotropiccell andmolecularmedicine6,175–87(2002). cultures.SoftMatter8,1109–1119(2012). 55.Heller,F.R.,Descamps,O.&Hondekijn,J.C.LDLoxidation:therapeutic 34.Ferrari,A.etal.Neuronalpolarityselectionbytopography-inducedfocal perspectives.Atherosclerosis137Suppl,S25–31(1998). adhesioncontrol.Biomaterials31,4682–94(2010). 56.Tanimura,A.,McGregor,D.H.&Anderson,H.C.Calcificationin 35.Diaz,G.,Liu,S.,Isola,R.,Diana,A.&Falchi,A.M.Mitochondriallocalizationof atherosclerosis.I.Humanstudies.Journalofexperimentalpathology2,261–73 reactiveoxygenspeciesbydihydrofluoresceinprobes.Histochemistryandcell (1986). biology120,319–25(2003). 57.Weber,G.&Tosi,P.Observationswiththescanningelectronmicroscopeonthe 36.Ossato,G.etal.Atwo-steppathtoinclusionformationofhuntingtinpeptides developmentofcholesterolaorticatherosclerosisintheguinea-pig.Virchows revealedbynumberandbrightnessanalysis.Biophysicaljournal98,3078–85 ArchivAPathologischeAnatomie353,325–332(1971). (2010). 58.Guagliumi,G.etal.Examinationoftheinvivomechanismsoflatedrug-eluting 37.Franco,D.etal.Controlofinitialendothelialspreadingbytopographicactivation stentthrombosis:findingsfromopticalcoherencetomographyandintravascular offocaladhesionkinase.SoftMatter(2011).doi:10.1039/c1sm05191a. ultrasoundimaging.JACC.Cardiovascularinterventions5,12–20(2012). 38.Digman,M.A.&Gratton,E.Lessonsinfluctuationcorrelationspectroscopy. 59.Morgan,J.T.etal.Integrationofbasaltopographiccuesandapicalshearstressin Annualreviewofphysicalchemistry62,645–68(2011). vascularendothelialcells.Biomaterials33,4126–35(2012). 39.Storti,B.,Bizzarri,R.,Cardarelli,F.&Beltram,F.Intactmicrotubulespreserve transientreceptorpotentialvanilloid1(TRPV1)functionalitythroughreceptor binding.TheJournalofbiologicalchemistry287,7803–11(2012). Acknowledgments 40.Nohe,A.,Keating,E.,Fivaz,M.,vanderGoot,F.G.&Petersen,N.O.Dynamicsof GPI-anchoredproteinsonthesurfaceoflivingcells.Nanomedicine: TheauthorsthankProf.FabioRecchiaandDr.VincezoLionettiforfruitfuldiscussions. nanotechnology,biology,andmedicine2,1–7(2006). ThisworkwassupportedinpartbytheEuropeanUnionSeventhFrameworkProgramme 41.Lenne,P.-F.etal.Dynamicmolecularconfinementintheplasmamembraneby (FP7/2007–2013)undergrantagreementno.NMP4-LA-2009-229289NanoIIandgrant microdomainsandthecytoskeletonmeshwork.TheEMBOjournal25,3245–56 agreementno.NMP3-SL-2009-229294NanoCARD. (2006). 42.Jaqaman,K.etal.CytoskeletalControlofCD36DiffusionPromotesItsReceptor Authorcontributions andSignalingFunction.Cell146,593–606(2011). MCandRBconceivedtheexperiments;EJfabricatedthenanogratings;EJ,CdR,andFC 43.Hinde,E.&Cardarelli,F.Measuringtheflowofmoleculesincells.Biophysical carriedouttheexperiments;MC,RB,EJ,CdR,FC,andFBanalyzedthedata;alltheauthors Reviews3,119–129(2011). wroteandreviewedthemanuscript. 44.Mehta,J.L.,Chen,J.,Hermonat,P.L.,Romeo,F.&Novelli,G.Lectin-like, oxidizedlow-densitylipoproteinreceptor-1(LOX-1):acriticalplayerinthe developmentofatherosclerosisandrelateddisorders.Cardiovascularresearch69, Additionalinformation 36–45(2006). Supplementaryinformationaccompaniesthispaperathttp://www.nature.com/ 45.Lu,J.,Mitra,S.,Wang,X.,Khaidakov,M.&Mehta,J.L.Oxidativestressand scientificreports lectin-likeox-LDL-receptorLOX-1inatherogenesisandtumorigenesis. Competingfinancialinterests:Theauthorsdeclarenocompetingfinancialinterests. Antioxidants&redoxsignaling15,2301–33(2011). 46.Berliner,J.A.etal.Atherosclerosis:BasicMechanisms:Oxidation,Inflammation, License:ThisworkislicensedunderaCreativeCommons andGenetics.Circulation91,2488–2496(1995). Attribution-NonCommercial-NoDerivs3.0UnportedLicense.Toviewacopyofthis 47.Draude,G.,Hrboticky,N.&Lorenz,R.L.Theexpressionofthelectin-like license,visithttp://creativecommons.org/licenses/by-nc-nd/3.0/ oxidizedlow-densitylipoproteinreceptor(LOX-1)onhumanvascularsmooth Howtocitethisarticle:DiRienzo,C.etal.UnveilingLOX-1receptorinterplaywith musclecellsandmonocytesanditsdown-regulationbylovastatin.Biochemical nanotopography:mechanotransductionandatherosclerosisonset.Sci.Rep.3,1141; pharmacology57,383–6(1999). DOI:10.1038/srep01141(2013). SCIENTIFICREPORTS |3:1141|DOI:10.1038/srep01141 8