ebook img

Transport Effects on Multiple-Component Reactions in Optical Biosensors PDF

0.59 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Transport Effects on Multiple-Component Reactions in Optical Biosensors

NonamemanuscriptNo. (willbeinsertedbytheeditor) Transport Effects on Multiple-Component Reactions in Optical Biosensors RyanM.Evans · DavidA.Edwards Received:date/Accepted:date 7 1 0 Abstract Manybiochemicalreactionsinvolveastreamofchemicalreactants(ligand 2 molecules)flowingoverasurfacetowhichotherreactants(receptors)areconfined. n Scientistsmeasurerateconstantsassociatedwiththesereactionsinanopticalbiosen- a J sor:aninstrumentinwhichligandmoleculesareconvectedthroughaflowcell,over 6 a surface on which receptors are immobilized. In applications such as DNA dam- 2 agerepairmultiplesimultaneousreactionsoccuronthesurfaceofthebiosensor.We quantify transport effects on such multiple-component reactions, which result in a ] N nonlinearsetofintegrodifferentialequationsforthereactingspeciesconcentrations. In physically relevant parameter regimes, these integrodifferential equations further M reducetoanonlinearsetofordinarydifferentialequations,whichmaybeusedtoes- . timaterateconstantsfrombiosensordata.Weverifyourresultswithasemi-implicit o i finitedifferencealgorithm. b - Keywords Biochemistry·Opticalbiosensors·Rateconstants·Partialdifferential q equations·Integrodifferentialequations·Numericalmethods [ 1 v 1 Introduction 9 8 4 Many biochemical reactions in nature involve a stream of chemical reactants (lig- 0 and molecules) flowing through a fluid-filled volume, and another reactant (recep- 0 . 2 ThisworkwasdonewiththesupportoftheNationalScienceFoundationunderawardnumbernsf-dms 0 1312529,andwasalsopartiallysupportedbytheNationalResearchCouncilthroughanNRCpostdoctoral 7 fellowship. 1 R.M.Evans : v AppliedandComputationalMathematicsDivision,InformationandTechnologyLab, i NationalInstituteforStandardsandTechnology,Gaithersburg,MD20899,USA X E-mail:[email protected] r D.A.Edwards a DepartmentofMathematicalSciences,UniversityofDelaware,Newark,DE19716,USA E-mail:[email protected] 2 RyanM.Evans,DavidA.Edwards tors)confinedtoasurface.Suchsurface-volumereactionsoccurduringplateletad- hesion (Austin, 2009), drug absorption (Bertucci et al., 2007), antigen-antibody in- teractions (Raghaven et al., 1994), and DNA damage repair (Zhuang et al., 2008). Fundamental to understanding these reactions is getting accurate quantitative mea- surements of the underlying reaction rate constants. To measure rate constants as- sociatedwithsurface-volumereactions,scientistsuseopticalbiosensors:seeFigure 1.1foraschematicofonesuchinstrument;here,x=0correspondstotheinletand (cid:101) y=0correspondstothesensorsurface.Biosensortechnologyhasbecomeextremely (cid:101) popularinrecentyears;10,000papershavecitedtheuseofanopticalbiosensorasof 2009alone(RichandMyszka,2011). Forourpurposes,biosensorexperimentsarepartitionedintotwophases:thein- jectionphase,andthewashphase.Duringtheinjectionphase,ligandmoleculesare injectedintothebiosensorviaabufferfluidinastandardtwo-dimensionalPoiseuille (cid:0) (cid:1) flowprofilefromtheinletatx(cid:101)=0atconcentrationC(cid:101) x(cid:101),y(cid:101),(cid:101)t ;thetildevariablesde- note dimensional quantities throughout. The ligand molecules then diffuse through thebufferontothechannelfloortobindwithreceptorsimmobilizedonthesurface. Mass changes on the floor due to ligand binding are averaged over a portion of the channelfloor[x ,x ]toproducemeasurementsoftheform (cid:101)min (cid:101)max 1 (cid:90) x(cid:101)max B(cid:101)(t)= x −x B(cid:101)(x(cid:101),(cid:101)t)dx(cid:101), (1.1) (cid:101)max (cid:101)min x(cid:101)min (cid:0) (cid:1) whereB(cid:101) x(cid:101),(cid:101)t istheconcentrationofboundligandmolecules.Aftertheboundstate reachesachemicalequilibrium,scientiststhenpreparethedeviceforanotherexper- iment by washing it with the buffer fluid–this is the wash phase of the experiment. Onlybufferisflowingthroughthebiosensorduringthewashphase,notbuffercon- tainingtheligandmolecules.Thishastheeffectofcausingallboundligandmolecules togetsweptoutofthebiosensor,therebycleaningthedeviceforanotherexperiment. Measuringrateconstantswithbiosensordatareliesonhavinganaccuratemathe- maticalmodelofthisprocess;mathematicalmodelshavebeensuccessfullyproposed and progressively refined throughout the years: (Edwards, 1999, 2000, 2001, 2006, 2011; Edwards et al., 1999; Lebedev et al., 2006; Zumbrum and Edwards, 2014, 2015).Althoughsuchmathematicalmodelsaretypicallylimitedtoreactionsinvolv- ing only a single molecule or a single step, chemists are currently using biosensor technology to measure rate constants associated with reactions involving multiple components. For example, chemists are now using biosensor experiments to eluci- date how cells cope with DNA damage. Harmful DNA lesions can impair a cell’s abilitytoreplicateDNA,anditsabilitytosurvive.Onewayacellmayrespondtoa DNAlesionisthroughDNAtranslesionsynthesis(Friedberg,2005;Lehmannetal., 2007; Plosky and Woodgate, 2004). For a description of this process we refer the interested reader to the references included herein; however, for our purposes it is sufficienttoknowthatDNAtranslesionsynthesisinvolvesmultipleinteractingcom- ponents:aProliferatingCellNuclearAntigen(PCNA)molecule,polymeraseδ,and polymerase η. Further, in order for a successful DNA translesion synthesis event to occur polymerase δ must bind with a PCNA molecule. A central question sur- roundingDNAtranslesionsynthesisiswhetherpolymeraseδ directlybindswiththe TransportEffectsonMultiple-ComponentReactionsinOpticalBiosensors 3 bound complex unbound unbound ligand receptor magnified view of area in small circle H parabolic flow ỹ reacting zone       evanescent wave ̃xmin ̃xmax  ̃x         L     Fig. 1.1: Cross-sectional schematic of an optical biosensor experiment. The instru- menthaslengthL(cid:101)andheightH(cid:101).Ligandmoleculesareconvectedintoinstrumentin a Poiseuille flow profile and transported to the surface to bind with receptors. The receptorsarelimitedtothereactingzonex=x tox=x . (cid:101) (cid:101)min (cid:101) (cid:101)max PCNA,orwhetherthepolymeraseδ andPCNAcomplexformsasaresultofaligand switchingprocess(Zhuangetal.,2008). TheformerscenarioisdepictedinFigure1.2,wherewehaveshownpolymerase δ directlybindingwithaPCNAmolecule,i.e.thereaction: P1:E+L2−(cid:41)2−−(cid:101)k(cid:42)−a EL2. (1.2a) 2(cid:101)kd Here, we have denoted the PCNA molecule and polymerase δ as E and L respec- 2 tively.Additionally,2(cid:101)kadenotestherateatwhichL2bindswithaPCNAmoleculeE, and2(cid:101)kd denotestherateatwhichL2 dissociatesfromaPCNAmoleculeE.Wewill refertothisaspathwayone,orsimplyP asin(1.2a). 1 TheligandswitchingprocessisshowninFigure1.3andstatedpreciselyas: P2:E+L1−(cid:41)1−−(cid:101)k(cid:42)−a EL1, EL1+L2(cid:41)−12−−(cid:101)k(cid:42)−a EL1L2−(cid:41)21−−(cid:101)k(cid:42)−d EL2+L1. (1.2b) 1(cid:101)kd 12(cid:101)kd 21(cid:101)ka First, polymerase η (denoted L ) binds with a PCNA molecule; next polymerase δ 1 associateswiththepolymeraseη andPCNAcomplex;finallypolymeraseη switches out,therebyleavinguswiththepolymeraseδ andPCNAcomplex.Eachoneofthe steps in thismultiple-component process is reversible. In (1.2b) and Figure1.3, the rateconstants1(cid:101)ka and1(cid:101)kd denotetheratesatwhichpolymeraseη bindsandunbinds with a PCNA molecule (respectively), ij(cid:101)ka denotes the rate at which ligand Li binds withtheproductELj,andij(cid:101)kddenotestherateatwhichLidissociatesfromtheproduct EL L .Inthelattertwoexpressionstheindicesiand jcanequaloneortwo.Weshall 1 2 refertothispathwaytwo,orsimplyP asin(1.2b). 2 4 RyanM.Evans,DavidA.Edwards L2 2(cid:101)ka L2 2(cid:101)kd EL2 E Fig. 1.2: Direct binding of polymerase δ with a PCNA molecule. We have labeled polymeraseδ andthePCNAmoleculeasL andE respectively. 2 L2 L1 L1 L2 1(cid:101)ka 21(cid:101)ka 12(cid:101)kd 1(cid:101)kd 21(cid:101)kd 12(cid:101)ka E EL1 EL1L2 EL2 Fig.1.3:Schematicoftheligandswitchingprocess.First,polymeraseη bindswith the PCNA molecule; next, polymerase δ binds with the polymerase η and PCNA complex; finally, polymerase η dissociates, leaving us with the polymerse δ and PCNA complex. We have labeled polymerase η, polymerase δ, and the PCNA moleculeasL ,L ,andE respectively. 1 2 By measuring the rate constants associated with this multiple-component pro- cess,onecouldthereforedeterminewhetherEL formsasaresultofligandbinding 2 or the ligand switching process described above. To measure the kinetic rate con- stants, scientists first immobilize PCNA molecules on the surface of the biosensor. Afterreceptorimmobilization,scientistsinjectL andL intotheinstrumentatcon- 1 2 centrationsC(cid:101)1(x(cid:101),y(cid:101),(cid:101)t) andC(cid:101)2(x(cid:101),y(cid:101),(cid:101)t). The ligands L1 and L2 are then transported to the surface to bind with available receptor sites E, creating the three products EL , 1 EL1L2,andEL2atconcentrationsB(cid:101)1(x(cid:101),(cid:101)t), B(cid:101)12(x(cid:101),(cid:101)t),andB(cid:101)2(x(cid:101),(cid:101)t). Thepresenceofmultiplereactingspecieschangestheformofbiosensorfeedback (i.e.,thesensogramreading).Mostopticalbiosensorsmeasureonlymasschangesat thesurfaceduetoligandbinding,andproducelumpedmeasurementsoftheform S(cid:102)((cid:101)t)=s(cid:101)1B(cid:101)1((cid:101)t)+(s(cid:101)1+s(cid:101)2)B(cid:101)12((cid:101)t)+s(cid:101)2B(cid:101)2((cid:101)t), (1.3) whereB(cid:101)i((cid:101)t)isdefinedanalogouslyto(1.1).Measuringrateconstantsassociatedwith this multiple-component process involves calculating the sensogram signal (1.3), whichreliesonamathematicalmodel.Thestraightforwardwell-stirredkineticsap- proximationisinappropriatesinceitdoesnotaccountformechanismswhichtrans- portligandmoleculestothereactingsurface.Thoughtransporteffectsonbimolecular TransportEffectsonMultiple-ComponentReactionsinOpticalBiosensors 5 kineticsarewellstudied,fewifanyattemptshavebeenmadetoanalyticallyquantify sucheffectsonmultiple-componentreactions.Hence,wemodelthefullconvection- diffusionsystemwithmultiplecoupledreactionsattheboundary.HighPe´cletnumber flowimpliesthattransporteffectsarerelevantonlyinathinunstirredregionnearthe surface, and our Partial Differential Equation (PDE) system reduces asymptotically toacouplednonlinearsetofIntegrodifferentialEquations(IDEs).Inphysicallyrel- evantparameterregimes,thissetofIDEsfurthersimplifiestoasetofOrdinaryDif- ferentialEquations(ODEs),whichcanbeusedtodeterminetherateconstantsfrom biosensordata.BycomparingthesolutionofourODEsystemwithasemi-implicit finite-difference solution to the IDE system, we show that this reduction holds for a wide parameter range, thus providing experimentalists with a tool to measure the rate constants in (1.2) and reveal the underlying pathway of polymerase δ in DNA translesionsynthesis. Weremarkthattheabovediscussionmayraiseuniquenessconcerns,sincemore thanonesetofrateconstantsmaypossiblycorrespondtothesamesignal(1.3).Fortu- nately,throughvaryingtheuniformin-flowconcentrationsoftheligands,C(cid:101)1(0,y(cid:101),(cid:101)t)= C(cid:101)1,uandC(cid:101)2(0,y(cid:101),(cid:101)t)=C(cid:101)2,u,onemayresolvethisill-posednessincertainphysicallyrel- evantscenarios(Evans,R.M.andEdwards,D.A.andLi,W.,inpreparation).This approachtoidentifyingthecorrectsetofrateconstantsinthepresenceofambiguous dataisrelatedtothe“globalanalysis”techniqueinbiologicalliterature(Karlssonand Fa¨lt,1997;Mortonetal.,1995). 2 GoverningEquations 2.1 InjectionPhase Wenowpresenttheequationsgoverningreactionkineticsduringtheinjectionphase; tothisendwelet B(cid:101)(x(cid:101),(cid:101)t)=(B(cid:101)1(x(cid:101),(cid:101)t),B(cid:101)12(x(cid:101),(cid:101)t),B(cid:101)2(x(cid:101),(cid:101)t))T denote a vector in R3 whose components are the three bound state concentrations; B(cid:101)Σ =B(cid:101)1+B(cid:101)12+B(cid:101)2; and R(cid:101)T denote the initial empty receptor concentration. Note, thetotalconcentrationofemptyreceptorsatanypointduringtheexperimentisgiven (cid:0) (cid:1) by [E](x(cid:101),(cid:101)t)=R(cid:101)T−B(cid:101)Σ x(cid:101),(cid:101)t . Applying the law of mass action to (1.2a) and (1.2b) givesthefollowingsetofpartialdifferentialequationsforB(cid:101)i(x(cid:101),(cid:101)t): ∂∂B(cid:101)(cid:101)t1 =1(cid:101)ka(R(cid:101)T−B(cid:101)Σ)C(cid:101)1(x(cid:101),0,(cid:101)t)+12(cid:101)kdB(cid:101)12−1(cid:101)kdB(cid:101)1−12(cid:101)kaB(cid:101)1C(cid:101)2(x(cid:101),0,(cid:101)t), ∂∂B(cid:101)(cid:101)t12 =12(cid:101)kaB(cid:101)1C(cid:101)2(x(cid:101),0,(cid:101)t)+21(cid:101)kaB(cid:101)2C(cid:101)1(x(cid:101),0,(cid:101)t)−12(cid:101)kdB(cid:101)12−21(cid:101)kdB(cid:101)12, (2.1) ∂∂B(cid:101)(cid:101)t2 =2(cid:101)ka(R(cid:101)T−B(cid:101)Σ)C(cid:101)2(x(cid:101),0,(cid:101)t)+21(cid:101)kdB(cid:101)12−2(cid:101)kdB(cid:101)2−21(cid:101)kaB(cid:101)2C(cid:101)1(x(cid:101),0,(cid:101)t), B(cid:101)(x(cid:101),0)=0; 6 RyanM.Evans,DavidA.Edwards these equations hold on the reacting surface when y(cid:101)=0 and x(cid:101)∈[0,L(cid:101)]. The instru- ment’s height H(cid:101) is much less than its length L(cid:101), hence its aspect ratio ε =H(cid:101)/L(cid:101) is small. Onthereactingsurfaceaty˜=0,thediffusivefluxofligandisusedupinbinding toformthevariousboundstates: −D(cid:101)1∂∂C(cid:101)y1(x(cid:101),0,(cid:101)t)=−1(cid:101)ka(R(cid:101)T−B(cid:101)Σ)C(cid:101)1(x(cid:101),0,(cid:101)t)+1(cid:101)kdB(cid:101)1 (2.2a) (cid:101) −21(cid:101)kaB(cid:101)2C(cid:101)1(x(cid:101),0,(cid:101)t)+21(cid:101)kdB(cid:101)12, −D(cid:101)2∂∂C(cid:101)y2(x(cid:101),0,(cid:101)t)=−2(cid:101)ka(R(cid:101)T−B(cid:101)Σ)C(cid:101)2(x(cid:101),0,(cid:101)t)+2(cid:101)kdB(cid:101)2 (2.2b) (cid:101) −12(cid:101)kaB(cid:101)1C(cid:101)2(x(cid:101),0,(cid:101)t)+12(cid:101)kdB(cid:101)12. Here D(cid:101)1 and D(cid:101)2 (respectively) denote the diffusion rates of L1 and L2 through the buffer.Thefourtermsontheright-handsideof(2.2a)are(inorder):lossofC(cid:101)1 toan emptyreceptortoformB(cid:101)1;dissociationofB(cid:101)1,whichaddstoC(cid:101)1;lossofC(cid:101)1 toB(cid:101)2 to formB(cid:101)12;anddissociationofB(cid:101)12intoB(cid:101)2andC(cid:101)1.Thetermsontheright-handsideof (2.2b)havesimilarinterpretations.Butthenusing(2.1),wehave D(cid:101)1∂∂C(cid:101)y(cid:101)1(x(cid:101),0,(cid:101)t)= ∂B(cid:101)1∂((cid:101)tx(cid:101),(cid:101)t)+∂B(cid:101)1∂2((cid:101)tx(cid:101),(cid:101)t), (2.3a) D(cid:101)2∂∂C(cid:101)y(cid:101)2(x(cid:101),0,(cid:101)t)= ∂B(cid:101)1∂2((cid:101)tx(cid:101),(cid:101)t)+∂B(cid:101)2∂((cid:101)tx(cid:101),(cid:101)t). (2.3b) WenowpresenttheevolutionequationsfortheunboundconcentrationsC(cid:101)1(x(cid:101),y(cid:101),(cid:101)t) and C(cid:101)2(x(cid:101),y(cid:101),(cid:101)t). Due to the geometry of the device, a unidirectional flow model is appropriate(ZumbrumandEdwards,2014).ThisPoiseuillechannelflowleadstoa parabolicvelocityflowprofile;thus,theconvection-diffusionequationsforC(cid:101)i(x(cid:101),y(cid:101),(cid:101)t) taketheform: (cid:32) (cid:18) (cid:19) (cid:33) ∂C(cid:101)i =D(cid:101)i∇(cid:101)2C(cid:101)i−(cid:101)v·∇(cid:101)C(cid:101)i, (cid:101)v= V(cid:101)y(cid:101) 1− y(cid:101) ,0 , (2.4) ∂(cid:101)t H(cid:101) H(cid:101) wherei=1, 2;theaboveequationsholdwhen(x(cid:101),y(cid:101))∈(0,L(cid:101))×(0,H(cid:101))and(cid:101)t>0;and V(cid:101) isthecharacteristicvelocityassociatedwithourflow.Furthermore:initiallythere isnounboundligandinthechannel,ligandisconvectedinatuniformratesC(cid:101)i,uafter the initial time(cid:101)t =0, and no-flux conditions hold downstream at x(cid:101)=L(cid:101) and on the ceilingaty(cid:101)=H(cid:101). DuetohighPe´cletnumberflow,Edwardshasdemonstrated(Edwards,1999)that transporteffectsarerelevantonlyinathinunstirredlayernearthesurface,andthat theappropriatedimensionlessvariablesare: x= x(cid:101), y= y(cid:101), η =Pe1/3y, Pe=V(cid:101)H(cid:101)2, t=1(cid:101)kaC(cid:101)1,u(cid:101)t, L(cid:101) L(cid:101) L(cid:101)D(cid:101)2 (2.5) B(x,t)= B(cid:101)i(x,t), C(x,η,t)=C(cid:101)i(x(cid:101),y(cid:101),(cid:101)t). i i R(cid:101)T C(cid:101)i,u TransportEffectsonMultiple-ComponentReactionsinOpticalBiosensors 7 These are the natural scalings associated with the reaction-limited and transport- dominant parameter regime, in which ligand molecules are transported to the un- stirred layer and gradually bind with receptor sites at the surface. Introducing the scalings(2.5)into(2.1)resultsinthedimensionlessboundstatesystem: ∂B 1 =(1−B )C +1K B − K B −1K B C , (2.6a) ∂t Σ 1 2 d 12 1 d 1 2 a 1 2 ∂B 12 =1K B C +2K B C −1K B − K B , (2.6b) ∂t 2 a 1 2 1 a 2 1 2 d 12 1 d 12 ∂B 2 = K (1−B )C + K B − K B −2K B C . (2.6c) ∂t 2 a Σ 2 1 d 12 2 d 2 1 a 2 1 B(x,0)=0, (2.6d) onthesurfaceatη =0.Thedimensionlessrateconstantsin(2.6)aredefinedas: jK = C(cid:101)i,u·ij(cid:101)ka, jK = (cid:101)kd , i a i d C(cid:101)1,u·1(cid:101)ka C(cid:101)1,u·1(cid:101)ka where i=1, 2, and j =1, 2, or can be blank (K and K are the dimensionless i a i d analogsofi(cid:101)ka,ori(cid:101)kd).Wenon-dimensionalizethesensogramreading(1.3)bysetting S(t)= S(cid:102)(t) =B (t)+(cid:18)1+s(cid:101)2(cid:19)B (t)+s(cid:101)2B (t). (2.7) 1 12 2 R(cid:101)T·s(cid:101)1 s(cid:101)1 s(cid:101)1 Thediffusivefluxconditions(2.3)become: (cid:18) (cid:19) ∂C Da ∂B ∂B 1(x,0,t)= 1 + 12 , (2.8a) ∂η F ∂t ∂t r (cid:18) (cid:19) ∂C ∂B ∂B 2(x,0,t)=Da 12 + 2 , (2.8b) ∂η ∂t ∂t where Da= 1(cid:101)kaR(cid:101)T(H(cid:101)L(cid:101))1/3, F =CD, C =C(cid:101)1,u, D = D(cid:101)1. (2.9) r r r r r (V(cid:101)D(cid:101)2)1/3 C(cid:101)2,u D(cid:101)2 TheDamko¨hlernumber,denotedDa,isakeydimensionlessgroupwhichrepresents the relative strength of reaction to diffusion. In practice, it is desirable to design biosensorexperimentssuchthatDa(cid:28)1.WhenDa(cid:28)1,diffusionandreactionoccur ondifferenttimescales,andoneisinthebestpositiontomeasurereaction.Typically thisisthecase,althoughattimesexperimentalistscanonlyincreasevelocitiesenough tomakeDa=O(1)(Edwards,1999).Further,F measuresthediffusionstrengthof r eachreactingspecies,ascharacterizedbytheproductoftheinputconcentrationsand thediffusioncoefficients. It remains to derive the equations for the unbound concentrations C(x,η,t) in i the unstirred layer. To this end, we substitute the dimensionless variables (2.5) into 8 RyanM.Evans,DavidA.Edwards (2.4) and expand the result in a perturbation series for large Pe. The leading order equationsare: ∂2C ∂C D 1 =η 1, (2.10a) r ∂η2 ∂x ∂2C ∂C 2 =η 2, (2.10b) ∂η2 ∂x withtheboundarydata: C(0,η,t)=1, (2.11a) i limC(x,η,t)=1, (2.11b) i η→∞ andequations(2.8).Equation(2.11a)tellsusthatatx=0,theconcentrationisgiven bythenormalizedinletvalue.Equation(2.11b)expressestherequirementthatasone exitstheunstirredlayer,i.e.asη→∞,theconcentrationmustmatchtheundisturbed valuein thebulk flow.A moredetailed descriptionof thisprocess maybe foundin (Edwards,1999). To study (2.6) we need the value of C only on the reacting surface at η =0. i Byanalogywith(Edwards,1999)wecantransform(2.10a)and(2.10b)intoAiry’s equationsthroughaLaplacetransforminx.Thederivativeofthetransformedsolution atη =0isknown,soonecanshow D1/3Da (cid:90) x(cid:18)∂B ∂B (cid:19) dν C (x,0,t)=1− r 1 + 12 (ν,t) , (2.12a) 1 FrΓ(2/3)31/3 0 ∂t ∂t (x−ν)2/3 Da (cid:90) x(cid:18)∂B ∂B (cid:19) dν C (x,0,t)=1− 12 + 2 (ν,t) . (2.12b) 2 Γ(2/3)31/3 0 ∂t ∂t (x−ν)2/3 Earlyintheexperiment,ligandmoleculesdiffusetothesurfacetobindwithreceptor sitesupstream,beforetheydosodownstream.Thisphenomenonofupstreamligand depletionisreflectedin(2.12),andreadilyseeninFigure2.1;herewehavedepicted results of our numerical method described in Section 4. Thus, during the injection phasetheboundstateevolutionisgovernedbytheIDEsystem(2.6),with(2.12). 2.2 WashPhase Wenowpresenttherelevantdimensionlessequationsforthewashphase.Inpractice, the injection phase is run until the bound state concentration reaches a steady state (RichandMyszka,2009).Sincetheboundligandconcentrationevolvesonamuch slower time scale than the unbound ligand concentration (Edwards, 1999), the un- boundligandwillhavealsoreachedsteadystatebythetimethewashphasebegins; i.e.,C(x,y,0)=1for(x,y)∈[0,1]2,atthestartofthewashphase.Thereactionkinet- i icsarethereforegovernedby(2.6),with(2.6d)replacedbythesteadystatesolution TransportEffectsonMultiple-ComponentReactionsinOpticalBiosensors 9 Fig.2.1:Injectionphaseofbiosensorexperiment,uptot=5,obtainedthroughsolv- ing(2.6),(2.12)withthenumericalmethoddescribedinSection4.Allrateconstants were taken equal to one, and Da taken equal to two to visualize upstream ligand depletion,whichisespeciallyevidentinB . 12 to(2.6)duringtheinjectionphase: B(x,0)=A−1f, (2.13) (1+ K +1K ) 1−1K 1  1 d 2 a 2 d A= −12Ka (12Kd+21Kd) −21Ka , (2.14) K K −2K ( K + K +2K ) 2 a 2 a 1 d 2 a 2 d 1 a   1 f= 0 . (2.15) K 2 a Equationssimilarto(2.11b)hold: C(0,η,t)=0, (2.16a) i limC(x,η,t)=0. (2.16b) i η→∞ 10 RyanM.Evans,DavidA.Edwards Equation(2.16a)istheinflowcondition,and(2.16b)expressestherequirementthat theconcentrationinthelayermustmatchtheconcentrationC(x,y,t)=0intheouter i layer. In a similar manner to the injection phase, one can use (2.10) together with (2.16)toshow D1/3Da (cid:90) x(cid:18)∂B ∂B (cid:19) dν C (x,0,t)=− r 1 + 12 (ν,t) , (2.17a) 1 FrΓ(2/3)31/3 0 ∂t ∂t (x−ν)2/3 Da (cid:90) x(cid:18)∂B ∂B (cid:19) dν C (x,0,t)=− 12 + 2 (ν,t) . (2.17b) 2 Γ(2/3)31/3 0 ∂t ∂t (x−ν)2/3 Thus,duringthewashphase,theboundstateevolutionisgovernedbytheIDEsystem (2.6a)–(2.6c),(2.13),and(2.17). 3 EffectiveRateConstantApproximation Duringbothphasesoftheexperiment,theboundstateconcentrationobeysanonlin- earsetofIDEswhichishopelesstosolveinclosedform.Moreover,weareultimately interested in the average concentration B(t)–not B(x,t)–since from B(t) we can re- constructthesensogramsignal(2.7)(i.e.,thequantityofphysicalrelevance).Thus, we seek to find an approximation to B(t), and begin by finding one during the in- jection phase. We first average each side of (2.6) and (2.12) in the sense of (1.1). Immediately,weareconfrontedwithtermssuchas (cid:18) Da (cid:90) x(cid:18)∂B ∂B (cid:19) dν (cid:19) B C =B 1− 12 + 2 , (3.1) 1 2 1 31/3Γ(2/3) 0 ∂t ∂t (x−ν)2/3 ontherighthandsideof(2.6a).IntheexperimentallyrelevantcaseofsmallDa,we aremotivatedtoexpandB(x,t)inaperturbationseries: B(x,t)=0B(x,t)+O(Da). (3.2) Inthislimit,theleadingorderof(2.12)isjustC =1.Usingthisresultin(2.6),we i havethatthegoverningequationfor0Bisindependentofx: d0B =−A0B+f, dt whereAisgivenby(2.14)andfby(2.15).Hencetheleading-orderapproximation 0B(t)=A−1(I−e−At)f (3.3) isindependentofspace.Substituting(3.3)into(2.12),thetime-dependenttermsmay befactoredoutoftheintegrand,leavingthespatialdependenceofC varyingasx1/3. j Thisistheonlyspatialvariationin(2.6)atO(Da);hencewemaywrite B(x,t)=0B(t)+Dax1/3·1B(t)+O(Da2). (3.4) Asaresultof(3.4)wehavetherelation DaB(x,t)=Da0B(t)+O(Da2), (3.5) i i

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.