ebook img

University of Groningen A Design of Experiment approach to predict product and process PDF

15 Pages·2016·3.97 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview University of Groningen A Design of Experiment approach to predict product and process

University of Groningen A Design of Experiment approach to predict product and process parameters for a spray dried influenza vaccine Kanojia, Gaurav; Willems, Geert-jan; Frijlink, Henderik W.; Kesrten, Gideon; Soema, Peter; Amorij, Jean-Pierre Published in: International Journal of Pharmaceutics DOI: 10.1016/j.ijpharm.2016.08.022 IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below. Document Version Publisher's PDF, also known as Version of record Publication date: 2016 Link to publication in University of Groningen/UMCG research database Citation for published version (APA): Kanojia, G., Willems, G., Frijlink, H. W., Kesrten, G., Soema, P., & Amorij, J-P. (2016). A Design of Experiment approach to predict product and process parameters for a spray dried influenza vaccine. International Journal of Pharmaceutics, 511(2), 1098-1111. https://doi.org/10.1016/j.ijpharm.2016.08.022 Copyright Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons). The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license. More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne- amendment. Take-down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum. InternationalJournalofPharmaceutics511(2016)1098–1111 ContentslistsavailableatScienceDirect International Journal of Pharmaceutics journal homepage: www.elsevier.com/locate/ijpharm A Design of Experiment approach to predict product and process parameters for a spray dried influenza vaccine Gaurav Kanojiaa,b,1,Geert-Jan Willemsa,Henderik W. Frijlinkb,Gideon F.A. Kerstena,c, Peter C . Soemaa,*,2, Jean-Pierr e Amorija,2 ,3 aIntravacc(InstituteforTranslationalVaccinology),AntonievanLeeuwenhoeklaan9,3720ALBilthoven,TheNetherlands bUniversity ofGroni nge n,Departmen tofPharmace uticalTe chno logyandBiopharm ac y,An ton iusDeusin glaan 1,9713AVGroningen,TheNetherlands cDivisionof D rugDelivery Technology, Le idenAcademicC entreforD rugR esearch,Leide nUnivers ity,Einsteinw eg 55,2 33 3CCLeiden ,The Netherlands A RTICL E I NFO AB STRACT Articlehistory: Receiv ed4May2016 Spraydriedvaccineformulationsmightbeanalternativetotraditionallyophilizedvaccines.Comparedto Receivedinrevisedform28July2016 lyophilization, spray drying is a fast and cheap process extensively used for drying biologicals. The Accepted10August2016 current study provides an approach that utilizes Design of Experiments for spray drying process to Available on line12 August2016 stabilize who le inactiv ate d influenz a vi rus (WI V) vacc ine . The approa ch includ ed sys tematica lly screeningandoptimizingthespraydryingprocessvariables,determiningthedesiredprocessparameters Keywords: andpredic ting productqu alit ypara meters .Thepro cesspara metersinleta irte mperat ure,noz zlegasflow Spraydrying rate andfeed flowrate andth eireffecto nW IVvacci nepowder chara cte risticssucha sparti cle size, Proces s optimization resid ual moist urec onte nt(R MC) andpo wd eryie ldwere investig ated.Vaccinep owde rs withab road Process parameters rangeof physicalc haracter istics(R MC 1.2–4.9% ,parti clesiz e2.4–8.5mm andpow deryield4 2–82 % )were QNuozazliltey gbays dfleoswignrate obtain ed . WIV s howed no sig nifica nt loss i n antige nici ty as r evea led by hem agglu tination test. Furthermore,descriptivemodelsgeneratedbyDoEsoftwarecouldbeusedtodetermineandselect(set) spray drying process pa rameter . This was u sed to genera te a drie d W IV powder w ith predefi ned (predicted)characteristics.Moreover,thespraydriedvaccinepowdersretainedtheirantigenicstability even after storage for 3 months at 60 (cid:1)C. T he ap proach used her e enable d the generati on of a thermostable, antigenic WIV vaccine powder with desired physical characteristics that could be potentiallyusedforpulmonaryadministration. ã2016Th eAut hor s.Published byElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense (http://creativecommons.org/licenses/by/4.0/). 1.Introduction Moreover,drypowdervaccineformulationshavethepotentialto be used for alternative vaccine delivery routes, such as the Manyexistingvaccinesarecurrentlydistributedandadminis- intranasal, pulmonary or oralroutes (Dicko et al., 2000; Giudice teredina liquidfo rm.Liqui dva ccinesnee dtobestore dat 2–8(cid:1)Cto andCampb ell,2006;T on nise tal.,20 12;Am or ijet al.,20 10). remain stable. This dependency on a steady cold chain makes An established method to produce dried biologics is spray vaccine distribution complex and expensive, especially in devel- drying. Spray drying has the advantage over traditional drying oping countries (Wang,1999). Dried vaccines can overcome this techniques(suchasfreeze-drying)thatitisrelativelyfastandhas requir ementfor acoldc hain,a sthey possessa lon gershelfli feat lower oper ating cos ts. Moreover, it re su lts in a disp ersi ble fine elevatedtemperatures(Geeraedtsetal.,2010;Smithetal.,2015). powder compared to a dry cake as obtained by freeze-drying, which may enable further powder handling and usage for alternativedeliveryroutes. Powders with different physiochemical and morphological qualAitbybrteavrgiaettiopnrso:d QucbtDp, roqfiulaeli;tWy IbVy, wdehsoilgeni;n aDcotEiv, aDteedsiignnfl uoefn zEaxpveirruims;eXnRtsD; ,QX-TrTaPy, properties c an be o btained b y spray drying. Th e pow der properties dependontheappliedprocessparametersandcompositionofthe diffractometry; DSC, differential scanning calorimetry; RMC, residual moisture content. liquid feed (Crowe et al., 1994; Jain and Roy, 2008). The spray * Correspondingauthor. drying process consists of nebulization of a liquid product, E-mailaddress: [email protected](P.C. Soema). genera ting aero sols, int o a heated gase ou s drying medium, 1 Firstauthor. 2 Shar edlastauthors. resulting in a dry powder (Fig. 1). The large surface area of the 3 Current add ress: Virtuvax BV, The Netherlands. aerosols results in a relative rapid drying process. Depending on http://dx.doi.org/10.1016/j.ijpharm.2016.08.022 0378-5173/ã2016TheAuthors.PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense(http://creativecommons.org/licenses/by/4.0/). G.Kanojiaetal./InternationalJournalofPharmaceutics511(2016)1098–1111 1099 Fig.1. Spraydryingprocess:Aliquidinfluenzavaccine(wholeinactivatedinfluenzavirusvaccine)wasspraydriedwithtrehaloseasanexcipienttoproduceapowdervaccine. Invest igated proces s parame te rs are indicated in red. Aspirat or capacity was kept fixed at 22 m 3n/h (high est as pirat or setting po ssi ble). the size of the spray drierand airflowrate, the drying may take requiresalargenumberofexperimentsandinteractionsbetween betw een 0 .2–3 0s (A non., 1999 ). Duri ng dr ying , the p rote in in paramet er sare frequent ly missed.ADes ign ofExperimen ts(DoE) evaporating droplets may experience reversible or irreversible approachcanbeusedinsteadinordertosystematicallyscreenand denaturation. This could be due to the loss or weakening of optimizeprocesses.DoEisastructuredapproachthatcanbeused hydrogen bonds and simultaneous increase in hydrophobic toidentifycriticalandnon-criticalparameters,andtheirrespective interactionsduringevaporationofwater.However,theself-cooling interactions,ofaproductionprocess.Moreover,itcanbeusedto effectofdropletsduetowaterevaporationpreventsthetempera- quantifytheimpactofrawmaterialsandprocessparameterson ture increase of the droplet surface above the wet bulb theproductcharacteristicsandquality(Cooketal.,2013).Several temperature (temperature of drying aerosols achieved through studieshaveemployedaDoEapproachtoinvestigateandoptimize evaporationcooling)(Katja,2011).Thus,spraydryingmaybean thespraydryingprocessofproteins(Prinnetal.,2002;Maltesen appropriate procedure for drying thermolabile vaccines and has et al., 2008) and liposomal adjuvants (Ingvarsson et al., 2013). beenusedtoproduceexperimentaldrypowdervaccinesagainst However,thepotentialofutilizingDoEforproducingspray-dried meas les(L in etal.,201 1;Ohtakeeta l.,2 010),infl uenza(Lo valenti powderv acci neshasn ot beenexp lored so far. et al., 2016; Saluja et al., 2010; Scherliess et al., 2014; Sou et al., Tomaintainthestructuralintegrityduringandafterthedrying 2015),tuberculosis(Wongetal.,2007)andhepatitisB(Chenetal., process, biological products such as proteins or vaccines often 2010). Moreover, dry powdered measles vaccine has showed requireexcipientsthatactasstabilizersintheirformulation.The promising results in phase 1 clinical trials (MVDP author group sugar trehalose is an excipient commonly used for stabilizing etal.,2014).Therefore,spraydryingmightbeasuitablealternative vaccines, due to its good protein-stabilizing characteristics methodtoobtaindrypowdersofavarietyofvaccines(Amorijetal., (Geeraedtsetal.,2010;Ogainetal.,2011).Includingtrehalosein 2008). the vaccine formulations for spray drying might therefore be Thespray-dryingprocessusedtoproducethesepowderswith essential to obtain a stable vaccine product after spray drying. desired product cha racteris tics is u sually o ptimiz ed by a one- Previousl y,s praydr yi ngofin fluenza vaccines hasb eende scribed factor-a t-a-time (OFAT) approa ch, where the effect of pr ocess using vario us sug ars, M aa et al. (Ma a et al., 200 4) we re first to parametersontheproductareassessedinalinearfashion,one-at- describetheuseoftrehalose,Souetal.(2015)combinedtrehalose a-time. This consumes a lot of time and resources. Moreover, it with leucine, whereas Scherliess et al. (2014) showed the 1100 G.Kanojiaetal./InternationalJournalofPharmaceutics511(2016)1098–1111 superiority of trehalose over mannitol. Audouy et al. (2011) and Nitrogen being inert in nature was preferred to avert any Salujaetal.(2010)describedtheuseofthespraydryingprocess unwantedreactionthatmightoccurinthepresenceofairasdrying withi nul in asstab ilizer. medium.A two-wa yno zzlew ithor ifi ced iameter of 0.7 m mwas The goal of this study was to investigate the use of a DoE used in a co-current mode with nitrogen as atomizing gas. The approachtosystematicallyscreenandoptimizethespraydrying nitrogen pressure was set constant at 5bar. The spray drying process p ara meters (inlet a ir tem pera ture, nozz le g as flo w rate, paramete rs were varie d in accorda nce w ith the experi mental andfeed flowrate) andpr edic tingtheproce sssett ings need edto design mat rix (T able 2) . T he feed flo w rat e is displayed in achi eve the target ed product qu alit y param eters l ike out let percen tage(%) onthee quip men tand feedfl owra te of5,10or1 5% tempera ture , particle size, pow der yiel d and residu al m oisture correspond ing to exp erimentally de term ined flow r ate s ran ged content. As a model antig en, whol e-inac tivat ed influe nza virus from1.0,3.4an d4 .5mL/min,respe ctively.Ana tomiz ingai rflowof (WIV)va cci ne wasus ed,with trehaloseasastabi lizingexci pient. 7.3(cid:3) 17.5 L/m inc orre spondst oasettingfro m3 0to50mm (norm al Using DoE sof twar e, an expe rimental des ig n was gen erated to lite r[ L ]i sthev olumeat0(cid:1)C a n d1atm ).The as pir ato rra teswere assess the impact of various proce ss para mete rs (inlet air seta t2n2 m 3 /h inallex pe rime nts; th iscor resp ondedtoi nstru ment tempe ratur e, nozzl e g as flow rate, an d feed flow rate) and sett in go f10n0% . trehalose co ncentrat ions on t he fin al p roduc t cha racter istics Afte rs praydryingthespraydriedproductwascollectedand, (particle size, powder yield and residual moisture content). aliquoted(100mg)invials(3mLvial,NuovaOmpi)inaglovebox Regressio n mo dels wer e fitte d on the meas ured outp ut param- underare lativ ehu mi dityo f< 3% (Ter raUniv ersalIn c, S eries1 00) eters, and the pred iction powe r o f th e model w as asse ssed by andse al ed.They ieldwasd efi ned asthe ratiobetw een theam ount selecting three untested combinations of process parameters ofpowderobtainedandtheamountofsubstanceintroducedinthe within the investigated design space. Finally, the antigenic liquidfeed(Eq.(1))(Maltesenetal.,2008).Theweightofbuffer recoveryandthermostabilityoftheobtainedspray-driedvaccines saltswasnotincludedinyieldcalculationastheywereconstantfor wasassessed. allformulations. Collectedpowderweight½g(cid:4) PowderYield½%(cid:4)¼ (cid:5)100 ð1Þ 2.Materialsandmethods Trehaloseinthefeed½g(cid:4) 2.1.Influenzavaccine 2.3.Targetproductprofile Influenza A/PR8/34 WIV was obtained by inactivating egg- propagated influenza virus with b-propio lact one as desc ribed The quality target product profile (QTTP) was defined, and processparametersthatmayhaveanimpactonresidualmoisture previously (Hendriks et al., 2011). The bulk vaccine was concentrat ed with Cen trip rep centrifu gal fil ters (M illipore) with content (RMC), particle size, powder recovery and outlet temper- ature were determined from previous studies on spray drying amolecularweightcut-off(MWCO)of10kDa,formulatedinHBS (2 0 mM HEP ES, 125 mM Na Cml, 9 mM Ca Cl2, 5 mM MgCl2). Th e final (QPTrPinPnd eets acrl.i,b 2e0s0t2h;e Inchgvaararscsteorni settic asl.o, f20th13e;fi Ongaalinp reotd aulc.,t 2(0T1a1b)l.e T1h)e. WIV stock contained 800 g/mL HA that was determined by Theparametersinvestigatedwereinlettemperature,atomization surface plasmon resonance as described previously (Hendriks airfl ow rate (no zzle pressure ), fee d flow rate and fe ed excipient etal.,2011).Thevaccinesolutiontobespraydriedwaspreparedby concentration. Additional factors such as raw materials and mixing the WIV stock with D-(+)-trehalose dihydrate (Sigma- operatorwerekeptconstant.Theinvestigatedspacewouldresult Aldrich) solution in PBS (resulting in weight ratio hemagglutinin inadesig nspa cewh ereoneor mo reofthetarge tedpr oductp rofile protein(HA)/trehalose:1/400).Theratioofproteintosugarwas couldbeachieved. chosenbasedonpreviousresearchexperiencewithspray-freeze drying ofinflu enz avaccine s(Geerae dtsetal.,20 10).T hetrehalose solutio nw asfiltere dusinga 0.45mmM il lex- HVfilt er(M illipore) 2.4. Design of Experiments (DoE) priortomixingwithWIV. TheDoEmodelwaspreparedandevaluatedusingMODDE10.0 2.2. Spray drying of influenza vaccine formulation ((UMmLRe)tr aicnsd A Bad).j uMsote ddelsb ywererem fiotvtien dg wn iothn -msiuglntiifiplc ea nlitnem aro dreeglrtees rsmiosn. Priortoourstudy,screeningexperimentswereperformedusinga WIVpowderswereproducedusingaBüchiminispray-drierB- fullfactorialdesigntodeterminethemostrelevantinputprocess 290inconjunctionwithahighperformancecycloneandaB-296 dehu m idifier (both from B üchi Labortechnik AG). Al l the e xperi- parameters that affected the output process and product ments were perfo rmed in a closed loop confi gur ation using wpaarsamdeecteidrse.d Sitnocefi tnhde twheeigahptp rraotpiori aotfe HpAr/otrceehsasloinsep uwtaps a1r/a4m00et, eirt nitrogenasdryingmedium. rangeswithoutusingtheantigen.Thereby,assumingthatsuchlow Table1 Qualit ytargetedproductprofile.DescribesthedesiredqualitytargetprofileforadrypowderWholeinactivatedinfluenzavirusvaccine. Desired Target Rationale response Particlesize 1–5mm Particlesizethatissuitableforinhalationalandparenteraladministrationafterreconstitution. Residual 3%orless Withintheprescribedlimitsfordriedbiologicals(Mayetal.,1992;TheFoodandDrugAdministration, moisture 1990) content PowderYield 70%ormore Powderyieldshouldbesufficienttomaketheprocesseconomicallyfeasible. Stability Lessthan10%lossinHAtitersduring Powdervaccineshouldbeatleastasstableasthedescribedstabilityforwholeinactivatedliquid stora gefo r12 mon th sat 2–8(cid:1)C influenz avaccin es(Farn sw or thet al., 2011; Ku mru etal.,201 4).Theh um andos e15mgofH Acanbe calculatedtheoreticallybasedonpowderyieldofthevaccine. G.Kanojiaetal./InternationalJournalofPharmaceutics511(2016)1098–1111 1101 Table2 Exper imental design matrix. The design matrix showsthe input parameters setfor spray drying (inlet temperature, nozzle gasflowrate, feed flowrate, trehalose concentration) and the output parameters that were experimentally determined [Particle size(X50median particle size) and span, outlet temperature, RMC and powder yield].Aspiratorwassetatmaximuminstrumentsetting. Exp Inlettemp Nozzlegasflowrate Feedflowrate Trehaloseconc Particlesize Size(span) Outlet Moisture PowderYield No. ((cid:1)C) (L/min) (mL/m in) (mg/mL) [X50] (m m) (X90 (cid:3) X10)/X50 temp ((cid:1)C) content (%) (%) 1 110 7.3 1.0 100 6.1 1.7 67 4.2 63 2 160 7.3 1.0 100 6.9 2.0 91 1.4 72 3 110 17.5 1.0 100 2.4 2.1 58 2.4 82 4 160 7.3 4.5 100 7.3 2.0 78 3.8 53 5 110 17.5 4.5 100 5.7 2.0 48 7.7 64 6 160 17.5 4.5 100 3.2 1.5 63 3.1 72 7 110 7.3 1.0 150 6.8 1.3 63 4.1 61 8 110 17.5 1.0 150 2.9 1.6 61 2.6 75 9 160 17.5 1.0 150 2.9 1.2 83 1.9 69 10 110 7.3 4.5 150 8.5 1.8 53 2.9 42 11 160 7.3 4.5 150 7.9 1.8 76 3.6 52 12 160 17.5 4.5 150 3.1 1.5 73 2.3 69 13 110 12.4 3.4 125 4.5 1.8 55 3.7 69 14 160 12.4 3.4 125 4.3 2.0 78 2.4 70 15 135 7.3 3.4 125 7.5 1.9 68 4.9 57 16 135 17.5 3.4 125 3.3 2.1 65 3.1 76 17 135 12.4 1.0 125 3.7 1.8 74 2.4 77 18 135 12.4 4.5 125 4.2 1.6 61 3.3 69 19 135 12.4 3.4 100 3.8 2.1 67 2.9 78 20 135 12.4 3.4 150 4.2 2.1 62 2.8 62 21 135 12.4 3.4 125 4.1 1.6 63 3.1 67 22 135 12.4 3.4 125 4.5 2.0 66 3.2 72 23 135 12.4 3.4 125 4.4 2.1 66 3.5 73 antigenweightratiowouldnotsignificantlyinfluencetheoutput measurements were done in triplicate with 0.2mL of the parameters. The model was further optimized using a Central reconstitutedWIVsamples.Sampleswerepreparedwithvaccine Composite Fami ly (CCF ) des ign, inc luding WI V as t he model powderrecon stitu tedbyge ntleshak ingin purifiedw ater (MiliQ) antigen. A reduce d CCF design was use d for o ptim ization, (HA0.1m g/mL)atano per atingte mperatu re of25(cid:1)C. Homo geneity consistin g of in tota l 23 experim enta l runs . Th e choice of a of th e s ize dist rib uti onwas re flectedin the p olydis persity index reduced CCF design was made due to fewer experimental runs (PdI). giving the same amount of information as the CCF. To reduce systematic errors,all the experiments were completelyrandom- 2.6.Residualmoisturecontent(RMC) ized. The RMC of spray dried influenza vaccine samples was 2.5.Antigencharacterization determined using a C30 Compact Karl Fischer Coulometer (Mettler-Toledo). Samples of approximately 100mg of dried 2.5.1.WIVhemagglutinationtiter powder vaccine in vials were reconstituted in 1mL HYDRANAL To determine the hemagglutination titer of the WIV in dried Coulomat A (Sigma-Aldrich) and subsequently injected into the vaccine powder, a hemagglutination assay was performed as titration vessel. Each sample was measured in triplicate. The describedpreviouslybySoemaetal.(2014).Spray-driedvaccines relativeandabsolutemoisturecontentwerecalculatedfromthe were reco nstituted a cco rdingly in p urified water (MilliQ ) corre- standar dplo t,basedo nthewei ghtofth edried productin thev ial, m m sponding to a HA concentration of 0.1 g/ L. Finally, PBS was volumeofthereconstitutedreagent,volumeofextractedsample added to the reconstituted vaccine to obtain a 1:10 dilution. injectedintothetitrationvesselandtheblanktitration. Dilutedvaccinesolutionweretransferredtoa96-wellsV-bottom plate(Greiner)andseriallydilutedtwo-foldwithPBS.Allthewells 2.7.Physicalcharacterizationofthevaccinepowders m consisted of 50 L after dilution. Next, an equal volume of a 1% suspensionofturkeyerythrocytes(Harlanlaboratories)wasadded 2.7.1.Geometricparticlesize to the wel ls and th e plates we re incu bated for 1h at room Th egeometr icpartic lesize(X definedasthemedianparticle 50 temperature. The titer was determined by visual observation of size) of spray dried powder product was analyzed by laser agglutinationofRBCinthewells andsubsequentlyexpressedas diffraction with a Helos system (Sympatec GmbH). The powder the reciprocal of the highest dilution that yielded complete was dispersedintotheHelossystemusinganaspirosdispersing hemagglutination. The titers were determined on reconstituted system operated at a dispersing pressure of 1.0bar. The vaccine powdersjustafterspraydrying(t=0)andwererepeatedonstored powderwasmeasuredwithlenshavingameasuringrangeof0.1/ vaccine p owd er o ver a period o f 3 mon ths a t interva ls of one 0.18–35 mm. Furtherm ore, t o che ck for an y aggregat es the d ried month.HAtiters(activity)ofthesamplesateachconditionwere vaccine powder was measured again with a lens having a calculat ed relativ e to the st artin g liquid m ixtur e of WIV with measur ingrange of4.5 –875mm.M oreov er,inc rea sing thedispe r- excipienta t4(cid:1)C.Th eL og2 HAtiters weree xpressed in perce ntage sion pressu re to 5b ar did n ot re sult in cha nge of the me asured forcomparisonbetweendifferentsamples. particlesizedistribution,whichindicatesthatthesizedistribution oftheprimaryparticleswasobtainedat1bar.Resultsarethemean 2.5.2.Dynamiclightscattering(DLS) of three measurements. The span of the produced powders was Th e size of WIV after rec onstitution was measured using a ca lculate dusingtheequa tion :span = (X (cid:3)X )/X .Thespan isa 90 10 50 Zetasizer Nano-ZS system (Malvern Instruments). DLS 1102 G.Kanojiaetal./InternationalJournalofPharmaceutics511(2016)1098–1111 measure for the homogeneity/polydispersity of the particle size with a LynxEye Si strip one-dimensional detector (both from a distribution. BrukerAXS). Thesampleswere exposed toCu K (X-rays)atan angular rangi ngw asfrom 5(cid:1)to6 0(cid:1)2&z.T he ta; with asteps ize of 2.7.2.Differentialscanningcalorimetry 0.01(cid:1)an dadwel ltim eof0 .5s.T hecrystallinest atuso f thep owd er Modulated differential scanning calorimetry (mDSC) was was assessed qualitatively by examination of the resulting conducted using a TA DSC Q100 (TA instruments). Samples diffraction patterns. The upper limit of detection of crystallinity weighing b etwee n 10.0 –15.0 mg w ere c rimped in her metically is2%ofth etotalsam ple volum e. sealed pans for measurement. The glass transition temperature (Tg)wasdeterminedbymodulatedDSC(MDSC);thesampleswere cool edto 10(cid:1)Candth en heatedto1 80(cid:1)C atarate of2 .0(cid:1)C/min .The 3. Results modula ti on am pli tude was s et at (cid:6) 0.3 1 8(cid:1)C ev ery 60s. The midpoint in deflection in the r ever se h eat flow w as take n as th e Tg. effeAc tsDooEf faepedprfloaocwh rwataes, iunsleedt tteom spyesrtaetmuraet,icnaollzyz lienvgeasstiflgoawte rtahtee (nozzle pressure) and trehalose concentration (which were 2.7.3.Scanningelectronmicroscopy(SEM) establishedtobetheimportantinputprocessparametersinprior The morphology of the particles was visualized using a JSM screeningstudies)ontheoutputparameters(outlettemperature) 6301Fscanningelectronmicroscope(JEOL).Samples(Experiment and vaccine powder characteristics. To gain more insight in the 1,7,8,11and12)werepreparedbyplacingthepowdersondouble- relation between input parameters on the responses, a reduced sided sticky carbon tape on a metal disk. Subsequently, the CCF design was adopted for further optimization of process particles were coated with a gold layer of approximately 10nm parameters (Table 2). After spray drying and analyzing the uusseindg fao Braalnzaelryss 1is20w Ba ssp1u0tkteVriwngit dheaviscpe o(Btaslizzeero UfN7I–O8N.)I.m Thagee vsowltaegree formulation s of the CCF desig n, MLR models were fitted for each taken at amagni ficati on of 1000(cid:7) and5 000 (cid:7). output parameter. Valid models were obtained for outlet temperature,particlesize,residualmoisturecontentandpowder yield, descri bed in mod el fit ( R2), pred iction p owe r (Q2), 2.7.4.PowderX-raydiffractometry(XRD) reproducibilityandavalidmodel. Vaccinepowdersamples(Experiment1,7,8,11and12)were analyzedbyanD2PhaserdesktopX-raydiffractometerequipped 3Fi.1g .m 2m. )P, oBwodtteorm m: oRrupnh o8l o(gXy5 0o:f 2s.p9r maym d)r]i. eMd aWgnIVifi pcoawtiodne rism. Sacgaens nlienftg (e1l0ec0t0r(cid:7)on) manidcr roiggrhatp (h5s0 o0f0 r(cid:7)e)p.resentative spray dried trehalose-stabilized WIV vaccines [Top: Run 12 (X50: G.Kanojiaetal./InternationalJournalofPharmaceutics511(2016)1098–1111 1103 3.1.Physicalcharacteristicsofobtainedvaccinepowders resultedinbiggerparticles,whereasanincreaseinnozzlepressure resultedinadecreasedinparticlesize(summarizedinTable6). 3.1.1.Particleshapeandsize Alltheexperimentsinthecurrentdesignyieldedwhitetooff- 3.1.2.Powderyield white pow dersaftersp ray dr ying.No visible aggrega tesco uld be Th einflue nceofspraydryingprocessparametersontheyieldof observed in the powders by eye. SEM was performed on the thevaccinepowderwasassessed.Thepowderyieldsrangedfrom powders to provide particle form and surface morphology. The 42%to82%,andapproximatelyhalfoftherunsinthedesignhada powders showed a relatively homogenous surface morphology. yieldof>70%,whichwasthetargetedyieldintheQTPP(Table2). Typically , they we re spherical with a smoo th surfa ce (Fig. 2). In Apply in g a M LR mo del r esu lted in a good m ode l fit, p redict ion addition, the particle size of the acquired powder vaccines was power,reproducibilityandvalidity(Fig. 4A).Threeinputparam- measured by laserdiff racti on .The powders hadam edianvol ume eters(n ozzlepressure, feed flowrat eand treh alosec oncen tration) m m diameter (X ) between 2.4 m and 8.5 m, with narrow size were found to affect the yield (Fig. 4B). An increase in nozzle 50 distributions(Table2).Toinvestigatetherelationshipbetweenthe pressureincreasedthepowderyield,whereasincreasingthefeed inputparame tersan dt he particlesiz e,a MLRmodelw asfitted on flowrate andtreha lose concent ration decrease dthepowd ery ield. theda ta(Fig.3A) .The mo delfitan dpr ed ictio npowe r(R 2=0.9 65, Thee ffec toft womosti nfluentialfact orsnozzle pres sureand feed Q2= 0.91 7)we rego od, andmo de lrep roducibility andva lidity were flow rate on pre dicted powder yield is shown in cont our plot, suffi cient. There gress ionc oeffici entplot(Fig.3B )sh owstha tthe Fig.4 C.In ge neral,high nozzlep ressu re andlow er feedflow rate nozzlegas flow rate(noz zlepressur e), in leta irte mpera ture and with ot her parame tersfi xedfa vorshigh erpo wder yield . feedflo wr atew erer elevant toparticle size. The effectofthe two most influ enti alfact ors,feed flo wratea ndno zzle press ure ,on the 3.1.3.Residualmoisturecontent partic le size is shown i n Fig . 3C . An incr ease in feed flo w r ate Th e moistu reconte nt of the produced powders was between 1.2%and4.9%(Table2).Oneoutlierwasdetected(experimentNo Fig.3. Regressionmodelforparticlesize.A:Summaryoffitplotforparticlesize.R2(Goodnessoffit,1=perfectmodel)(R2=0.964).Q2(Goodnessofprediction,valuesgreater than 0 .5isagood fit)(Q 2= 0.917).M ode lv alidity(va lue g reate rt han0.25 ind icatesgoodfi t). Re pr o ducibili ty(grea tert han0.5 indicatesasm a llexperime ntale rror)B: Regre ssio n co effici ents forp article size.C .Respon secont ourplot sfor parti clesize.T heeff ecto fthetwomost influenti alfac tors (asobser ve dfrom FigB)wasta kenin to accountand otherfacto rsw erekept cons tan t.Thecolo rregion srepr esen tthepr edicte dre spons e(p arti cles ize)fo rdefinedp aramete rse ttings.Asp irato rwa ss etat maxim um instrumentsetting. 1104 G.Kanojiaetal./InternationalJournalofPharmaceutics511(2016)1098–1111 Table3 Therm ostabilityofspraydriedformulations.Spraydriedformulationswerestoredupto3monthsat60(cid:1)C,andtheirantigenicitywassubsequentlydeterminedby hemagglutinatio n( HA).L iquidW IVwasalsos tored at60(cid:1) Casacontrol .The HAtite rsw er em easured in triplic ate; since nodifferenc eint hetriplicateo fthetitersw as observednostand ardd eviatio nsar esho wn. Numbe r1 –23r ep re sentthe diffe ren tform ulatio nssprayd rie daccordin gto the designdes cri bed inTable2 . Type Day0HAtiters(%) Day30HAtiters(%) Day60HAtiters(%) Day90HAtiters(%) LiquidWIVstoredat60(cid:1)C(negativecontrol) D0 D1 D2 D3 D4 D5 100 72 56 45 34 0 Experiment1 100 100 100 96 Experiment2 100 104 106 96 Experiment3 100 104 100 96 Experiment4 94 104 104 96 Experiment5 90 101 100 92 Experiment6 86 105 104 102 Experiment7 87 98 98 96 Experiment8 100 108 105 96 Spraydried9 93 105 112 102 Experiment10 96 105 100 98 Experiment11 93 108 115 105 Experiment12 100 101 100 92 Experiment13 100 105 105 102 Experiment14 96 105 105 98 Experiment15 96 107 100 98 Experiment16 100 104 98 96 Experiment17 100 104 104 96 Experiment18 100 112 105 102 Experiment19 100 108 98 96 Experiment20 94 104 98 96 Experiment21 87 95 98 96 Experiment22 96 94 100 98 Experiment23 100 102 105 102 Table4 PredictionpowerofDoEmodel.Threeexperimentalinputparameterswerechosenfromthepredicteddesignspace(Fig.9).PointAwasselectedforproof-ofprinciple purposesf orafor mu latio nthatw ould resultintarge tedpr oductspecifi cation s(with inop timu mareaof predict eddes igns pac e).Poi nt Ban dCdon otm eetallc riteriafor targetedp rod u ct(outsideo ptim umare aofde sig nspace). Therati onaleforchoo singBan dCwasto con firm thepred ictiona bilities ofthe m ode lw ith int hede sign space but outsidetheoptimumarea.Aspiratorwassetatmaximuminstrumentsettingforthethreeexperimentalruns. ExpNo. Inlettemp((cid:1)C) Nozzlegasflowrate(L/min) Feedflowrate(mL/min) Trehaloseconc(mg/mL) Withinoptimumarea(A) 120 12.4 1.0 100 Outsideoptimumarea(B) 135 10.5 1.0 125 Outsideoptimumareaspot(C) 132 9.0 1.0 125 5),whichwassubsequentlyexcludedfromtheregressionmodel. processparametersinfluencetheRMCofthespray-driedvaccine Fitt ingaM LRr egressionmod elonthe RMC data resultedin agood powder s(Fig.5B).T heeffecto ftw omo sti nflu entialfactor snozzle model fi t, pr ediction po wer, m od el r epro ducib ility and v a lidity pressure and inle t tem pera tur e on pred icted RMC is sho wn in (Fig.5A ).T heresulting regress ioncoe fficientplotshow sth atmany contour plot, Fig. 5 C. An increas e in inlet tem peratu re or noz zle Table5 Assess ment/qualificationofthepredictionmodels.TheacquiredmodelfromexperimentaldesigndescribedinTable2predictedtheparticlesize,residualmoisturecontent, outlettemperatureandpo w der yield.Pred ictionsar eex presseda smean (cid:6)95 %confidencei nterval s.Theuppe ra ndlo w errangesw ere takenf romt hemode l.Datafor particle sizean dRMCrepre sen tmean(cid:6) SDo fonesampl em easuredin tr iplica te N= 3(observed ). Outputparameters Predicted Predictedlowerrange Predictedupperrange Observed Particlesize(mm) A 3.38 3.00 3.77 3.08(cid:6)0.1 B 4.23 3.88 4.57 4.07 (cid:6) 0.1 C 5.88 5.55 6.21 5.78 (cid:6) 0.1 Residualmoisturecontent(%) A 2.1 1.8 2.5 2.4(cid:6)0.03 B 2.7 2.4 3.0 2.7 (cid:6) 0.02 C 3.6 3.3 4.0 2.8 (cid:6) 0.02 Outlettemperature((cid:1)C) A 67 65 69 67 B 74 73 76 76 C 75 73 77 75 Powderyield(%) A 80 76 84 77 B 73 70 77 73 C 66 63 69 64 G.Kanojiaetal./InternationalJournalofPharmaceutics511(2016)1098–1111 1105 Table6 Summ aryofmainfindings.Descriptionoftherelationshipsbetweenprocessinputparametersandproductoutputparametersinthisstudyforthespraydryingprocess (Büchi, B- 290 and 0.7 mm o rifice nozzle ) o f a w hole inactiva ted influe nza vacc ine. A spirator capa city was kep t fixed a t 22 m3n/h [ hig hes t aspir ator set ting po ssible (of used equipment)]. Parameter/ Nozzlepressure" Inletairtemperature" Feedflowrate" Trehaloseconcentration" Dependence Particle ###Greaterenergyfordispersion, #Moreevaporationaftershell "Morefluidneedstobedispersed Noeffectintheinvestigated Size smallerparticlesafter formation range atomization Powder "Smallerparticles,improved ""Eventuallydryerproductbut #Higherwatercontenttoevaporate, #Biggerdropletsfordrying, Yield drying,lesserdepositionindrying chancesofstickingathigh morestickingbutdependentonother moredepositionindrying chamber temperatures variables chamber Residual #Smallerdropletsthusbetter ##Lowerrelativehumidityinair ""Morewaterforevaporationleadsto #Lesswaterevaporated,lower moisture drying higherpartialpressure partialpressure content Outlet #Morenitrogeninflowinsystem """Directlyproportional ##Morewaterneedstobeevaporated "Lesswaterneedstobe Temperature forheating. asavailableenergyfordryingincreases evaporatedasmoreexcipientin proportionallywithriseininlet thedroplet temperature Antigenicity Noeffectintheinvestigatedrange Noeffectintheinvestigatedrange Noeffectintheinvestigatedrange Noeffectintheinvestigated range pressureresultedinadecreaseofRMC,whileanincreaseinfeed indexes below 0.08 (Supplementary Table 1), indicating that the flowrate increase d th eRMCof th epow ders. WIVpar ticlesw erei ntactandnotagg regate dd uringoraf tersp ray dryingorreconstitution. 3.1.4.Amorphousnatureofdriedpowdervaccine To assess the antigenicity of the WIV antigens after spray WehadobservedsomesampleswithhighRMCandsincewater drying, a hemagglutination assay was performed on the recon- isapot ent plasticize rfors ugarglas ses.W ew anted to confir mthe stituted v accinepowdersdir ectlya fters praydrying. Ov erall ,lossof amorphousnessofthesamples.Theamorphousnatureofthespray antigenicity was minimal after spray drying, with antigenic dried vaccine p ow der s was d eterm ined by a ssessin g the glass recoveries r angin g from 86 % to 1 00% (a fter 2log transf ormation) transition temperatures (Tg) with DSC and crystallinity by X-ray (Table 3).Due totheseminimal changes in antigenicity, no MLR diffraction (XRD).Tgana lysis ofth evac cine powdersga vev alues model cou ldb efi ttedo ntheant igenicre cov erydata. between 4 5(cid:1)C a nd 83(cid:1)C f or the highes t and lo west RMC- In a dditio n t o the rec over y of the antigen im mediately after containing powders, respectively (Supplementary Table 2). The spraydrying,anacceleratedstabilitystudywasperformedonthe X-ray diffr action (X RD) profiles of the excipie nt (tr eha lose vaccin e powd er s. Liquid W IV vaccin e stor ed u nder refrig era ted dihyd rate) and s pray dr ied influ enz a va ccines are shown in conditio ns was ta ken as a co ntrol gr oup. Th e pow der vaccine Fig. 6. The pro files in dicate that solid trehalose dih ydrate w as samples fr om the ex per im ental d esign w ere sealed under a crys tal line priortos praydry ing,a spea kswereob served.On the nitrogen enviro nme nt(100mgpe rvial)a ndsto redat6 0(cid:1)Cfor 3 other hand, no peaks were detected in the spray dried vaccine months. The change in hemagglutinin titers upon storage was powders,indicatingthatthepowderswereamorphous. assessed by hemagglutination assay after reconstitution of the powdervaccines.Minimalornolossinantigenicitywasobserved 3.2.Outlettemperature after sto rage for 3 month s a t 6 0(cid:1)C fo r all spray d ried samples (Table3).Incontrast,liquidWIVvaccinelostallitshemagglutinin The outlet air temperature was determined during the spray bindin gca pa cityafter 5days ofst orageat 60(cid:1) C.T hi sindicatesthat drying process of each experiment in the design. During spray spraydriedWIVpowdervaccinesaremuchmoreresistanttoheat drying ofthein flu enza vaccineform ula tion stheou tlettem pera- stress than conv entional liquidva ccin es. ture w as foun d to be b etween 48(cid:1)C and 91 (cid:1)C ( Table 2 ). A MLR regre ssio nmode lw as fittedtot heout lett emper atured ata ,w hich 3.4.PredictionpoweroftheDoEmodel resulted in a goo d m odel fi t (Fig . 7A). The obtained regr ession coefficie nt pl ot sho wed th at the outle t tem perature was most AnadvantageofthegeneratedMLRmodelsisthattheycanbe affected by the inlet temperature (Fig. 7B). In addition, the usedtopredictprocessorproductparameters(inthiscaseoutlet relations hip betw een i nlet air temp eratur e and fe ed flow ra te is temp era ture, p owder p art icle size , powder y ield , and RM C) for depictedinresponsecontourplotforoutlettemperature(Fig.7C). combinationsofthedifferentinputprocessparametersthathave It was o bs erved th at on i ncrea sin g the feed flow rate and notbeen teste d yet. As previo usly describe d, the study obta ined decreasinginletairtemperature(keepingotherfactorsconstant) valid models for outlet temperature, particle size, powder yield resultedindecreaseoftheoutlettemperature. and moisture content. The structured approach helped in identifying a design space where the established QTPP can be 3.3.Antigenrecoveryandstabilityafterspraydrying achieved(Fig.9).Thepredictionabilityofthemodelwastestedby selecting inpu tpa ram etersthatw ouldr es ulti nprede fine dprodu ct Next to the physical powder characteristics, the antigen specificat ionsf orthreeunt este dform ulation s. Thecalcula tionfor characteristics were determined after spray drying. First, the prediction are based on statistical values from the model particle size of WIV was determined for each spray dried calculated by MODDE software(Lundstedta et al.,1998). Experi- formulation. Dynamic light scattering was performed on recon- mentAwasselectedinthesweetspotregion,whichwouldresult stitutedvacc inepowd ers.A llsamples disso lvedreadily an dgave inap ro duct accordin g tot hedefi ned QTPP.E xperim entsB andC clear opalescent liquid, which did not contain any visible wereselectedoutsidethesweetspot,whichwouldyieldpowder aggregates. The particle size of WIV remained unchangedfor all vaccinesthatwouldnotmeetalltheQTTPcriteria(Table4).Using formulations, with an average size of 175nm and polydispersity the selected targetproductcharacteristicsasinput, the acquired 1106 G.Kanojiaetal./InternationalJournalofPharmaceutics511(2016)1098–1111 Fig.4. Regressionmodelforyield.A:Summaryoffitplotforpowderyield.R2(Goodnessoffit=0.825).Q2(Goodnessofprediction=0.688).B:Regressioncoefficientsof pow de ryieldafter model refi neme nt. Aspiratorw a sse tat max imumc apacit y.C.Response co nto u rplots forpowderyie ld. Theeffect of thetw om ostinfluen tialfactors( as observe dfrom B)w astak enintoacco untando ther fac tor swerekep tconstan t. Thecolor regions repres ent thepre dicted resp onse (po wd eryi eld)f ordefined parame ter settings.Aspiratorwassetatmaximuminstrumentsetting. DoE model gave spray-drying parameters that would yield the stable spray dried influenza vaccines. The main findings are desired product (Table 4). For experiment A, the experimentally summarizedinTable6. acquireddataindeedcorrelatedinrangewiththepredictedvalues for parti cle s ize (pr edicted 3.3 8 mm, o bser ved 3.08mm) , RMC 4.1.Effectofnozzlepressure(atomizationgasflowrate) (predicted 2.1%, observed 2.4%), powder yield (predicted 80.2%, observed7 7%)an doutlett empera ture(pre dicte d67.1(cid:1)C,ob served In general, the nozzle pressure (7.3–17.5L/min) was the most 67(cid:1)C)(Ta ble5 ).Th epred ictedparame tersthusy ielded apowder influe ntialpro cess parame tersforth estudied charac teris tics ofthe vaccinethatmetallthecriteriaoftheQTTP.Theoutputparameters obtainedpowdervaccine.Anincreaseingas(nitrogen)pressureon (particle size, powder yield and outlet temperature) of experi- thenozzleresultedindecreasedparticlesize,whichcanberelated mentsBandCalsoconcurredwiththeresponsespredictedbythe totheincreasedenergyavailableforbreakinguptheliquidjetby model,withtheexceptionoftheRMCforexperimentC,whichwas thenozzle,thusformingsmallerparticlesduringatomization.This lower (2.8%) than the predicted (3.6%) RMC. These data indicate wasinlinewithpreviousstudiesfromMaltesenetal.(Maltesen thatthepredictionsmadebythemodelwereaccurate. etal.,2008),whoreportedadecreaseinparticlesizeofspraydried m m product from 26 m to 9.8 m when increasing the nozzle 4.Discussion pressure in the range from 7.3 to 17.5L/min. In addition, the interaction factor (Noz*Noz) (Fig. 3B) showed an opposite effect The present study demonstrates the usefulness of a DoE comparedtothemainfactornozzlepressure,indicatingthatthe approach to understand the effects of spray drying process relationship between nozzle pressure and particle size could be parameters and excipient concentration on the production of non-linearoutsidethestudiedrange.

Description:
b University of Groningen, Department of Pharmaceutical Technology and Biopharmacy, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands c Division of current study provides an approach that utilizes Design of Experiments for spray drying process to . A Design of Experiments (DoE).
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.