Tutorial on the adversary method for quantum and classical lower bounds Sophie Laplante LRI, Université Paris-Sud Orsay Adversary method lower bounds Semidefinite Quantum Exact Programming complexity query complexity [BSS03] Strong lower bound Kolmogorov Polynomial method method [LM04] [BBCMW01] Weighted Spectral adversary method [A03] [BSS03] Adversary Weak method [A02] lower bound 2 Summary of this talk Deterministic method |R| DT(f) ≥ max |R | i i - General statement ! m m ≥ max{ , } ! l l - Combinatorial bound Quantum method c |R| ε Q (f) ≥ ε Progress (i) i t - General statement ! ! c mm ε ≥ 2 " ll! - Combinatorial bound [A02] ! ! p(x)p(y)p (y)p (x) Weighted method [A03, LM04] cε ! x,i y,i Q (f) ≥ min ε 2 x,y,i q(x,y) c "Γ" ε Spectral method [BSS03] Q (f) ≥ ε 2 max "Γ " i i 3 Classical decision tree model To compute a boolean function x =? 1 f : {0,1}n → {0,1}, x = 0 x = 1 1 1 Model : decision tree x =? x =? 2 3 x = 0 x = 1 x = 0 x = 1 Cost : Number of queries to 2 2 3 3 input x =? 3 x = 0 x = 1 3 3 Query complexity of f : x =? x =? 5 5 depth of shallowest decision x = 0 x = 0 5 5 x = 1 x = 1 5 5 tree for f ACC REJ REJ ACC 4 Quantum query model ancilla • O Query: Unitary transformation that U x Computation 0 maps | i , b ! to | i , b ⊕ x " i O Query x • Computation : = 0 |ψ ! U O · · · O U | ! U T T x x 0 Computation 1 O Query x • Output: Measure 1st qubit of | ψ T ! • Error probability at most 1/3 O • Query x Same model with stochastic matrices for randomized query complexity U Computation T output 5 Estimating number of pieces by their size 6 Adversary method, deterministic setting {x : f(x)=1} R {y : f(y)=0} Goal: separate {x : f(x)=1} from {y : f(y)=0} with minimum queries to input bits • x y Subrelation R : pairs for i≠ i i which query i is useful y x • Queries ≥ number of R i needed to cover R. R |R| i DT(f) ≥ max |R | i i 7 Deterministic lower bound {x : f(x)=1} R {y : f(y)=0} • left degree of R ≥ m right degree ≥ m’ • left degree of all R ≤ l i x y right degree ≤ l’ i≠ i • |R| ≥ m|X|, m’|Y| y x • |R | ≤ l|X|, l’|Y| i |R| DT(f) ≥ R max |R | i i i ! m m ≥ max{ , } ! l l 8 Progress on x, y, i after a query (cid:15464) At time t, progress towards distinguishing (x,y) R i by making one query : Progress x,y(i) • t Deterministic case i 1 if query(x,t) = DProgress x,y(i) = t ! 0 otherwise • Randomized case RProgress x,y(i) = x y 2 min{p (i), p (i)} t t t • Quantum case ? (next slide) 9 Quantum progress State of the system after query t, on input x is written x |ψ ! t (cid:15464) Fix (x,y) R. i Amplitude2 of | ! x |ψ ! in query t, input x 0 • At beginning, x y = 1 y !ψ |ψ " |ψ ! 0 0 0 • At each time step, |!ψx|ψy" − !ψx |ψy "| ≤ 2 px(i)py(i) t t t+1 t+1 ! " t t i:x !=y i i • At the end, x y |!ψ |ψ "| ≤ 2!ε(1 − ε) T T c ε T · 2 px(i)py(i) ≥ 1−2 ε(1−ε) " ! t t # i Progresst (i) x,y 10
Description: