NonamemanuscriptNo. (willbeinsertedbytheeditor) Transport Effects on Multiple-Component Reactions in Optical Biosensors RyanM.Evans · DavidA.Edwards Received:date/Accepted:date 7 1 0 Abstract Manybiochemicalreactionsinvolveastreamofchemicalreactants(ligand 2 molecules)flowingoverasurfacetowhichotherreactants(receptors)areconfined. n Scientistsmeasurerateconstantsassociatedwiththesereactionsinanopticalbiosen- a J sor:aninstrumentinwhichligandmoleculesareconvectedthroughaflowcell,over 6 a surface on which receptors are immobilized. In applications such as DNA dam- 2 agerepairmultiplesimultaneousreactionsoccuronthesurfaceofthebiosensor.We quantify transport effects on such multiple-component reactions, which result in a ] N nonlinearsetofintegrodifferentialequationsforthereactingspeciesconcentrations. In physically relevant parameter regimes, these integrodifferential equations further M reducetoanonlinearsetofordinarydifferentialequations,whichmaybeusedtoes- . timaterateconstantsfrombiosensordata.Weverifyourresultswithasemi-implicit o i finitedifferencealgorithm. b - Keywords Biochemistry·Opticalbiosensors·Rateconstants·Partialdifferential q equations·Integrodifferentialequations·Numericalmethods [ 1 v 1 Introduction 9 8 4 Many biochemical reactions in nature involve a stream of chemical reactants (lig- 0 and molecules) flowing through a fluid-filled volume, and another reactant (recep- 0 . 2 ThisworkwasdonewiththesupportoftheNationalScienceFoundationunderawardnumbernsf-dms 0 1312529,andwasalsopartiallysupportedbytheNationalResearchCouncilthroughanNRCpostdoctoral 7 fellowship. 1 R.M.Evans : v AppliedandComputationalMathematicsDivision,InformationandTechnologyLab, i NationalInstituteforStandardsandTechnology,Gaithersburg,MD20899,USA X E-mail:[email protected] r D.A.Edwards a DepartmentofMathematicalSciences,UniversityofDelaware,Newark,DE19716,USA E-mail:[email protected] 2 RyanM.Evans,DavidA.Edwards tors)confinedtoasurface.Suchsurface-volumereactionsoccurduringplateletad- hesion (Austin, 2009), drug absorption (Bertucci et al., 2007), antigen-antibody in- teractions (Raghaven et al., 1994), and DNA damage repair (Zhuang et al., 2008). Fundamental to understanding these reactions is getting accurate quantitative mea- surements of the underlying reaction rate constants. To measure rate constants as- sociatedwithsurface-volumereactions,scientistsuseopticalbiosensors:seeFigure 1.1foraschematicofonesuchinstrument;here,x=0correspondstotheinletand (cid:101) y=0correspondstothesensorsurface.Biosensortechnologyhasbecomeextremely (cid:101) popularinrecentyears;10,000papershavecitedtheuseofanopticalbiosensorasof 2009alone(RichandMyszka,2011). Forourpurposes,biosensorexperimentsarepartitionedintotwophases:thein- jectionphase,andthewashphase.Duringtheinjectionphase,ligandmoleculesare injectedintothebiosensorviaabufferfluidinastandardtwo-dimensionalPoiseuille (cid:0) (cid:1) flowprofilefromtheinletatx(cid:101)=0atconcentrationC(cid:101) x(cid:101),y(cid:101),(cid:101)t ;thetildevariablesde- note dimensional quantities throughout. The ligand molecules then diffuse through thebufferontothechannelfloortobindwithreceptorsimmobilizedonthesurface. Mass changes on the floor due to ligand binding are averaged over a portion of the channelfloor[x ,x ]toproducemeasurementsoftheform (cid:101)min (cid:101)max 1 (cid:90) x(cid:101)max B(cid:101)(t)= x −x B(cid:101)(x(cid:101),(cid:101)t)dx(cid:101), (1.1) (cid:101)max (cid:101)min x(cid:101)min (cid:0) (cid:1) whereB(cid:101) x(cid:101),(cid:101)t istheconcentrationofboundligandmolecules.Aftertheboundstate reachesachemicalequilibrium,scientiststhenpreparethedeviceforanotherexper- iment by washing it with the buffer fluid–this is the wash phase of the experiment. Onlybufferisflowingthroughthebiosensorduringthewashphase,notbuffercon- tainingtheligandmolecules.Thishastheeffectofcausingallboundligandmolecules togetsweptoutofthebiosensor,therebycleaningthedeviceforanotherexperiment. Measuringrateconstantswithbiosensordatareliesonhavinganaccuratemathe- maticalmodelofthisprocess;mathematicalmodelshavebeensuccessfullyproposed and progressively refined throughout the years: (Edwards, 1999, 2000, 2001, 2006, 2011; Edwards et al., 1999; Lebedev et al., 2006; Zumbrum and Edwards, 2014, 2015).Althoughsuchmathematicalmodelsaretypicallylimitedtoreactionsinvolv- ing only a single molecule or a single step, chemists are currently using biosensor technology to measure rate constants associated with reactions involving multiple components. For example, chemists are now using biosensor experiments to eluci- date how cells cope with DNA damage. Harmful DNA lesions can impair a cell’s abilitytoreplicateDNA,anditsabilitytosurvive.Onewayacellmayrespondtoa DNAlesionisthroughDNAtranslesionsynthesis(Friedberg,2005;Lehmannetal., 2007; Plosky and Woodgate, 2004). For a description of this process we refer the interested reader to the references included herein; however, for our purposes it is sufficienttoknowthatDNAtranslesionsynthesisinvolvesmultipleinteractingcom- ponents:aProliferatingCellNuclearAntigen(PCNA)molecule,polymeraseδ,and polymerase η. Further, in order for a successful DNA translesion synthesis event to occur polymerase δ must bind with a PCNA molecule. A central question sur- roundingDNAtranslesionsynthesisiswhetherpolymeraseδ directlybindswiththe TransportEffectsonMultiple-ComponentReactionsinOpticalBiosensors 3 bound complex unbound unbound ligand receptor magnified view of area in small circle H parabolic flow ỹ reacting zone evanescent wave ̃xmin ̃xmax ̃x L Fig. 1.1: Cross-sectional schematic of an optical biosensor experiment. The instru- menthaslengthL(cid:101)andheightH(cid:101).Ligandmoleculesareconvectedintoinstrumentin a Poiseuille flow profile and transported to the surface to bind with receptors. The receptorsarelimitedtothereactingzonex=x tox=x . (cid:101) (cid:101)min (cid:101) (cid:101)max PCNA,orwhetherthepolymeraseδ andPCNAcomplexformsasaresultofaligand switchingprocess(Zhuangetal.,2008). TheformerscenarioisdepictedinFigure1.2,wherewehaveshownpolymerase δ directlybindingwithaPCNAmolecule,i.e.thereaction: P1:E+L2−(cid:41)2−−(cid:101)k(cid:42)−a EL2. (1.2a) 2(cid:101)kd Here, we have denoted the PCNA molecule and polymerase δ as E and L respec- 2 tively.Additionally,2(cid:101)kadenotestherateatwhichL2bindswithaPCNAmoleculeE, and2(cid:101)kd denotestherateatwhichL2 dissociatesfromaPCNAmoleculeE.Wewill refertothisaspathwayone,orsimplyP asin(1.2a). 1 TheligandswitchingprocessisshowninFigure1.3andstatedpreciselyas: P2:E+L1−(cid:41)1−−(cid:101)k(cid:42)−a EL1, EL1+L2(cid:41)−12−−(cid:101)k(cid:42)−a EL1L2−(cid:41)21−−(cid:101)k(cid:42)−d EL2+L1. (1.2b) 1(cid:101)kd 12(cid:101)kd 21(cid:101)ka First, polymerase η (denoted L ) binds with a PCNA molecule; next polymerase δ 1 associateswiththepolymeraseη andPCNAcomplex;finallypolymeraseη switches out,therebyleavinguswiththepolymeraseδ andPCNAcomplex.Eachoneofthe steps in thismultiple-component process is reversible. In (1.2b) and Figure1.3, the rateconstants1(cid:101)ka and1(cid:101)kd denotetheratesatwhichpolymeraseη bindsandunbinds with a PCNA molecule (respectively), ij(cid:101)ka denotes the rate at which ligand Li binds withtheproductELj,andij(cid:101)kddenotestherateatwhichLidissociatesfromtheproduct EL L .Inthelattertwoexpressionstheindicesiand jcanequaloneortwo.Weshall 1 2 refertothispathwaytwo,orsimplyP asin(1.2b). 2 4 RyanM.Evans,DavidA.Edwards L2 2(cid:101)ka L2 2(cid:101)kd EL2 E Fig. 1.2: Direct binding of polymerase δ with a PCNA molecule. We have labeled polymeraseδ andthePCNAmoleculeasL andE respectively. 2 L2 L1 L1 L2 1(cid:101)ka 21(cid:101)ka 12(cid:101)kd 1(cid:101)kd 21(cid:101)kd 12(cid:101)ka E EL1 EL1L2 EL2 Fig.1.3:Schematicoftheligandswitchingprocess.First,polymeraseη bindswith the PCNA molecule; next, polymerase δ binds with the polymerase η and PCNA complex; finally, polymerase η dissociates, leaving us with the polymerse δ and PCNA complex. We have labeled polymerase η, polymerase δ, and the PCNA moleculeasL ,L ,andE respectively. 1 2 By measuring the rate constants associated with this multiple-component pro- cess,onecouldthereforedeterminewhetherEL formsasaresultofligandbinding 2 or the ligand switching process described above. To measure the kinetic rate con- stants, scientists first immobilize PCNA molecules on the surface of the biosensor. Afterreceptorimmobilization,scientistsinjectL andL intotheinstrumentatcon- 1 2 centrationsC(cid:101)1(x(cid:101),y(cid:101),(cid:101)t) andC(cid:101)2(x(cid:101),y(cid:101),(cid:101)t). The ligands L1 and L2 are then transported to the surface to bind with available receptor sites E, creating the three products EL , 1 EL1L2,andEL2atconcentrationsB(cid:101)1(x(cid:101),(cid:101)t), B(cid:101)12(x(cid:101),(cid:101)t),andB(cid:101)2(x(cid:101),(cid:101)t). Thepresenceofmultiplereactingspecieschangestheformofbiosensorfeedback (i.e.,thesensogramreading).Mostopticalbiosensorsmeasureonlymasschangesat thesurfaceduetoligandbinding,andproducelumpedmeasurementsoftheform S(cid:102)((cid:101)t)=s(cid:101)1B(cid:101)1((cid:101)t)+(s(cid:101)1+s(cid:101)2)B(cid:101)12((cid:101)t)+s(cid:101)2B(cid:101)2((cid:101)t), (1.3) whereB(cid:101)i((cid:101)t)isdefinedanalogouslyto(1.1).Measuringrateconstantsassociatedwith this multiple-component process involves calculating the sensogram signal (1.3), whichreliesonamathematicalmodel.Thestraightforwardwell-stirredkineticsap- proximationisinappropriatesinceitdoesnotaccountformechanismswhichtrans- portligandmoleculestothereactingsurface.Thoughtransporteffectsonbimolecular TransportEffectsonMultiple-ComponentReactionsinOpticalBiosensors 5 kineticsarewellstudied,fewifanyattemptshavebeenmadetoanalyticallyquantify sucheffectsonmultiple-componentreactions.Hence,wemodelthefullconvection- diffusionsystemwithmultiplecoupledreactionsattheboundary.HighPe´cletnumber flowimpliesthattransporteffectsarerelevantonlyinathinunstirredregionnearthe surface, and our Partial Differential Equation (PDE) system reduces asymptotically toacouplednonlinearsetofIntegrodifferentialEquations(IDEs).Inphysicallyrel- evantparameterregimes,thissetofIDEsfurthersimplifiestoasetofOrdinaryDif- ferentialEquations(ODEs),whichcanbeusedtodeterminetherateconstantsfrom biosensordata.BycomparingthesolutionofourODEsystemwithasemi-implicit finite-difference solution to the IDE system, we show that this reduction holds for a wide parameter range, thus providing experimentalists with a tool to measure the rate constants in (1.2) and reveal the underlying pathway of polymerase δ in DNA translesionsynthesis. Weremarkthattheabovediscussionmayraiseuniquenessconcerns,sincemore thanonesetofrateconstantsmaypossiblycorrespondtothesamesignal(1.3).Fortu- nately,throughvaryingtheuniformin-flowconcentrationsoftheligands,C(cid:101)1(0,y(cid:101),(cid:101)t)= C(cid:101)1,uandC(cid:101)2(0,y(cid:101),(cid:101)t)=C(cid:101)2,u,onemayresolvethisill-posednessincertainphysicallyrel- evantscenarios(Evans,R.M.andEdwards,D.A.andLi,W.,inpreparation).This approachtoidentifyingthecorrectsetofrateconstantsinthepresenceofambiguous dataisrelatedtothe“globalanalysis”techniqueinbiologicalliterature(Karlssonand Fa¨lt,1997;Mortonetal.,1995). 2 GoverningEquations 2.1 InjectionPhase Wenowpresenttheequationsgoverningreactionkineticsduringtheinjectionphase; tothisendwelet B(cid:101)(x(cid:101),(cid:101)t)=(B(cid:101)1(x(cid:101),(cid:101)t),B(cid:101)12(x(cid:101),(cid:101)t),B(cid:101)2(x(cid:101),(cid:101)t))T denote a vector in R3 whose components are the three bound state concentrations; B(cid:101)Σ =B(cid:101)1+B(cid:101)12+B(cid:101)2; and R(cid:101)T denote the initial empty receptor concentration. Note, thetotalconcentrationofemptyreceptorsatanypointduringtheexperimentisgiven (cid:0) (cid:1) by [E](x(cid:101),(cid:101)t)=R(cid:101)T−B(cid:101)Σ x(cid:101),(cid:101)t . Applying the law of mass action to (1.2a) and (1.2b) givesthefollowingsetofpartialdifferentialequationsforB(cid:101)i(x(cid:101),(cid:101)t): ∂∂B(cid:101)(cid:101)t1 =1(cid:101)ka(R(cid:101)T−B(cid:101)Σ)C(cid:101)1(x(cid:101),0,(cid:101)t)+12(cid:101)kdB(cid:101)12−1(cid:101)kdB(cid:101)1−12(cid:101)kaB(cid:101)1C(cid:101)2(x(cid:101),0,(cid:101)t), ∂∂B(cid:101)(cid:101)t12 =12(cid:101)kaB(cid:101)1C(cid:101)2(x(cid:101),0,(cid:101)t)+21(cid:101)kaB(cid:101)2C(cid:101)1(x(cid:101),0,(cid:101)t)−12(cid:101)kdB(cid:101)12−21(cid:101)kdB(cid:101)12, (2.1) ∂∂B(cid:101)(cid:101)t2 =2(cid:101)ka(R(cid:101)T−B(cid:101)Σ)C(cid:101)2(x(cid:101),0,(cid:101)t)+21(cid:101)kdB(cid:101)12−2(cid:101)kdB(cid:101)2−21(cid:101)kaB(cid:101)2C(cid:101)1(x(cid:101),0,(cid:101)t), B(cid:101)(x(cid:101),0)=0; 6 RyanM.Evans,DavidA.Edwards these equations hold on the reacting surface when y(cid:101)=0 and x(cid:101)∈[0,L(cid:101)]. The instru- ment’s height H(cid:101) is much less than its length L(cid:101), hence its aspect ratio ε =H(cid:101)/L(cid:101) is small. Onthereactingsurfaceaty˜=0,thediffusivefluxofligandisusedupinbinding toformthevariousboundstates: −D(cid:101)1∂∂C(cid:101)y1(x(cid:101),0,(cid:101)t)=−1(cid:101)ka(R(cid:101)T−B(cid:101)Σ)C(cid:101)1(x(cid:101),0,(cid:101)t)+1(cid:101)kdB(cid:101)1 (2.2a) (cid:101) −21(cid:101)kaB(cid:101)2C(cid:101)1(x(cid:101),0,(cid:101)t)+21(cid:101)kdB(cid:101)12, −D(cid:101)2∂∂C(cid:101)y2(x(cid:101),0,(cid:101)t)=−2(cid:101)ka(R(cid:101)T−B(cid:101)Σ)C(cid:101)2(x(cid:101),0,(cid:101)t)+2(cid:101)kdB(cid:101)2 (2.2b) (cid:101) −12(cid:101)kaB(cid:101)1C(cid:101)2(x(cid:101),0,(cid:101)t)+12(cid:101)kdB(cid:101)12. Here D(cid:101)1 and D(cid:101)2 (respectively) denote the diffusion rates of L1 and L2 through the buffer.Thefourtermsontheright-handsideof(2.2a)are(inorder):lossofC(cid:101)1 toan emptyreceptortoformB(cid:101)1;dissociationofB(cid:101)1,whichaddstoC(cid:101)1;lossofC(cid:101)1 toB(cid:101)2 to formB(cid:101)12;anddissociationofB(cid:101)12intoB(cid:101)2andC(cid:101)1.Thetermsontheright-handsideof (2.2b)havesimilarinterpretations.Butthenusing(2.1),wehave D(cid:101)1∂∂C(cid:101)y(cid:101)1(x(cid:101),0,(cid:101)t)= ∂B(cid:101)1∂((cid:101)tx(cid:101),(cid:101)t)+∂B(cid:101)1∂2((cid:101)tx(cid:101),(cid:101)t), (2.3a) D(cid:101)2∂∂C(cid:101)y(cid:101)2(x(cid:101),0,(cid:101)t)= ∂B(cid:101)1∂2((cid:101)tx(cid:101),(cid:101)t)+∂B(cid:101)2∂((cid:101)tx(cid:101),(cid:101)t). (2.3b) WenowpresenttheevolutionequationsfortheunboundconcentrationsC(cid:101)1(x(cid:101),y(cid:101),(cid:101)t) and C(cid:101)2(x(cid:101),y(cid:101),(cid:101)t). Due to the geometry of the device, a unidirectional flow model is appropriate(ZumbrumandEdwards,2014).ThisPoiseuillechannelflowleadstoa parabolicvelocityflowprofile;thus,theconvection-diffusionequationsforC(cid:101)i(x(cid:101),y(cid:101),(cid:101)t) taketheform: (cid:32) (cid:18) (cid:19) (cid:33) ∂C(cid:101)i =D(cid:101)i∇(cid:101)2C(cid:101)i−(cid:101)v·∇(cid:101)C(cid:101)i, (cid:101)v= V(cid:101)y(cid:101) 1− y(cid:101) ,0 , (2.4) ∂(cid:101)t H(cid:101) H(cid:101) wherei=1, 2;theaboveequationsholdwhen(x(cid:101),y(cid:101))∈(0,L(cid:101))×(0,H(cid:101))and(cid:101)t>0;and V(cid:101) isthecharacteristicvelocityassociatedwithourflow.Furthermore:initiallythere isnounboundligandinthechannel,ligandisconvectedinatuniformratesC(cid:101)i,uafter the initial time(cid:101)t =0, and no-flux conditions hold downstream at x(cid:101)=L(cid:101) and on the ceilingaty(cid:101)=H(cid:101). DuetohighPe´cletnumberflow,Edwardshasdemonstrated(Edwards,1999)that transporteffectsarerelevantonlyinathinunstirredlayernearthesurface,andthat theappropriatedimensionlessvariablesare: x= x(cid:101), y= y(cid:101), η =Pe1/3y, Pe=V(cid:101)H(cid:101)2, t=1(cid:101)kaC(cid:101)1,u(cid:101)t, L(cid:101) L(cid:101) L(cid:101)D(cid:101)2 (2.5) B(x,t)= B(cid:101)i(x,t), C(x,η,t)=C(cid:101)i(x(cid:101),y(cid:101),(cid:101)t). i i R(cid:101)T C(cid:101)i,u TransportEffectsonMultiple-ComponentReactionsinOpticalBiosensors 7 These are the natural scalings associated with the reaction-limited and transport- dominant parameter regime, in which ligand molecules are transported to the un- stirred layer and gradually bind with receptor sites at the surface. Introducing the scalings(2.5)into(2.1)resultsinthedimensionlessboundstatesystem: ∂B 1 =(1−B )C +1K B − K B −1K B C , (2.6a) ∂t Σ 1 2 d 12 1 d 1 2 a 1 2 ∂B 12 =1K B C +2K B C −1K B − K B , (2.6b) ∂t 2 a 1 2 1 a 2 1 2 d 12 1 d 12 ∂B 2 = K (1−B )C + K B − K B −2K B C . (2.6c) ∂t 2 a Σ 2 1 d 12 2 d 2 1 a 2 1 B(x,0)=0, (2.6d) onthesurfaceatη =0.Thedimensionlessrateconstantsin(2.6)aredefinedas: jK = C(cid:101)i,u·ij(cid:101)ka, jK = (cid:101)kd , i a i d C(cid:101)1,u·1(cid:101)ka C(cid:101)1,u·1(cid:101)ka where i=1, 2, and j =1, 2, or can be blank (K and K are the dimensionless i a i d analogsofi(cid:101)ka,ori(cid:101)kd).Wenon-dimensionalizethesensogramreading(1.3)bysetting S(t)= S(cid:102)(t) =B (t)+(cid:18)1+s(cid:101)2(cid:19)B (t)+s(cid:101)2B (t). (2.7) 1 12 2 R(cid:101)T·s(cid:101)1 s(cid:101)1 s(cid:101)1 Thediffusivefluxconditions(2.3)become: (cid:18) (cid:19) ∂C Da ∂B ∂B 1(x,0,t)= 1 + 12 , (2.8a) ∂η F ∂t ∂t r (cid:18) (cid:19) ∂C ∂B ∂B 2(x,0,t)=Da 12 + 2 , (2.8b) ∂η ∂t ∂t where Da= 1(cid:101)kaR(cid:101)T(H(cid:101)L(cid:101))1/3, F =CD, C =C(cid:101)1,u, D = D(cid:101)1. (2.9) r r r r r (V(cid:101)D(cid:101)2)1/3 C(cid:101)2,u D(cid:101)2 TheDamko¨hlernumber,denotedDa,isakeydimensionlessgroupwhichrepresents the relative strength of reaction to diffusion. In practice, it is desirable to design biosensorexperimentssuchthatDa(cid:28)1.WhenDa(cid:28)1,diffusionandreactionoccur ondifferenttimescales,andoneisinthebestpositiontomeasurereaction.Typically thisisthecase,althoughattimesexperimentalistscanonlyincreasevelocitiesenough tomakeDa=O(1)(Edwards,1999).Further,F measuresthediffusionstrengthof r eachreactingspecies,ascharacterizedbytheproductoftheinputconcentrationsand thediffusioncoefficients. It remains to derive the equations for the unbound concentrations C(x,η,t) in i the unstirred layer. To this end, we substitute the dimensionless variables (2.5) into 8 RyanM.Evans,DavidA.Edwards (2.4) and expand the result in a perturbation series for large Pe. The leading order equationsare: ∂2C ∂C D 1 =η 1, (2.10a) r ∂η2 ∂x ∂2C ∂C 2 =η 2, (2.10b) ∂η2 ∂x withtheboundarydata: C(0,η,t)=1, (2.11a) i limC(x,η,t)=1, (2.11b) i η→∞ andequations(2.8).Equation(2.11a)tellsusthatatx=0,theconcentrationisgiven bythenormalizedinletvalue.Equation(2.11b)expressestherequirementthatasone exitstheunstirredlayer,i.e.asη→∞,theconcentrationmustmatchtheundisturbed valuein thebulk flow.A moredetailed descriptionof thisprocess maybe foundin (Edwards,1999). To study (2.6) we need the value of C only on the reacting surface at η =0. i Byanalogywith(Edwards,1999)wecantransform(2.10a)and(2.10b)intoAiry’s equationsthroughaLaplacetransforminx.Thederivativeofthetransformedsolution atη =0isknown,soonecanshow D1/3Da (cid:90) x(cid:18)∂B ∂B (cid:19) dν C (x,0,t)=1− r 1 + 12 (ν,t) , (2.12a) 1 FrΓ(2/3)31/3 0 ∂t ∂t (x−ν)2/3 Da (cid:90) x(cid:18)∂B ∂B (cid:19) dν C (x,0,t)=1− 12 + 2 (ν,t) . (2.12b) 2 Γ(2/3)31/3 0 ∂t ∂t (x−ν)2/3 Earlyintheexperiment,ligandmoleculesdiffusetothesurfacetobindwithreceptor sitesupstream,beforetheydosodownstream.Thisphenomenonofupstreamligand depletionisreflectedin(2.12),andreadilyseeninFigure2.1;herewehavedepicted results of our numerical method described in Section 4. Thus, during the injection phasetheboundstateevolutionisgovernedbytheIDEsystem(2.6),with(2.12). 2.2 WashPhase Wenowpresenttherelevantdimensionlessequationsforthewashphase.Inpractice, the injection phase is run until the bound state concentration reaches a steady state (RichandMyszka,2009).Sincetheboundligandconcentrationevolvesonamuch slower time scale than the unbound ligand concentration (Edwards, 1999), the un- boundligandwillhavealsoreachedsteadystatebythetimethewashphasebegins; i.e.,C(x,y,0)=1for(x,y)∈[0,1]2,atthestartofthewashphase.Thereactionkinet- i icsarethereforegovernedby(2.6),with(2.6d)replacedbythesteadystatesolution TransportEffectsonMultiple-ComponentReactionsinOpticalBiosensors 9 Fig.2.1:Injectionphaseofbiosensorexperiment,uptot=5,obtainedthroughsolv- ing(2.6),(2.12)withthenumericalmethoddescribedinSection4.Allrateconstants were taken equal to one, and Da taken equal to two to visualize upstream ligand depletion,whichisespeciallyevidentinB . 12 to(2.6)duringtheinjectionphase: B(x,0)=A−1f, (2.13) (1+ K +1K ) 1−1K 1 1 d 2 a 2 d A= −12Ka (12Kd+21Kd) −21Ka , (2.14) K K −2K ( K + K +2K ) 2 a 2 a 1 d 2 a 2 d 1 a 1 f= 0 . (2.15) K 2 a Equationssimilarto(2.11b)hold: C(0,η,t)=0, (2.16a) i limC(x,η,t)=0. (2.16b) i η→∞ 10 RyanM.Evans,DavidA.Edwards Equation(2.16a)istheinflowcondition,and(2.16b)expressestherequirementthat theconcentrationinthelayermustmatchtheconcentrationC(x,y,t)=0intheouter i layer. In a similar manner to the injection phase, one can use (2.10) together with (2.16)toshow D1/3Da (cid:90) x(cid:18)∂B ∂B (cid:19) dν C (x,0,t)=− r 1 + 12 (ν,t) , (2.17a) 1 FrΓ(2/3)31/3 0 ∂t ∂t (x−ν)2/3 Da (cid:90) x(cid:18)∂B ∂B (cid:19) dν C (x,0,t)=− 12 + 2 (ν,t) . (2.17b) 2 Γ(2/3)31/3 0 ∂t ∂t (x−ν)2/3 Thus,duringthewashphase,theboundstateevolutionisgovernedbytheIDEsystem (2.6a)–(2.6c),(2.13),and(2.17). 3 EffectiveRateConstantApproximation Duringbothphasesoftheexperiment,theboundstateconcentrationobeysanonlin- earsetofIDEswhichishopelesstosolveinclosedform.Moreover,weareultimately interested in the average concentration B(t)–not B(x,t)–since from B(t) we can re- constructthesensogramsignal(2.7)(i.e.,thequantityofphysicalrelevance).Thus, we seek to find an approximation to B(t), and begin by finding one during the in- jection phase. We first average each side of (2.6) and (2.12) in the sense of (1.1). Immediately,weareconfrontedwithtermssuchas (cid:18) Da (cid:90) x(cid:18)∂B ∂B (cid:19) dν (cid:19) B C =B 1− 12 + 2 , (3.1) 1 2 1 31/3Γ(2/3) 0 ∂t ∂t (x−ν)2/3 ontherighthandsideof(2.6a).IntheexperimentallyrelevantcaseofsmallDa,we aremotivatedtoexpandB(x,t)inaperturbationseries: B(x,t)=0B(x,t)+O(Da). (3.2) Inthislimit,theleadingorderof(2.12)isjustC =1.Usingthisresultin(2.6),we i havethatthegoverningequationfor0Bisindependentofx: d0B =−A0B+f, dt whereAisgivenby(2.14)andfby(2.15).Hencetheleading-orderapproximation 0B(t)=A−1(I−e−At)f (3.3) isindependentofspace.Substituting(3.3)into(2.12),thetime-dependenttermsmay befactoredoutoftheintegrand,leavingthespatialdependenceofC varyingasx1/3. j Thisistheonlyspatialvariationin(2.6)atO(Da);hencewemaywrite B(x,t)=0B(t)+Dax1/3·1B(t)+O(Da2). (3.4) Asaresultof(3.4)wehavetherelation DaB(x,t)=Da0B(t)+O(Da2), (3.5) i i