ebook img

Twin-peak quasiperiodic oscillations as an internal resonance PDF

0.27 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Twin-peak quasiperiodic oscillations as an internal resonance

Astronomy&Astrophysicsmanuscriptno.4039horka3 (cid:13)c ESO2008 February5,2008 Twin-peak quasiperiodic oscillations as an internal resonance (ResearchNote) 6 J.Hora´kandV.Karas 0 0 2 AstronomicalInstitute,AcademyofSciences,Bocˇn´ıII,CZ-14131Prague,CzechRepublic n a Received12August2005;accepted30December2005 J 3 ABSTRACT 1 Aims.Twointer-relatedpeaksoccurinhigh-frequencypowerspectraofX-raylightcurvesofseveralblack-holecandidates.Wefurtherexplore v theideathatanon-linearresonancemechanism,operatinginstrong-gravityregime,isresponsibleforthesequasi-periodicoscillations(QPOs). 3 Methods. By extending the multiple-scales analysis of Rebusco, we construct two-dimensional phase-space sections, which enable us 5 to identify different topologies governing the system and to follow evolutionary tracks of the twin peaks. This suggests that the original 0 (Abramowicz & Kluz´niak) parametric-resonance scheme can be viewed as an ingenuous account of the QPOs model with an internal 1 resonance. 0 6 Results.We show an example of internal resonance in a system with up to two critical points, and we describe a general technique that 0 permitstotreatothercasesinasystematicalmanner.Aseparatrixdividesthephase-spacesectionsintoregionsofdifferenttopology:insidethe / librationregiontheevolutionarytracksbringtheobservedtwin-peakfrequenciestoanexactrationalratio,whereasinthecirculationregion h theobservedfrequenciesremainoffresonance.Ourschemepredictsthepowershouldcyclicallybeexchangedbetweenthetwooscillations. p Likewise the high-frequency QPOsin neutron-star binaries, also in black-hole sources one expects, as ageneral property of the non-linear - o model,thatslightdetuningpushesthetwin-peakfrequenciesoutofsharpresonance. r t s a Keywords.Accretion,accretion-discs–Blackholephysics–Quasi-periodicoscillations : v i X 1. Introduction should prefer the 3:2 ratio; it also suggests this could be r a understood if a non-linear coupling mechanism operates in Twin peaks occur in high-frequency (∼ 50–450 Hz) power a black-hole accretion disc, where strong-gravity effects are spectraofX-ray(∼2–60keV)lightcurvesofseveralblack-hole essential. Indeed, especially in those black-hole candidates candidates (see van der Klis 2006; McClintock & Remillard where the high-frequencyQPOs have been reported,they oc- 2003 for recent reviews of observational properties and the- cur very close to the ratio of small integer numbers, 3:2 in oretical interpretations). This transient phenomenon seems to particular(Miller etal. 2001; Strohmayer2001; Homanet al. be connected with the kilohertz quasi-periodic oscillations 2004;Remillard etal. 2005;Maccarone& Schnittman2005). (QPOs) in neutron star sources, of which more examples are Nowadays, the original account can be viewed as a na¨ıve known (about the tens at present). The nature of black hole modelwiththeinternalresonance.Variousrealizationsofthis high-frequencyQPOsremainspuzzlingdespitevarietyofmod- scheme have been examined in terms of accretion disc/torus els proposedin the literature. In neutron-starlow-mass X-ray oscillations (e.g. Abramowicz et al. 2003; Bursa et al. 2004; binariesthesetwinQPOsareknowntooccuroftensimultane- Kato2004;Li&Narayan2004;Schnittman&Rezzolla2005; ously and they can be highly coherent (Q & 102; e.g. Barret Zanottietal.2005). etal.2005),slowlywanderinginfrequenciesbetweendifferent So far the “right” model has not yet been identified. observations, whereas in black-hole candidates the QPO co- However,ithasbeenrecognizedthatfruitfulknowledgeabout herencyappearstobelower(Q ∼ 2–10)andthepresenceofa commonpropertiesofhigh-frequencyQPOscanbegainedby pairpopsuponlywhenacollectionofobservationsiscarefully investigating a very general resonance scheme, which likely analyzed. governs matter near a compact accreting body. To this aim, In Abramowicz & Kluz´niak (2001) and Kluz´niak & Abramowicz et al. (2003) examined the epicyclic resonances Abramowicz (2001) an idea of accretion disc resonance was inanearly-geodesicmotioninstronggravity.Rebusco(2004) proposed,whichnaturallyincorporatespairsoffrequenciesoc- andHora´k(2004),byemployingthemethodofmultiplescales curring in a ratio of small integer numbers.This scheme pre- (Nayfeh & Mook 1979), have demonstrated that the 3:2 res- dictstheobservedfrequencyratiosinblack-holeQPOsources onance is indeed the most prominent one near horizon of a 2 J.Hora´k&V.Karas:Twin-peakquasiperiodicoscillationsasaninternalresonance(RN) central black hole. Only certain frequency combinations are Forthecentralfieldweassumetheform allowed,dependingonsymmetrieswhichthesystemexhibits, GM andonlysomeoftheallowedcombinationshavechancetogive Φs(r)=− , (6) r˜ risetoastrongresonance. Inthepresentpaperwepursuethisapproachfurtherandwe where we set r˜ = r or r˜ = r − RS (to adopt the Newtonian findtracksthatanaxiallysymmetricsystemwithtwodegrees orthepseudo-Newtonianapproximations;RS ≡ 2GM/c2).We of freedom,near resonance,shouldfollow in the plane of en- assume a circular ring (mass m, radius a) as a source of the ergy(ofthe oscillations)versusradius(wherethe oscillations perturbingpotential, takeplace).Weshowdifferenttopologiesofthephasespacein 2GmK(k) thewaythatcloselyresemblesthemethodofdisturbingfunc- Φr(r,θ)=− π B1/2, (7) tion,familiarfromthestudiesoftheevolutionofmeanorbital where K(k) is a complete elliptical integral of the first kind, elementsincelestialmechanics(Kozai1962;Lidov1962).The B(r,θ) ≡ r2+a2+2arsinθ,k(r,θ) ≡4arsinθ/B(r). analogyis veryilluminatingand it providesa systematic way ofdistinguishingtopologicallydifferentstatesofthesystem.In Atthispointa remarkis necessaryregardingthe interpre- tation of the potential (5)–(7): we conceive it as a toy-model particular,one can discriminate regionsof phase space where forstrong-gravityeffectsandinternalresonancesthatweseek the observed frequencyratio fluctuates around an exact ratio- inthesystemofablackholeandanaccretiondisc,buttheori- nalnumberfromthoseregionswherethisratioremainsalways gin of the perturbing potential Φ(r,θ) is not supposed to be outsidetheresonance.Ourmodelsuggeststhatevenblack-hole r thegravitationalfieldoftheaccretiondiscitself.Ofcoursethe twinQPOsshouldvaryinfrequencyandtheyshouldnotstay innerdiscisnotself-gravitatinginblackholebinariesandthe at a firmly fixed frequencyratio, albeit the expected variation ringisnotintroducedherewiththeaimofrepresentingtheac- isverysmall–certainlylessthanwhathasbeenfrequentlyre- cretion flow gravity. What we imagine is that hydrodynamic portedinneutronstarbinariesandwhatcanbetestedwiththe and magnetic forces are producing qualitative effects, which dataavailableatpresent. canbecapturedbytheringpotentialinourequations(1)–(2). Ontheotherhand,ourapproachisrathergeneralanditisworth 2. Aconservativesystemwithtwodegreesof rememberingthatthesameformalismcanbesuccessfullyap- freedom plied also in systems where the disc self-gravity plays a non- negligiblerole. 2.1.Non-lineartermsinthegoverningequations Also in general relativity, weakly perturbed (i.e. nearly- Letusconsideranoscillatorysystemwithtwodegreesoffree- geodesic) motion of gas elements orbiting around a dom, which is described by coupled differential equations of Schwarzschildblackholecanbedescribedbyeffectivepoten- theform tialthatcontainsasphericaltermarisingfromthegravitational δ¨ρ+ω2 δρ = f (δρ,δθ,δ˙ρ,δ˙θ), (1) fieldofthecentralblackhole,plusaperturbingterm,whichwe r ρ assume axially symmetric. Naturally, the interpretationof the δ¨θ+ω2 δθ = f (δρ,δθ,δ˙ρ,δ˙θ). (2) θ θ perturbingtermismorecomplicatedifonewouldliketoderive We assume that the right-hand-side functions are nonlinear its particular form from an exact solution of Einstein’s equa- (theirTaylorexpansionsstart withthe secondorder),andthat tions.We donotwantto enterintocomplicationsofa special theyareinvariantunderreflectionoftime.Clearly,theseequa- modelhere(butseeLetelier2003;Karasetal.2004;Semera´k tionsincludethecaseofanearlycircularmotionunderthein- 2004andreferencescitedthereinforareviewandexamplesof fluenceofaperturbingforce:δρandδθaresmallperturbations spacetimes that contain a black hole and a gravitating ring in oftheposition,whereasω (r)andω (r)haveameaningofthe generalrelativity).Also,onemayaskwhethertheadoptedap- r θ radialandtheverticalepicyclicfrequenciesalongthecircular proachcancomprehendframe-draggingeffectsofKerrspace- orbitr=r ,θ=π/2: timewhiletheblackholerotationisconsideredasperturbation 0 to the spherical field of a static non-rotatingblack hole; even ∂2U 1 ∂2U ω2 = , ω2 = , (3) if a general answer to that question would be affirmative, the r ∂r2 θ r2 ∂θ2 ! 0 Kerr metric has rather special properties concerning the inte- wheretheeffectivepotentialis grabilityofthegeodesicmotionandtheformofnon-sphericity, whichquicklydecayswithradius.Ourcurrentopinionissuch ℓ2 U(r,θ)≡Φ(r,θ)+ , (4) thattherotation-relatedeffectsofKerrmetriccannotbeviewed 2r2sin2θ as the originof the perturbationrequiredfor black-holehigh- Φ(r,θ) is the gravitational potential, for which axial symme- frequencytwinQPOs. try and staticity will be assumed. These assumptions make Theangularmomentumofatestparticleorbitingthecentre our system qualitativelydifferent from modelsrequiringnon- onanequatorialcircularorbitis axisymmetricperturbations. As a generic example, let the total gravitational field be ℓ≡r3 ∂Φ =GMr r2 +µr(r+a)E(k0)+(r−a)K(k0) , (8) givenas a superpositionofthe centralpotentialofa spherical ∂r! "r˜2 π(r2−a2) # star,Φ (r),plusanaxisymmetrictermΦ(r,θ), s r whereE(k)isacompleteellipticalintegralsofthesecondkind Φ(r,θ)=Φ (r)+Φ(r,θ). (5) andtheright-hand-sidetermsareevaluatedattheorbitradius, s r J.Hora´k&V.Karas:Twin-peakquasiperiodicoscillationsasaninternalresonance(RN) 3 2 2 u u stable stable n n s s 1.5 stable 1.5 table table stable n u a) a) l / l(K 1 l / l(K 1 stable 0.5 0.5 u n s ta b le 0 0 0 0.5 1 1.5 2 0 0.5 1 1.5 2 r / a r / a Fig.1.Angularmomentumℓ(r)(thickline)ofatestparticleonacircularorbitinthecombinedgravitationalfieldofaspherical bodyandaring.Themassoftheringrelativetothecentralmassisµ=0.1andtheparticlemassissettounity.Leftpanel:thecase ofNewtoniancentralfield.Rightpanel:thepseudo-Newtoniancase.Radiushasbeenscaledwithrespecttotheringradius(here, a = 9R ), and the angularmomentumhasbeen scaled by the valueof Keplerian angularmomentumℓ (a). Keplerianangular S K momentuminthecentralfieldisalsoplotted(thinline).CircularorbitsareRayleighunstableandtheepicyclicapproximationis inadequateinregionswheretheangularmomentumdecreaseswithradius. 5 5 4 4 3 3 ωθ ωθ ω , r ω , r 2 2 1 1 0 0 0 0.5 1 1.5 2 0 0.5 1 1.5 2 r / a r / a Fig.2.Thebehaviourofepicyclicfrequencies(thicklines;ω –top,ω –bottom)providesbasiccluestotheoriginofoscillations θ r andthe effectsexpectedto occurin stronggravity.Left/rightpanelsreferto the Newtonian/pseudo-Newtoniancases, asin the previousfigure.Unitsoftheordinatesarescaledby GM/a3tomakefrequenciesdimensionless.Thefrequenciesinabsenceof thering(µ=0)arealsoindicatedforreference(thinplines;ω (r)=ω (r)intheNewtoniancase). θ r k ≡k(r ,π/2),µ≡m/M.Figure1capturesatypicalcurveofthe Thedifferencebetweenthe radialepicyclicfrequencyandthe 0 0 angularmomentumasafunctionofradius.Thecorresponding orbitalfrequencygivestheshiftofpericentre.Thedifferenceof orbitalfrequencyis vertical epicyclic and orbital frequenciesgives the nodal pre- cession. GM r2 (r+a)E(k )+(r−a)K(k ) Ω2(r)= +µr 0 0 . (9) Internalresonancescanoccurinthesystem(1)–(2).Inor- r3 "r˜2 π(r2−a2) # dertocapturethisphenomenon,wecarryoutamultiple-scales Equation(3)givestheepicyclicfrequencies, expansion(Nayfeh&Mook1979)intheform GM r2(3r˜−2r) 2µ (r−a)2K(k )−a2E(k ) 4 4 ω2(r)= + 0 0 ,(10) δρ(t,ǫ)= ǫnρ (T ), δθ(t,ǫ)= ǫnθ (T ), (12) r r3 " r˜3 π r2(r−a)2(r+a) # n µ n µ Xn=1 Xn=1 GM r2 2µ E(k ) ω2(r)= + 0 . (11) whereT =ǫµtaretreatedasindependenttimescales.Wewill θ r3 "r˜2 π (r−a)2(r+a)# µ terminatethe expansionatthe fourthorder(µ = 0,1,2,3;the Theepicyclicfrequenciesasfunctionsofradiusareplottedin number of time scales is the same as the order at which the Figure 2 (we will drop the index “0” for the sake of brevity). expansionsaretruncated). 4 J.Hora´k&V.Karas:Twin-peakquasiperiodicoscillationsasaninternalresonance(RN) Timederivativestakeaformofexpansions Table 1. Possible resonancesand secular terms in the second orderofapproximation.Onlyregularseculartermsarepresent d 4 d2 4 4 ifωθ andωr areoutsideresonance,asindicatedintheleftcol- = ǫµD , = ǫµ+νD D , (13) umn. Subsequent lines refer to a system in 1:2 and 2:1 reso- dt µ dt2 µ ν Xµ=0 Xµ=0Xν=0 nances, respectively. In each record correspondingto the res- onances, the first/second row gives an expression for secular where Dµ ≡ ∂/∂Tµ. The method tackles the governingequa- terms in radial/vertical oscillations. To simplify our notation tionsintheirgeneralform. weintroducedΛ ≡C(ρ)andK ≡C(θ). α α α α As a specific example we can adopt an explicit form de- scribingtheorbitalmotion, ω :ω Secularterms 1∂U θ r δρ¨+ω2δρ=(1+δρ)δθ˙2− −ω2δρ , (14) r "r ∂r r # Outside −2iω D A r 1 ρ δθ¨+ω2δθ=−2 δρ˙δθ˙ − 1 ∂U −ω2δθ . (15) resonance −2iωθD1Abθ θ 1+δρ "(1+δρ)2 ∂θ θ # b 1:2 −2iω D A , K A A r 1 ρ 1001 −ρ θ Because equations (14)–(15) are conservative, the growth of −2iω D A , Λ A2 energyinonemodemustbebalancedbytheenergylossinthe θ 1bθ 0200bρ b othermode.Close toresonanceradii,wherethetwoepicyclic b b 2:1 −2iω D A , K A2 frequenciesareinratioofsmallintegers,theperiodicexchange r 1 ρ 0002 θ −2iω D A , Λ A A ofenergyshouldoccurinamorepronouncedrate.Becauseam- θ 1bθ 0110bρ −θ plitudesoftheoscillationsareconnectedwitheccentricityand b bb inclination,thesolutionalternatesbetweenaninclined,almost circular trajectory at certain stages, and an eccentric, almost 2.2.Solvabilityconstraints equatorialcase at some other time. We remarkthat, in a non- linearsystem,theeigenfrequenciesω ,ω areexpectedtodif- Inthefirstorder,weobtainequationsdescribingtwoindepen- r θ ferfromtheobserved(i.e.predicted)frequencies,whichcanbe dentharmonicoscillators, revealede.g.byFourieranalysisofdatatimeseries.Relevance D2+ω2 ρ =0, D2+ω2 θ =0. (17) of this fact for QPOs was first recognized by Abramowicz et 0 r 1 0 θ 1 (cid:16) (cid:17) (cid:16) (cid:17) al. (2003) and Rebusco (2004), when they discussed a model Thesolutionscanbeexpressedintheform for Sco X-1. It was further employed by Hora´k et al. (2004), ρ =A +A , θ = A +A , (18) whosuggestedthataconnectionshouldexistbetweenthehigh- 1 ρ −ρ 1 θ −θ frequencyQPOsandnormal-branchoscillations. wherebwe dbenote Ax ≡bAxeibωxT0, A−x = A∗xe−iωxT0 with x = ρ Weexpandtheeffectivepotentialderivativesandthefunc- or θ. The complexamplitudes A generallydependon slower x b b tions f and f intoTaylorseries,uptothe fourthorderabout scales,T ,T andT . ρ θ 1 2 3 acircularorbit.Theexpansionprovidesmanynonlinearterms Analgorithmicnatureofthemultiple-scalesmethodallows containingvariousderivatives ustodeterminetheformofsolvabilityconditionsinaconserva- tivesystemwithtwodegreesoffreedom.Theconditionsarise ∂i+jU byeliminatingthetermsthataresecularinthefastestvariable, u ≡ . (16) ij ∂ri∂θj! T0.Thisconstraintisimposed,becauseotherwisethesolutions [r0,π/2] intheformofserieswouldnotconvergeuniformly.Infact,the reason why the same number of scales is required as the or- By imposing constraints on the potential and its derivatives, derofapproximationintheexpansion(12) isthatonesecular weidentifyresonancesthatareexpectedinaparticularsystem termgetseliminatedineachorder,andthereforethefunctions (andwerejectthoseresonancesthatcannotberealized).Inthe A (T )aredeterminedbythesamenumberofsolvabilitycon- next subsection, formulation of these constraints is still kept x µ ditionsasthenumberoftheirvariables. completely general, valid for the arbitrary form of U. Only Inthesecondorder,thetermsproportionaltoǫ2 intheex- later, in subsection 2.3, we come to our original motivation pandedleft-handsideofthegoverningequations(1)–(2)are fromtheorbitalmotionaroundablackholeandweemploythe symmetryofthepotentialU.Weconsiderthecaseofpotential δ¨x+ω2x = D2+ω2 x +2iω D A −2iω D A . (19) symmetricwithrespecttotheequatorialplane.Thisimpliesthe x 2 0 x 2 x 1 x x 1 −x h i (cid:16) (cid:17) conditionu = 0,k ∈ N, somewhatreducingthenumber Ontheright-handside,thesecond-ordbertermsresubltfromthe i(2k+1) oftermsintheexpansions. expansion of the nonlinearity fx(δρ,δθ,δ˙ρ,δ˙θ) with D0ρ1 and D θ inplaceofδ˙ρandδ˙θ,respectively.Theycanbeexpressed Amplitudesoftheoscillationsarecharacterizedbyasmall 0 1 aslinearcombinationsofquadratictermsconstructedfromA parameter: δρ ∼ ǫ, δθ ∼ ǫ. We impose the solvability con- ±ρ straints and seek a solution in the form (12). To this aim, we andA±θ: b fidersrtswofriateppthroexeimxpaltiicoint.formoftheseconstraintsindifferentor- hfx(δbρ,δθ,δ˙ρ,δ˙θ)i2 =|Xα|=2Cα(x)Aα−1ρAαρ2Aα−3θAαθ4, (20) b b b b J.Hora´k&V.Karas:Twin-peakquasiperiodicoscillationsasaninternalresonance(RN) 5 whereα = (α ,...,α )and|α| = α +...+α .Theconstants Table2.Possibleresonancesandseculartermsinthethirdor- 1 4 1 4 C(x) aregivenbyangularfrequenciesofω andbycoefficients derofapproximation.Individualrecordshaveasimilarmean- α x oftheTaylorexpansionof f .Equatingtheright-handsidesof ingasinTab.1. x eqs.(19)–(20)wefind D2+ω2 x = −2iω D A +2iω D A 0 x 2 x 1 x x 1 −x ω :ω Secularterms (cid:16) (cid:17) θ r + C(x)bAα1Aα2Aα3Abα4. (21) α −ρ ρ −θ θ |Xα|=2 Outside 2iω D A , K |A |2A , K |A2|A b b b b r 2 ρ 1200 ρ ρ 0111 θ ρ The rhs of eq. (21) contains one secular term independently resonance 2iω D Ab, Λ |A |2Ab, Λ |A2|Ab θ 2 θ 1101 ρ θ 0012 θ θ of the eigenfrequencies ω and ω . However, additional sec- r θ 1:3 2iω D Ab, K |A |2Ab, K |A2|Ab, K A3 ular terms may appear in the resonance. For example, when r 2 ρ 1200 ρ ρ 0111 θ ρ 0030 θ ωr ≈ 2ωθ, the terms proportional to A2θ in the ρ-equation 2iωθD2Abθ, Λ1101|Aρ|2Abθ, Λ0012|A2θ|Abθ, Λ0120AbρA2−θ (x → ρ)and A A intheθ-equation(x → θ)becomesecular ρ −θ b 1:1 2iω D Ab, K |A |2Ab, K |A2|Ab, K b|Ab|2A , andtheyshouldbealsoincludedtothesolvabilityconditions. r 2 ρ 1200 ρ ρ 0111 θ ρ 1110 ρ θ Thesimilarsitbuabtionhappenswhenω ≈ω /2.Theseareinter- K0012|Aθb|2Aθ, K0210A2ρbA−θ, K1002A−bρA2θ b r θ 2iω D A , Λ |A |2A , Λ |A2|A , Λ |A |2A , nalresonances,whichshowaqualitativelydifferentbehaviour: θ 2 θb 1101 ρbbθ 0012 bθ θb 2100 ρ ρ thecorrespondingtermsaresecularonlyforspecial(resonant) Λ |Ab|2A , Λ1002Ab A2, Λ Ab2A b 0021 θ θ −ρ θ 0210 ρ −θ combinationsof ω and ω , contrary to the terms that appear always and are refrerred toθas regular secular terms. Possible 3:1 2iωrD2Aρ,bK1200|Aρ|2bAρ,bK0111|A2θ|bAρb, K2001A2−ρAθ resonancesin the second orderof approximationand the cor- 2iωθD2Abθ, Λ1101|Aρ|2Abθ, Λ0012|A2θ|Abθ, Λ0300Ab3ρ b respondingsecular terms in eq. (21) are listed in Table 1. Let b b b b usassume,foramoment,thatthesystemisfarfromanyreso- nance.Then eliminate the terms that are secular independently of ω , ω . r θ Theresultingsolvabilityconditionstaketheform D A =0. (22) 1 x i Thefrequenciesandamplitudesareconstantandthebehaviour D A =− K |A |2+K |A |2 A , (27) 2 ρ 2ω 1200 ρ 0111 θ ρ ofthesystemisalmostidenticalaswhatonefindsinthelinear r h i i approximation. The only difference is the presence of higher D A =− Λ |A |2+Λ |A |2 A . (28) harmonicsoscillatingwithfrequencies2ωr,2ωθ and|ωr±ωθ|. 2 θ 2ωθ h 1101 ρ 0012 θ i θ They are given by a particular solution of equation (21) after Aparticularsolutionofeq.(26)isgivenbyalinearcombina- eliminatingthesecularterm, tionofcubictermsconstructedfromA andA , ±ρ ±θ x2 =|Xα|=2Qα(x)Abα−1ρAbαρ2Abα−3θAbαθ4, (23) x3 =|Xα|=3Q(α3,x)Aα−1ρAαρ2Aα−3θAαθ4, b b (29) b b b b Under the assumption of time-reflection invariance, constants Q(x) arerealandtheirrelationtoconstantsC(x) becomesobvi- whereallcoefficientsQ(α3,x)arenowreal. α α Finally,inthefourthorderoftheapproximation, ousbysubstitutingx intoequation(21).Wefind 2 Q(x) = Ck(xlm)n . (24) hδ¨x+ω2xxi4 =(cid:16)D20+ω2x(cid:17)x3+2D3D0x1+2D0D2x2. (30) klmn ω2x−[(k−l)ωr+(m−n)ωθ]2 TheoperatorD0D2actson x2,givenbyeq.(23).Theresulting formisfoundbyemployingthesolvabilityconditions(27)and In the thirdorder,the discussion is analogousin manyre- spects. The terms proportionalto ǫ3, which appear on the lhs (28): ofthegoverningequations,aregivenby 2D0D2x2 =ω2x Jα(x)Aα−1ρAαρ2Aα−3θAαθ4, (31) δ¨x+ω2x = D2+ω2 x +2iω D A −2iω D A . (25) |Xα|=4 x 3 0 x 3 x 2 x x 2 −x b b b b h i (cid:16) (cid:17) The terms containing D1x1 and D1x2bvanish in cobnsequence whereJα(x)arerealconstants.Byexpandingtherhswearriveat of the solvability condition (22). The rhs contains now cubic thegoverningequation termsoftheTaylorexpansion.Weobtain D2+ω2 x = −2iω D A +2iω D A 0 x 4 x 3 x x 3 −x D2+ω2 x = −2iω D A +2iω D A h i 0 x 3 x 2 x x 2 −x + C(x)bAα1Aα2Aα3Abα4, (32) (cid:16) (cid:17) α −ρ ρ −θ θ + C(x)bAα1Aα2Aα3Abα4, (26) |Xα|=4 α −ρ ρ −θ θ b b b b |Xα|=3 b b b b withC(x) realconstants.Onlyoneseculartermindependentof α where constants C(x) are real. The secular terms are summa- ω and ω appears on the rhs: −2iω D A . The sum contains α r θ x 3 x rizedin Table2 togetherwithresonancespossibleinthethird onlytermsthatbecomesecularneararesonance.Theseterms b order of approximation. Again, far from any resonance we andthesolvabilityconditionsarelistedinTable3. 6 J.Hora´k&V.Karas:Twin-peakquasiperiodicoscillationsasaninternalresonance(RN) Table3.Possibleresonancesinthefourthorderofapproxima- ω :ω = 1:2, 1:1, 3:2 and 1:4. These are all possible combi- θ r tion. nations that may occur within the given order of approxima- tion(thefirstthreecaseswereoriginallyidentifiedbyRebusco 2004,althoughshedoesnotmentionthefourthpossiblecom- ω :ω Secularterms bination).A generalargumentof non-linearanalysis suggests θ r thatthedominantresonancesarethoseoneswhichcorrespond Outside 2iωrD3Aρ to ratios of small natural numbers, although not every con- resonance 2iωθD3Abθ ceivable resonant combination comes up in a given physical 1:4 2iωrD3Abρ, K0004A4θ system. Indeed, it appears that the 3:2 ratio is the most im- 2iω D A , Λ A A3 portantcase whenthe high-frequencyQPO pairsare debated, θ 3bθ 0103bρ θ however, the true role of this resonance has not yet been un- b bb 2:3 2iω D A , K A A3 derstood; see also the discussion in Bursa (2005) and Lasota r 3 ρ 0130 ρ −θ 2iω D A , Λ A2A2 (2005).Proceedingfurthertohigher-ordertermsoftheexpan- θ 3bθ 0220bρb−θ sions revealseven moreresonances,butthese are expectedto b bb 3:2 2iω D A , K A2 A2 be very weak (recently various kinds of weird combinations r 3 ρ 2002 −ρ θ 2iω D A , Λ A3A havebeenexaminedbyTo¨ro¨ketal.2005). Hereafterwecon- θ 3bθ 0310bρ b−θ centrateonthefirstthreecombinations. b bb 4:1 2iω D A , K A3A r 3 ρ 0301 ρ θ 2iω D A , Λ A4 θ 3bθ 0400bρb Thecaseof1:2resonance b Thesolvabilityconditionstaketheform(cp.Tab.1andHora´k 2004) Anotablefeatureofinternalresonancesk:listhatkω and r i lω need not be infinitesimally close to each other, as might D A = − K A2, (37) θ 1 ρ 2ω 0002 θ be expected from the linear analysis. Consider, for example, r b i b an internal resonance 1:2, i.e. ωθ ≈ 2ωr. By eliminating the D1Aθ = −2ω Λ0110AρA−θ,. (38) secularterms,weobtainsolvabilityconditions(seeTab.1) θ b b b Thecoefficientsoftheresonanttermsaregivenby −2iω D A +K A A = 0, (33) r 1 ρ 1001 −ρ θ u u −2iωθbD1Aθ+Λ0b200Ab2ρ = 0. (34) K0002 =−ω2θ − 2r12, Λ0110 =−2ω2θ − r12, (39) 0 0 In each of thebse equatiobns the first term is regular, while the satisfyingamutualrelation2K =Λ . 0002 0110 second term is nearly secular (resonant) one. The solvability conditions give us the long-term behaviour of the amplitudes Thecaseof1:1resonance andphasesofoscillations.Supposenowthatthesystemdeparts fromthesharpratiobysmall(first-order)deviationsωθ =2ωr+ Thesolvabilityconditionsforthefirstorder,D A = D A =0, 1 ρ 1 θ ǫσ,whereσisthedetuningparameter.Thetermsproportional implythatthe complexamplitudesA and A dependonlyon toA A andA2stillremainsecularwithrespecttothevariable ρ θ b b −ρ θ ρ the secondscale T . The 1:1 (ω ≈ ω ) resonanceis the only 2 r θ T0.bThbiscanbbedemonstratedfromA−ρAθ = A∗ρAθei(ωθ−ωr)T0 = epicyclic resonance of the system bwith reflbection symmetry, A∗ρAθeiσT1eiωrT0.SimilarrelationholdbsfobrA2ρ. which occursin the thirdorderof approximation.The depen- denceonT impliesaslowerbehaviour.Thesolvabilitycondi- 2 b tionsare 2.3.Solutionofthesolvabilityconstraints i 2 soBibdyteacsionomfrpetahlaretiinToganysthloefor-creoxfepuffiannccidteieondntssgwoρviit(ehTrnsj)ianmagneedqpuoθawi(tTieorjns)sot(hf1aǫ)t–o(cn2a)nb,owbthee D2Abρ = −+K2ω01r1(cid:20)1K|A1θ20|20A(cid:12)(cid:12)(cid:12)Aρρ+(cid:12)(cid:12)(cid:12) KAb1ρ002A−ρA2θ , (40) (cid:21) solvedsuccessively.Afterrearrangingtoa“canonical”form, i b 2 b b D A = − Λ A A hD20+ω2riρn = X KijklAi−ρAρjAk−θAlθ, (35) 2bθ +Λ2ωθ(cid:20)|A11|021A(cid:12)(cid:12)(cid:12) ρ+(cid:12)(cid:12)(cid:12) Λbθ A2A (41) D2+ω2 θ = Λ Abi AbjAbk Abl, (36) 0012 θ θ 0210 ρ −θ 0 θ n ijkl −ρ ρ −θ θ (cid:21) h i X b b b where n is the order of abpprobximbatbion. In this way we iden- andthecoefficientsoftheresonanttermsaregivenby tify constants Kijkl and Λijkl. The studied gravitational poten- 5u2 tialissymmetricwithrespecttotheequatorialplane,therefore, K = r2 30 − 1u , (42) 1200 06ω 2 40 tdheerivseartiiveses(3o5f)t–h(e36e)ffceacntinvoetpcootnentatiinaltwerimthsrpersoppeocrtttioonθa.lHtoenocded, 1  θ 2u2 K = −10ω2+ 12 −3u contrarytoageneralcase,onlyspecificresonancesoccurhere: 0111 3 θ r2ω2 22  0 θ J.Hora´k&V.Karas:Twin-peakquasiperiodicoscillationsasaninternalresonance(RN) 7 8 3u −6r u +u + 30 , (43) 0 30 12r ω2  1 6u2 0 θ  u u K = −6ω2+ 12 −3u −2r u − 12 30 , (44) 1002 6 θ r2ω2 22 0 30 ω2  u 7u 0 θ5u2 10 θ  Λ = − 04 − 12 + 12 + ω2, (45) 0012 2r2 6r 6r2ω2 3 θ 0 0 0 θ Λ = K , (46) 0210 1002 Λ = K . (47) 1101 0111 Thecaseof3:2resonance Thesolvabilityconditionsinvolveboththethirdandthefourth orders.Hence,theamplitudesA ,A arefunctionsofbothtime ρ θ scales T and T . The elimination of regular secular terms in 3 4 thethirdorder(3ω ≈2ω ;seeTab.2)gives r θ Fig.3. Comparison between the analytical constraint D A = − i K A 2A +K |A |2A , (48) E(aρ,aθ) = const (an ellipse), derived in multiple-scales 2 ρ 2ωr (cid:20) 1200(cid:12) ρ(cid:12) ρ 0111 θ ρ(cid:21) approximation, and the corresponding exact (numerical) D Ab = − i Λ (cid:12)(cid:12)A (cid:12)(cid:12)2Ab +Λ |A |2Ab . (49) solution. The curly curve is the numerical solution of the 2 θ 2ωθ (cid:20) 1101(cid:12) ρ(cid:12) θ 0012 θ θ(cid:21) oscillationamplitudesaρ(t),aθ(t).Theagreementbetweenthe b (cid:12)(cid:12) (cid:12)(cid:12) b b twocurvesdemonstratesthataccuracyoftheapproximationis withthecoefficients satisfactoryovertheentiretimespan.Seethetextfordetails. 15u2 K1200 = r02 8ω30 − 12u40, (50) thesolvabilityconditionsadopttheexplicitform θ K = 1 −15ω2+ 9u12 −4u 2iωrD3Aρ = K2002 A⋆ρ 2A2θ ei(σ˜2T2+σ˜3T3), (58) Λ00011121 = −4−21ur80402r0+u3106θ34+59r4u02urω21102222θω−2θr101+1563uω32u2θ0r2102,+ 11365ω2θ, ((5512)) F222iiiiωωωnarθθlDDDly223,AAAbρθθy===su(cid:20)(cid:20)ΛΛKb0s113t121i000tu10A(cid:16)t(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)3ρiAAnAρρg⋆θ(cid:17)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)22ae++ip(σΛK˜o2Tl00a012+r1121σ˜f3||oAATr3θθm)||,22(cid:21)(cid:21)oAAfθρc.,omplex amplitu(((d665e109s))), Λ1101 = K0111. (53) Aρ ≡ 12a˜ρeiφρ andAθ ≡ 21a˜θeiφθ,wegetasetofeightequations governingthelong-termbehaviourofphasesandamplitudes: Theeliminationoftheresonanttermsgivesthesolvabilitycon- ditioninthefourthorder(Tab.3), D2a˜ρ=0, D2a˜θ =0, (62) K Λ D3Aρ =−2ωi K2002A2−ρA2θ, D3Aθ =−2ωi Λ0310A3ρA−θ, (54) D3a˜ρ= 1620ω0r2a˜2ρa˜2θsinγ, D3a˜θ =−1603ω1θ0a˜3ρa˜θsinγ, (63) r θ 1 whebretheresonantcboeffibcientsarbe b b D2φρ=−8ωr hK1200a˜2ρ+K0111a˜2θi, 1 K2002 =−1156ω2θ + 2372 ur102 + 16345 ru02ω2122θ − 214238 ru03ω3124θ DD2φφθ==−−K8ω20θ02hΛa˜11a˜021ac˜2ρos+γΛ, 001D2a˜φ2θi,=−Λ0310 a˜3cosγ, ((6654)) −9u + 27 u12u22 − 27r u + 81u212u30 3 ρ 16ωr ρ θ 3 θ 16ωθ ρ 8 22 16 r0ω2θ 16 0 30 64 r0ω4θ where the phase function has been introduced as γ(T2,T3) ≡ −σ T −σ T −3φ +2φ . The amplitudesa˜ and a˜ of the − 9 r0u22u30 − 81 r02u302 − 81 r0u12u230 osc2illa2tions3va3ryslowρly,becθausetheydependonρlyontθhethird 16 ω2θ 256 ω2θ 512 ω4θ time-scale T3. Phases φr and φθ of the oscillations evolve on r u u −1r u − 9 r2u − 9 0 12 40, (55) bothtimescalesT2andT3. 4 0 30 64 0 40 128 ω2 θ Λ = 2K . (56) 3. Thesystemevolutionnearthe3:2resonance 0310 3 2002 Byintroducingthedetuningparameter, 3.1.Theintegralsofmotion ω Thecaseof3:2resonanceisparticularlyrelevantforthehigh- σ≡3 r −2=ǫ2σ˜ +ǫ3σ˜ , (57) ω 2 3 frequencyQPOs,bothonobservationalandtheoreticalgrounds θ 8 J.Hora´k&V.Karas:Twin-peakquasiperiodicoscillationsasaninternalresonance(RN) u1 u2 r3:2 r3:2 0.2 0.15 F(u) 0.02 Type B 0.1 u) 0.05 G(u) Type C F(2 u), 0 ε F(1 -0.05 0.01 -0.1 -F(u) Type A -0.15 -0.2 0 0.2 0.4 0.6 0.8 1 0 u 0.5 0.55 0.6 0.65 0.7 r / a Fig.4.ThefunctionsF ≡ F(u),F ≡ −F(u),andG(u)from 1 2 eq.(81).Thesystemevolutionislimitedtotheintervalhu1,u2i, Fig.5. The 3:2 inner resonancesin the gravitationalfield of a wherethecondition|F(u)|≥|G(u)|issatisfied. sphericalpseudo-Newtonianstarandaring(a=9R ,µ=0.1). S Theregionsofdifferentphase-planetopologyareidentifiedin (r,E)-plane.Threetypescanbedistinguishedaccordingtothe (cf. Abramowicz & Kluz´niak 2001; Kluz´niak et al. 2004 for numberofcriticalpoints:A–nocriticalpoint(thesystemisfar argumentsin favour of 3:2 ratio in high-frequencyQPOs and fromresonance);B–onecriticalpoint;C–twocriticalpoints. forfurtherreferences).We thereforediscussthiscaseinmore detail,however,similardiscussioncouldbepresentedalsofor other resonances (Hora´k 2005). Reintroducing single physi- Then the oscillations are described by two equations for ξ(t) cal time t, the equations for the second and the third order andγ(t), can be combinedtogether.Time derivativesare then givenby ξ˙= 1βω ξ2 1−ξ2 E3/2sinγ, (71) d/dt=ǫ2D2+ǫ3D3.Amplitudesandphasesoftheoscillations 16 θ (cid:16) (cid:17) aregovernedbyequations γ˙=−σω + 1ω E µ ξ2 θ 4 θ r a˙r = 214βωra2ra2θsinγ, (66) +94µθ 1−ξ2 h+ 41βξ 3−5ξ2 E1/2cosγ , (72) a˙ = − 1βω a3a sinγ, (67) (cid:16) (cid:17) (cid:16) (cid:17) i θ 16 θ r θ whichsatisfytheidentity ω a γ˙ = −σωθ+ 4θ (cid:20)µra2r +µθa2θ + 2r (cid:16)αa2θ −βa2r(cid:17)cosγ(cid:21), (68) ξ˙dγ−γ˙dξ=0. (73) where a = ǫa˜ , a = ǫa˜ and µ , µ and β are defined by Substituting for ξ˙ and γ˙ from eqs. (71)–(72), eq. (73) implies ρ ρ θ θ r θ relations Λ = 2K = βω2, K −Λ = ω2µ , and that 0310 3 2002 θ 1200 1101 r r K −Λ =ω2µ .Theamplitudesandphasesarenotmutu- 0111 0012 θ θ F ≡ 8 1−ξ2 σ+E µ ξ4− 4µ 1−ξ2 2 allyindependent;theequations(66)–(67)implythatthequan- r 9 θ (cid:16) (cid:17) (cid:20) (cid:16) (cid:17) (cid:21) tity +βE3/2ξ3 1−ξ2 cos γ (74) E=a2+ 9a2 =const (69) (cid:16) (cid:17) ρ 4 θ is a secondintegralof motion.Fora givenvalueofenergyE, remains conserved during the system evolution. Clearly, E is thesystemfollowsF = constcurves.Intheotherwords,pro- proportional to the total energy of the oscillations. The exis- jectionofthesolutiononto(γ,ξ)-planesatisfies tence of this integral is a general property of a conservative F(γ,ξ)=const. (75) system.Naturally,itisnotlimitedtotheparticularformofthe perturbingpotential(7), which we considerhere, and it holds This allowsus to constructtwo-dimensionalphase-spacesec- in Newtonian,pseudo-Newtonianas well as general-relativity tionsinwhichthesystemevolutiontakesplace. versions of the equations of motion (the pseudo-Newtonian casewasexamined,indetail,byAbramowiczetal.2003,and 3.2.Stationarypointsandthephase-planetopology Hora´k 2004). One can watch the accuracyto which E is con- servedinordertoverifytheanalyticalapproachagainsttheex- Stationary points are given by the condition ξ˙ = γ˙ = 0. actnumericalsolution(we showsuchcomparisonin Figure3 According to eq. (71), γ-coordinate of these points satisfies forthepseudo-NewtoniancaseofAbramowiczetal.2003). sinγ = 0, and therefore γ = kπ with k being an integer. Equations(66)–(67)canbemergedinasingleequationby Substituting γ˙ = 0 and cosγ = ±1 in eq. (72), we find a cu- introducingthefollowingparameterization: bicequation, a2 =ξ2E, a2 = 4 1−ξ2 E. (70) −4σ+ µ ξ2+ 4µ 1−ξ2 E±βξ 3−5ξ2 E3/2 =0. (76) ρ θ 9 r 9 θ (cid:16) (cid:17) h (cid:16) (cid:17)i (cid:16) (cid:17) J.Hora´k&V.Karas:Twin-peakquasiperiodicoscillationsasaninternalresonance(RN) 9 The solutiondeterminesξ-coordinateof the stationarypoints. whereT canberoughlyapproximatedas In the case of small oscillations (E ≪ 1), the solution can be approximatedbykeepingonlytermsupto thelinearoneinE 16π T ∼ E−3/2. (86) ineq.(76).Weobtain βω θ 9σ¯ −µ ξ2 = θ , (77) Notice that this time-scale is longer than the period of indi- 94µr−µθ vidualoscillationsanditsayshowfastthesystemswapsitself between the radialand verticaloscillation modes. The simple where σ¯ ≡ σ/E. The first correctionto this solution is of the estimate(86)isquitepreciseinmostpartsofthephasespace, order of E1/2. Deviations between ξ-coordinatesof stationary although it becomes inaccurate near stationary points, where pointsatoddandevenmultiplesofπareofthesameorder. therateofenergyexchangeslowsdown. The solution (77) lies within the allowed range provided Finally,weillustrateourresultswithasimplecase,which that 1µ ≶ σ¯ ≶ 1µ withthedenominatorD ≡ 9µ −µ ≶ 0, 4 r 9 θ 4 r θ wealreadyintroducedatthebeginningofthepaper(sect.2.1): respectively.ThiscanbeexpressedintermsofenergyE:given the gravitational field generated by a pseudo-Newtonian star thedetuningparameterσ,stationarypointsappearinthe(γ,ξ) andanarrowcircularring.Theresonantconditionω /ω =3/2 planeiftheenergyofoscillationssatisfies θ r is now fulfilled at three different radii, two of them lying be- σ σ tweenthestarandthering,andthethirdoneoutsidethering. 9 ≶E≶4 for D≷0. (78) µ µ The resonances occurring at first two radii are called the in- θ r ner resonances, whereas the latter is the outer resonance (not The examination of phase-plane topology near critical to be confused with ‘internal resonance’, which they are all). pointsleadstotheequation We restrict ourselves to the inner resonances, for which we ∂ξ˙ ∂γ˙ ∂ξ˙ ∂γ˙ find σ, µr, µθ and β as functions of r. For a fixed radius, in- −λ −λ − =0 (79) equalities(78)giveustheenergyrangeoftheoscillations.The ∂ξ ! ∂γ ! ∂γ ∂ξ result is shown in Figure 5, where we identify three different foreigenvaluesλofthesystemoflinearizedequations(71)and phase-planetopologiesin the(r,E)-section.Thesecanbedis- (72).Evaluatingthepartialderivativesatthecriticalpointand tinguished by the number of critical points and the shape of keepingonlythetermsofthelowestorderinE3/2,weobtain separatrices.ThetopologychangeisevidentinFigure6,where two-dimensionalplots are constructed for the integral of mo- λ2 =± 1ω2βξ3 1−ξ2 DE5/2. (80) tionF(ξ,γ). 72 θ (cid:16) (cid:17) Examiningthe sign of λ2 demonstratesthatthe criticalpoints 3.4.Frequenciesoftheresonantoscillations ofcentraltopologyalternatewiththoseofsaddletopology. Equations(63)–(65)givetheshiftofactual(observed)frequen- 3.3.Thetimedependence cies of oscillations, ω∗r and ω∗θ, with respect to the eigenfre- quenciesω andω : r θ The equation for ξ(t) can be derived by combining eqs. (71) and(74).Eliminatingcosγ,wearriveattherelation ω∗ =ω +φ˙ , ω∗ =ω +φ˙ . (87) r r r θ θ θ Ku˙2 = F2(u)−G2(u), (81) Theserelationscanbecombinedtofind whereweintroducedanewvariableu(t)≡ξ2.TheconstantK andfunctionsF(u)andG(u)aredefinedby 2ω∗−3ω∗ =2ω −3ω +2φ˙ −3φ˙ =γ˙. (88) θ r θ r θ r 1 8 2 Theobservedfrequenciesareinexact3:2ratioif(andonlyif) K ≡ , (82) E3/2 ωθβ! thetime-derivativeofthephasefunctionγvanishes.Animme- F(u) ≡ u3/2(1−u) (83) diate implicationfor the frequenciesof stationary oscillations with constant amplitudes is that they stay in exact 3:2 ratio, 1 G(u) ≡ βE3/2 F −8σ(1−u)−µrEu2+ 49µθE(1−u)2 . (84) even if the eigenfrequenciesmay depart from it. Outside sta- h i tionary points, it is evident from Fig. 6 that γ˙ = 0 represents The motion is allowed only for u˙2 ≥ 0, and so the condition turningpointsonlibrationtracks(thoseones,whichareencir- ±F(u) = G(u)givesustwoturningpoints,u andu ,between cledbytheseparatrixcurve).Hence,eq.(88)discriminatesbe- 1 2 which the evolutionary path oscillates. The functions ±F(u) tween librating and circulating trajectories in the (γ,ξ)-plane. andG(u)areplottedinFigure4. Circulatingtrajectoriesspanthefullrangeof−π ≤ γ < πand Theperiodofenergyexchangecanbefoundbyintegrating they donotcontainany turningpoint;γ˙ remainsnonzeroand eq.(81): thetwinfrequenciesnevercrosstheexact3:2ratiointheregion ofcirculation.Ontheotherhand,therearetwopointsγ˙ =0on 16 u2 du eachlibratingtrajectory.Insuchstatetheratioofobservedfre- T = E−3/2 , (85) βωθ Zu1 F2(u)−G2(u) quenciesslowlyfluctuatesabout3:2. p 10 J.Hora´k&V.Karas:Twin-peakquasiperiodicoscillationsasaninternalresonance(RN) 1 1 1 0.8 0.95 0.8 0.6 0.9 0.6 ξ ξ ξ 0.4 0.85 0.4 0.2 0.8 0.2 0 0.75 0 -π -π/2 0 π/2 π -π -π/2 0 π/2 π -π -π/2 0 π/2 π γ γ γ Fig.6.Differenttopologiesofthephase-spacesectionsareshownin(ξ,γ)-plane.Thesystemevolutionfollowsthecontourlines F(ξ,γ)=const.TheirshapedeterminesapossiblerangeofthefrequencychangeoftheQPOs.Separatrixcurve(thickline;cases B and C) dividesthe regionsof circulatingtracksfromthe regionsof libration.Parametersand notationas in previousfigure: A(left;r=0.6a,E=0.02),B(middle;r=0.65a,E=0.02),C(right;r=0.55a,E=0.05). 4. Conclusions modelsincludingnon-gravitationalforces(seePe´tri2005fora recentexpositionoftheproblemandforreferences).Asanext We have discussed the resonance scheme for high-frequency step towards an astrophysically realistic scheme, one should QPOs via multiple-scales analysis, assuming an axisymmet- take dissipativeand non-potentialforcesinto account,as well ricconservativesystemwithtwodegreesoffreedom.Thisap- as non-axisymmetricperturbations. These will allow our sys- proachprovidesausefulinsightintogeneralpropertiesthatare tem to migrate across contours in the phase-plane and to un- common to different conceivable mechanisms driving the os- dergo transitions when crossing separatrices. Such additional cillations, although it does not address the question how the terms could also supplementthe influence of externalforcing observedsignalisactuallyformedandmodulated.Inoursce- and initiate the oscillations of the system. The internal reso- nario, amplitudes and phases of the oscillations are mutually nancewouldthendefinetheactualfrequenciesthatareexcited; connectedand theyfollowtracksin the phase space with dis- thiswaythestronggravityunmasksitself. tinct topologies. The particular form was assumed to couple theoscillationmodesviathenon-sphericaltermsinthegravi- Acknowledgements. VK appreciates fruitful discussions with par- tationalfieldofa ring.We considerthisto bea toy-modelfor ticipants of the Aspen Center for Physics workshop ‘Revealing rather generalbehaviour,which should take place in any sys- Black Holes’, and both of us thank for the hospitality of temgovernedbyequationsoftype(1)–(2). NORDITA (Copenhagen). We gratefully acknowledge the financial support from the Czech Science Foundation (refs. 205/06/P415 and WeassumedtheNewtonian(orthepseudo-Newtonian)de- 202/06/0041)andtheGrantAgencyoftheAcademyofSciences(ref. scription of the central gravitational field with a perturbation IAA300030510)thathavebeenhelpingusatdifferentstagesofthepa- byanalignedringasanexample.Theadoptedformisnotes- perpreparation. TheAstronomical Institutehasbeenoperatedunder sentialforgeneralconclusions.Infact,equations(1)–(2)cover theprojectAV0Z10030501. alsothenearly-geodesicmotionaroundaSchwarzschildblack hole.Comparedwiththepseudo-Newtoniancase, generalrel- References ativity does not bring qualitatively new features, as long as the system is conservative (additional terms will arise in the AbramowiczM.A.,KarasV.,Kluz´niakW.,LeeH.,RebuscoP.,2003, expansions, which then translate to slightly different value of PASJ,55,467 the resonance radius and to different duration of time inter- AbramowiczM.A.,Kluz´niakW.,2001,A&A,374,L19 BarretD.,Kluz´niakW.,OliveJ.F.,PaltaniS.,Skinner G.K.,2005, vals in physical units). A natural question arises whether the MNRAS,357,1288 gravitational field of a rotating black hole could provide the Bursa M., 2005, in Processes in the Vicinity of Black Holes and perturbationrequiredfortheinternalresonanceinasurround- Neutron Stars, Vol. 6/7, eds. S. Hled´ık & Z. Stuchl´ık (Silesian ingdisc.Weconsideredthispossibility,however,itisunlikely University,Opava),inpress thatKerrmetriccouldbyitself suffice:intheweak-fieldlimit Bursa M., Abramowicz M. A., Karas V., Kluz´niak W.,2004, ApJL, non-spherical terms seem to be incapable of creating separa- 617,L45 tricesinthephase-spacesectionsdiscussedabove,whereasin Homan J., Miller J. M., Wijnands R., van der Klis M., Belloni T., the full (exact, vacuum) Kerr metric the special mathemati- SteeghsD.,LewinW.H.G.,2005,ApJ,623,383 cal properties of the spacetime ensure the integrability of the Hora´kJ.,2004,inProcessesintheVicinityofBlackHolesandNeutron geodesic motion, and hence prevent the occurrence of inter- Stars,Vol.4/5,eds.S.Hled´ık&Z.Stuchl´ık(SilesianUniversity, Opava),p.91(astro-ph/0408092) nal resonances. Therefore, the problem of a specific mecha- Hora´kJ.,2005,Thesis(CharlesUniversity,Prague) nismlaunchingandmaintainingtheoscillationsremainsunan- Hora´kJ.,AbramowiczM.A.,KarasV.,Kluz´niakW.,2004,PASJ,56, swered. 819 Variousoptionsforthegeneralisationofourschemecould KarasV.,Hure´J.-M.,Semera´kO.,2004,CQG,21,R1 bemotivatedbypapersofotherauthorswhoproposedspecific KatoS.,2004,PASJ,56,905

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.