ebook img

univerza v ljubljani pedago狸a fakulteta diplomsko delo anita mandelj PDF

69 Pages·2016·1.73 MB·Slovenian
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview univerza v ljubljani pedago狸a fakulteta diplomsko delo anita mandelj

UNIVERZA V LJUBLJANI PEDAGO(cid:146)KA FAKULTETA DIPLOMSKO DELO ANITA MANDELJ UNIVERZA V LJUBLJANI PEDAGO(cid:146)KA FAKULTETA (cid:146)tudijski program: Matematika in ra£unalni†tvo Ravninske mre”e in posplo†itve Pickovega izreka DIPLOMSKO DELO Mentor: prof. dr. Matija Cencelj Kandidatka: Anita Mandelj Somentor: asist. dr. Bo†tjan Gabrov†ek Ljubljana, junij, 2016 Zahvala Zahvaljujem se mentorju dr. Matiji Cenclju za potrpe”jivost, strokovno vodenje in vso pomo£ pri nastajanju diploskega dela. Tudi somentorju dr. Bo†tjanu Gabrov†ku hvala za nasvete, predloge in pomo£ pri programiranju. Zahvaljujemsestar†emaSilviinIvanu, sestriTini, inMihuzarazumevanje, podporo ter spodbudo. Hvala tudi vsem ostalim, ki so verjeli vame. Povzetek Obravnavamo enakomerno porazdeljene diskretne mno”ice to£k v ravnini, ki jim pravimo mre”e. Najbolj znane in preu£evane so kvadratne mre”e, poseben predstavnik takih mre” je mre”a vseh to£k s celo†tevilskimi koordinatami v ravnini R×R. Obravnavamo tudi pravokotne mre”e, paralelogramske mre”e in trikotni†ke mre”e. Z raziskovanjem kro”nic, postavljenih na razli£nih mre”ah, ugotavljamo povezavo med †tevilom mre”nih to£k znotraj in na kro”nici ter †tevilom π. Ugotavljanje zgornje in spodnje meje za napako, ki pri tem nastane, imenujemo Gau(cid:255)ov problem s kro”nicami, saj je prav on prvi raziskoval mre”e in kro”nice na njej. Poka”emo tudi zgornjo mejo za najkraj†o razdaljo med dvema mre”nima to£kama. S pomo£jo izreka iz teorije †tevil pove”emo †tevilo mre”nih to£k v in na kro”nici z Leibnizevo vrsto. Obravnavamo vpra†anje posplo†itve Pickovega izreka na splo†nej†e mre”e v ravnini in s protiprimerom poka”emo, da izrek ne velja za heksagonalne mre”e. Posebej predstavimo dva programa: program za ra£unanje †tevila mre”nih to£k znotraj in na robu kro”nice, ki obenem izra£una tudi pribli”ek za †tevilo π ter napako, ki pri tem nastane ter program za izra£un plo†£ine ve£kotnika po Pickovem izreku. Klju£ne besede: mre”e v ravnini, enotske kvadratne mre”e, Gau(cid:255)ov problem s kro”nicami, Leibnizeva vrsta, Pickov izrek, kot vidljivosti Klasi(cid:28)kacija AMS MSC(2010): 52C05 I II Abstract Plane Lattices and Generalizations of Pick’s Theorem A uniformly distributed discrete set of points in the plane called lattices are considered. The most well-known and studied are square lattices, a special representative of such lattices is the lattice of all points with integer coe(cid:30)cients in the plane R × R. We are dealing with rectangular lattices, parallelogram lattices and triangle lattices. By exploring the circles, positioned on di(cid:27)erent lattices, we establish a link between the number of lattice points inside and on the edge of a circle and the number π. Determining the upper and lower bound of the error occurring, is called Gauss circle problem, since it was him who (cid:28)rst explored lattices and circles on it. We also show the upper bound of the shortest distance between two lattice points. With the help of a theorem of number theory, we connect the number of lattice points inside and on the edge of a circle with Leibniz series. Generalizations of Pick’s theorem on general lattices in the plane are considered and with a counterexample it is shown that the theorem does not apply to the hexagonal lattices. Separately we introduce two programs: a program for calculating the number of lattice points inside and on the edge of a circle, which also calculates an approximation for the number π and the error occurring, and a program for calculating the area of a polygon with Pick’s theorem. Keywords: plane lattices, unit square lattices, Gau(cid:255)’s circle problem, Leibniz series, Pick’s theorem, visibility angle Classi(cid:28)cation AMS MSC(2010): 52C05 III IV Kazalo 1 Uvod 1 2 Mre”e v ravnini 2 2.1 Enotska kvadratna mre”a . . . . . . . . . . . . . . . . . . . . . . . . . 4 2.2 Enotska pravokotna mre”a . . . . . . . . . . . . . . . . . . . . . . . . 11 2.3 Enotska paralelogramska mre”a . . . . . . . . . . . . . . . . . . . . . 13 2.4 Enotska rombna mre”a . . . . . . . . . . . . . . . . . . . . . . . . . . 17 2.5 Leibnizeva vrsta . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 3 Pickov izrek 26 3.1 Dokaz Pickovega izreka . . . . . . . . . . . . . . . . . . . . . . . . . . 26 3.2 Prilagojen Pickov izrek za ve£kotnike s k luknjami . . . . . . . . . . . 32 4 Vidljivost in Pickov izrek 34 4.1 Splo†nej†e mre”e in Pickov izrek . . . . . . . . . . . . . . . . . . . . . 39 5 Ra£unalni†ka programa 42 5.1 Opis programa Gau(cid:255)ov problem s kro”nicami . . . . . . . . . . . . . 42 5.2 Koda programa Gau(cid:255)ov problem s kro”nicami . . . . . . . . . . . . . 43 5.3 Opis programa Pickov izrek . . . . . . . . . . . . . . . . . . . . . . . 47 5.4 Koda programa Pickov izrek . . . . . . . . . . . . . . . . . . . . . . . 48 6 Zaklju£ek 54 7 Viri in literatura 55 V

Description:
PEDAGO狸A FAKULTETA. DIPLOMSKO DELO function rob(ogl:Number, to:Array, t0:Number, t1:Number):Boolean { var i:Number; for (i=0; i
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.