Tracking Actomyosin at Fluorescence Check Points SUBJECTAREAS: MercyLard1,LassetenSiethoff2,AlfMa˚nsson2&HeinerLinke1 NANOFABRICATION ANDNANOPATTERNING NANOSTRUCTURES 1TheNanometerStructureConsortium(nmC@LU)andDivisionofSolidStatePhysics,LundUniversity,Box118,SE-22100Lund, Sweden,2SchoolofNaturalSciences,LinnaeusUniversity,SE-39182Kalmar,Sweden. INTERFERENCEMICROSCOPY MOLECULARMACHINESAND MOTORS Emergingconceptsforon-chipbiotechnologiesaimtoreplacemicrofluidicflowbyactive,molecular-motor driventransportofcytoskeletalfilaments,includingapplicationsinbio-simulation,biocomputation, diagnostics,anddrugscreening.Manyoftheseapplicationsrequirereliabledetection,withminimaldata Received acquisition,offilamentsatmany,localcheckpointsinadeviceconsistingofapotentiallycomplexnetwork 1November2012 ofchannelsthatguidefilamentmotion.Herewedevelopsuchadetectionsystemusingactomyosinmotility. Detectionpointsconsistofpairsofgoldlinesrunningperpendiculartonanochannelsthatguidemotionof Accepted fluorescentactinfilaments.Fluorescenceinterferencecontrast(FLIC)isusedtolocallyenhancethesignalat 21December2012 thegoldlines.Across-correlationmethodisusedtosuppresserrors,allowingreliabledetectionofsingleor multiplefilaments.Optimaldevicedesignparametersarediscussed.Theresultsopenforautomatic Published read-outoffilamentcountandvelocityinhigh-throughputmotilityassays,helpingestablishtheviabilityof 21January2013 active,motor-drivenon-chipapplications. In living cells, some molecular motors walk along cytoskeletal filaments such as actin filaments or micro- Correspondenceand tubules. In motility assays based on the actomyosin1,2 or kinesin-microtubule3 motor systems, surface- requestsformaterials adsorbed motors power filament motion. By adsorbing the motors to nanoscale tracks for high-precision shouldbeaddressedto guidingoffilaments4–8andbyattachingcargoes9–11thismotioncansubstitutethebulkypumpstypicallyrequired M.L.(mercy.lard@ftf. formicrofluidicdevices12–14.Specifically,muchefforthasrecentlybeenexpendedtodevelopnanotechnological lth.se)orH.L.(heiner. applications8,15–20e.g.inmolecularsorting21,biosensing,diagnostics20,22,biocomputation23–27anddrugdiscovery8. [email protected]) Inmanyoftheaboveapplicationsitisessentialtodetect,withlowerrorrate,thepassingofagivenfilamentat certainpositionsalongatrack.Thiscanberequiredtoenablesteeringintoacertaindirectionatajunction(for example in molecular sorting) or to detect changes in velocity (for example in drug-discovery or diagnostic devices). A particularly demanding and potentially high-impact application of the detection of motor-driven filamentsisinbiocomputation24,25.Here,acombinatorialproblem(suchasthesubset-sumproblem23)wouldbe encodedintoaphysicalchannelnetworkincludingswitchesornodes.Usingmanymotileagentsthatexploreall possiblepathwayspresentinthisnetwork(forsimplicityrepresentedasablackboxinFig.1),alargeproblemcan be solved in a highly parallel manner, and potentially faster than in traditional computers24,25. A solution is represented by the subset of exits from which motile agents emerge (Fig. 1). Thus, the number of filaments emergingfromapotentiallyverylargenumberofexitsmustbecountedefficientlyandaccurately. Inrecentproof-of-principleexperimentsthemotionofmotor-drivenfilamentshasusuallybeentrackedstep- by-stepusingimageprocessing21,28–31.However,inordertotakefulladvantageofthescalabilityofparallel,motor- drivendevicesinapplicationsasdescribedabove,itisnecessarytoconsiderpotentiallyverylargeandmultiplexed networks. In such up-scaled devices it will not be feasible to globallyrecord themotion of allfilaments with sufficientresolutionandsignal-to-noise(S/N)byusingstandardepifluorescencetechniques,anditwillcompu- tationally not be feasible to track each filament. Instead, a detection system is needed that (i) can monitor a potentiallyverylargenumberofpositionsalongthenanoscaletracks,(ii)requiresaminimumnumberofsensing channelsateachpositionand(iii)usesS/Nenhancementanderrorcorrectiontoreliablydetectallfilaments. Here,wedevelopthekeyelementsofsuchalocal,data-efficientdetectionsystem(Fig.1(a)).Detectionpoints consistofAulinesrunningperpendiculartoananofabricatedfilament-guidingchannel.Fluorescence-interfer- encecontrast(FLIC,seebelow)isusedtoenhancethesignalfromfluorescentlylabelledfilamentsmovingacrossa Au line. This S/N enhancement is additionally improved, by more than one order of magnitude, by cross- correlatingthesignalsfromapairofdetectors.Thesensingrequirementsareminimal,requiringtheread-out ofonlyoneorafewpixelsofaCCDdeviceperAuline. Asourmolecular-motorsystemofchoice,weuseactinfilamentspoweredbymyosinattachedtothedevice surface (Fig. 1(b))8. The actomyosin system has the advantages of high speed (up to 10 mm/s, allowing high SCIENTIFICREPORTS |3:1092|DOI:10.1038/srep01092 1 www.nature.com/scientificreports Results TheoveralldevicelayoutisshowninFigure2:itconsistsofnano- channels(Fig.2(a)),withaslightundercutforbetterfilamentcon- finement(Fig.2(b))4,thatleadacrossaseriesofAulinesusedfor FLIC enhancement. Large open areas, so called loading zones (Fig. 2(c)), are used to locally bind myosin and actin, with high density, to the surface. Filaments move across the myosin-coated surface,andareguidedtothechannelsbythefunnelshapeofthe loadingzones4.SeeMethodsforfabricationdetails. Fluorescence interference contrast. FLIC creates contrast by destructive and/or constructive interference of light reflected off thesubstratesurface.HerewemakeuseofFLICtolocallyenhance the fluorescence signal of the filaments passing over Au lines (see Figure1|Schematicviewofproposedreadoutregionsinafuturedevice, Fig.3andMethodsformoreinformation).InFigure4weshowdata suchasabiocomputationdevice. a)Thedeviceitselfisschematically ofthefluorescenceintensityobserved,asafunctionofposition,ina shownasablackbox,withentranceandexitchannels.Detectorpointsare detectionareaasafilamentmovesacrossapairofAulines.Firstly, hereindicatedateachexitchannelofthenetwork(butcouldbeplacedat the data establish actomyosin motility on top of trimethylchloro- anypointofthedevice,asrequiredbytheapplication).Eachdetectorpoint silane(TMCS)-derivatizedSiOxdepositedbyHSQ.Second,aclear consistsofaAulineofwidthw,forFLICenhancement.Thefluorescence peakoftheopticalintensitywasobservedwhenanactinfilamentwas originatingfromactinfilamentsl,crossingdetectionregionsD1andD2 ontopoftheAulinethusestablishingthepotentialoftheFLIC-based fromapairofAulines,withcentre-to-centrespacingd,isreadoutbyone detectionofactinfilaments. ormoreCCDpixelseach,andcrosscorrelationanalysisisusedtoremove errorsfromeachofthesignals.b)Schematicofactintransportbymyosin Crosscorrelation.Inanactualdevicewithmanyfilament-detection onaSiO2surfaceinaninvitromotilityassay. points,itisdesirabletoopticallyreadoutonlyasmallregion(suchas D , see Fig. 1(a)), in order to minimize the amount of data to be 1 throughputinfuturedevices)andhighflexibility,enablingimproved processed,andtoincreaseachievablefeaturedensity.Theblackline miniaturization of channel networks. In the following we describe inFigure5(a)showsthebackground-subtractedfluorescencesignal theelectron-beamlithography(EBL)basedfabricationprocessofthe D (t) measured in area D as a function of time as a number of 1 1 nanochannels and detector Au lines, including the novel use of a filamentspassthroughthedetectionregion.Filamentscanthenbe hydrogen silsesquioxane (HSQ) layer on top of the Au to support counteddirectlyfromthenumberofdetectionpeaks,butattherisk actinmotility.Wefurtherdemonstratethatcross-correlationofthe ofintroducingerrors:freefilamentsfloatingbyinsolutioncangive FLICsignalsfrompairsofAulinescanbeusedtostronglyreduce false positives, and short or weakly fluorescing filaments may be errorrates,anddiscusstheidealwidthandspacingoftheAulinesfor difficulttodistinguishfrombackgroundnoise.Also,ashortdipin thedetectionofindividualfilamentsandfortheresolutionoffila- fluorescencebetweentwocloselyspacedfilamentscanbedifficultto mentsmovingclosetooneanother. distinguish from noise-related features. We therefore used a Figure2|NanochannelsforfilamentguidingwithAulinesforFLICdetection. a)Cross-sectionofnanochannelwithAuline.Approximatethicknesses ofresistlayers:polymethylmethacrylate(PMMA)andlift-offresist(LOR),andwidthsofchannelssimilarto(b)areindicated.b)Scanningelectron micrographofnanochannelprofile.Coatingwith10nmPtforSEMviewing.c)Brightfieldimageofoverviewofonedevicewithtwoloadingzones connectedbytwoparallelnanochannels.Aulines(w52mm,seeFig.1)runperpendiculartochannels,withAu-linecentre-to-centrespacing ofd55mm. SCIENTIFICREPORTS |3:1092|DOI:10.1038/srep01092 2 www.nature.com/scientificreports Figure3|SchematicofFLICconceptandresponsecurveforenhancementoffilamentcontrast. a)MyosinontheSiOxsurfacetransports fluorescentlylabelledactinfilamentsataheight,h ,abovetheSiOxsurface.Incominglightexcitesthelabelledactinfilamentcausingfluorescence actin emission.Emittedlight(l )cantraveldirectlytothedetectororindirectlyviareflectionfromtheAusurface.Enhancementoffluorescenceresultsifthe em twoemissionsignalsareinphase.ThecombinationofreflectivesurfacescanbeusedtomanipulatethefluorescencesignalbothonandofftheAulines.b) Varyingthethickness,d ,showsthetheoreticalmaximumandminimumintensitiesduetoFLIC,seeequation(2).Excitationl andemissionl 2 ex em wavelengthsare540and605nmforTetramethylRhodamineIso-Thiocyanate(TRITC)filter.Redarrowindicatescorrespondingthicknessusedfor enhancedTRITCfluorescenceontopofAu(seeFig.4). cross-correlation analysis technique to strongly enhance the S/N where t is the total shift used, and t is the total time recorded s end ratio. We achieved this by including two Au lines, separated by minust.WeshiftthesignalD (t)backintimein0.2 sincrements s 2 5 mm (inset to Fig. 5(b)) as individual detector regions, and withrespecttoD (t).TheresultingI asafunctionoft isshownin 1 corr s obtained fluorescence signals, D (t) and D (t), from each detector Figure5(c).ThebinsizeinFigure5(c)isheresetbytheframerate 1 2 (D and D in the inset to Fig. 5(b)), shown as the black and the andcorrespondsalsototheexpectedstandarddeviation(0.16 s)of 1 2 brownline,respectivelyinFigure5(b). filamenttraveltimes betweentheAulines,resulting fromfluctua- Clearly,themainfeaturesinthefluorescenceprofilesweresimilar tionsinfilamentvelocity(seebelow).Foratimedelayoftsmax<0.8 s butseparatedintimebysomedelay.Noise,ontheotherhand,isnot (thelocationofthepeakinFig.5(c))thesignalsoriginatingfromthe correlated between the two signals and can thus be eliminated as twodetectorsforthesamefilamentarecorrelated.Thistimedelayis describedinthefollowingsteps. consistentwithDt5d/v<0.9 s,basedonthemeasuredspeedofthe Backgroundsubtractionisfirstdonetoreduceeffectsfrombleach- filamentsv<861.4 mm/s(mean6SD,n510),andthecentre-to- ing.Hereweapplyasimplelinearfittothedatatofindabackground centre Au-line spacing of d 5 7 mm. The speed is measured from signal,whichisthensubtractedfromthedata.Next,thecrosscor- actinfilamentstransportedinthenanochannelsonthesamesurface relationofthetwofluorescenceprofilescanbedescribedby: usingapreviouslydescribedtrackingprogram32. Asanextstep,theD (t)signalisshiftedbyt 50.8 stooverlap Xtend 2 smax Icorr~ D1½t(cid:2)D2½tzts(cid:2), ð1Þ withthesignalD1(t),andthetwosignalsaremultiplied.Thisstep 0 effectively suppresses uncorrelated noise, and enhances the corre- lated,realsignal.Finally,theresultingsignalisnormalizedtoamax- imumpeakvalueofone(Fig.5(d)). Now, we wish to automatically extract peaks. We use a simple algorithmthatlooksforthemedianvalueinawindowsizeof0.4 s (twoframes).Thiswindowisshiftedinstepsof0.2 s(singleframes) overtheentiredataset.Themedianvalueiscomparedtoathreshold ofT,chosenheretobeT50.01,takenasafractionofthenormalized dataset.IfthemedianvalueislessthanT,thenitisassignedazero value,ifitishigherthanorequaltothisthresholdvalue,thevalueat thispointisreturned(Fig.5(e),blackcurve).Finallythepeaksare extractedbyfindingthelocalmaximumoverarangeof0.6 s(three frames;Fig.5(e),redarrows).Thenumberofpeaksextractedinthis way gives the number of individual filaments that passed by the detector during the observation. For automated data processing it is important that a range of T values gives reliable results. In Figure 5(f) we show that 0.004 , T , 0.01 produces the correct numberoffilaments,asverifiedbydirectviewing.ATvalueoutside thisrangeproducesfalsepositives(forT,0.004)ormissesfilaments (forT.0.01). For comparison, we use the same peak finding method as in Figure4|Enhancedfluorescencecontrastofactinfilamentin Figure5(e)butappliedtodata(D1(t))fromonlyonedetector.The nanochannel. a)AnactinfilamentlabelledwithRhPhwasimagedusinga resultisshownbyredarrowsinFigure5(a).Clearly,alargenumber TRITCfilter.Theapproximatelyl52.5mmlongfilamentpassedoverthe offalsepositivesisproduced,whichareeffectivelyeliminatedbythe w52mmwideAulines,withd 5240nm(seeFig.3),andtherebecame abovecross-correlationmethod.Whereasmoreadvancedpeakfind- 2 brighter.b)fluorescenceprofilealongtheactin-guidingchannel(dashed ing algorithms exist33–35, for transparency, we here used a simple whitelinesin(a))andbelowchannelregion(redlinein(a)).Asinglepixel method to illustrate the process. Our results demonstrate that the linealongthecentreofthechannelwasusedtocreatetheprofilesshown. correlationtechniqueeffectivelysuppressesfalsepositives,whichwill SCIENTIFICREPORTS |3:1092|DOI:10.1038/srep01092 3 www.nature.com/scientificreports Figure5|CrosscorrelationofFLICsignalsforsinglefilamentdetection. a)TimeseriestraceoffluorescencerecordedindetectorregionD 1 asfilamentsmoveovertheAuline.Redarrows:peaksidentifiedusingthesamepeak-findingalgorithmasin(e),resultinginmanyfalsepositives: accordingtovisualinspection,fivefilamentspassedbythedetector.Aconstantbackgroundwassubtractedfromthedata.b)Background-subtracted fluorescencerecordedindetectorregionsD andD ,eachconsistingofoneAuline(w52mm),withd57mm(seeFig.1).Inset:Schematicofdetector 1 2 regions.c)CrosscorrelationsignalI (seeequation(1))oftheD (t)andD (t)signalsfrom(b),asafunctionoft,indicatingthatI ismaximalfor corr 1 2 s corr t 50.8s.d)ThemultipliedsignalD (t)*D (t1t )afternormalizing.ThedashedlineshowsthethresholdlevelT50.01usedtoproducethesignal s,max 1 2 s,max in(e).e)Blackcurve:Samedataasin(d)aftersubtractionof0.01ofthemaximum.Redarrows:extractedpeaksusingapeak-findingalgorithm(seetext). f)NumberofpeaksidentifiedasafunctionofthethresholdlevelTappliedtothecrosscorrelateddatasetfrom(d),spanningfrom0.001–0.1ofthe maximum.Redbar:athresholdbetween0.004and0.01producesthecorrectresultoffivefilaments. berelevantinthecontextofanypeak-findingalgorithm.Toquantify introduce a threshold value distinguishing the intensity from one theimprovementachievedbycross-correlationwecomparetheS/N andtwofilaments. <12inFigure5(a),(basedontheaveragepeakmaximumof3838 A.U.andthevarianceofthenoiseof317A.U.)tothatobservedafter Device design. In the following, we discuss how to optimize the applicationofcross-correlation(Fig.5(d),S/N<222).Herewefind signal strength (and thus the S/N ratio) and the ability to resolve animprovementofmorethananorderofmagnitude.Notethat,in two close-by filaments, depending on filament length (l) and the principle,asimilaralgorithmcouldalsobeusedtodetectthefactthat detector geometry as described by w and d (see Fig. 1). We first two filaments arrive at the same time. In this case, one would consider a single Au line (Fig. 6(a)). Short filaments (l , w) will SCIENTIFICREPORTS |3:1092|DOI:10.1038/srep01092 4 www.nature.com/scientificreports Figure6|SchematicofsignaldependenceonfilamentlengthlanddetectorlinewidthwasshowninFigure1(a). a)Schematicmapof expectedsignalintensityindifferentlocations(labelleda–g)in{l,w}parameterspaceforsinglefilaments.Forincreasingfilamentlengthl(a–b) maximumintensityisobtainedforl5w(c).Filamentswithl.w(d)willnotyieldahigherintensity;theywillonlyhavethesameintensityforalonger time.Decreasingwdecreasessignalamplitude(e–g).b)Studyoftheabilityofapairofdetectorlinestoresolvetwofilamentstravellingwithend-to-end distanceDxandwithl5wforoptimalsignalstrengthasafunctionofDx.TwofullyresolvedpeaksareobtainedforDx5d2w.Inset:schematicof detectorgeometryandfilamentend-to-endspacingDx. producealower,totalFLIC-signalstrength,thantheoptimalvalue We demonstrated the use of pair-wise detection combined with thatisachievedforl<w(seeFig.6(a),pointsa–c).Inotherwords, cross-correlationanalysisandthresholdingforautomaticextraction filaments shorter than the fixed detector width will not yield the offilamentcounts,leadingtoanincreaseoftheS/Nratiobymore maximum possible FLIC-signal, simply due to the fact that they thananorderofmagnitude.TheuseofFLICtoenhancethesignal will not fill the detection window at any given time as they pass strengthinthedetectorregionsenabledanadditionalincreaseofS/N over it. Filaments with l . w will not produce a stronger signal, ratio by a factor of 2. In total, the techniques described here thus but will only broaden the peak (see point d in Fig. 6(a)). This is demonstrateanimprovementofS/Nbyapproximatelyafactorof36 true, due to the fact that, for filaments longer than the fixed compared to standard epifluorescence detection. We believe that detector width, a maximum FLIC-signal is reached already when these findings can be applied as a platform on which diagnostics, the filament has filled the detection window, and therefore the drugdiscoveryand,asdiscussedhere,biocomputationcanbecarried signal cannot increase further as the filament continues to pass out. over the detection region. Consequently, decreasing w further reducesthesignalstrengththatcanbeachieved(pointse–g).Ifwe Methods thereforeassumel5wtobeoptimalforsignalstrength,wecanset Devicedesign.TheoverallfabricationprocessforthedeviceshowninFigure2wasas limitsontheaveragefilamentspacingDxandthelinewidthw.When follows.TheSisubstrateissubjectedtowetthermaloxidationformingalayerofSiO 2 theconditionDx.l1w/2<(3/2)wisfulfilled,thesignalbetween ofapproximately845nm.Liftoffresist,LOR0.7A,(MicrochemCorp.,Newton,MA, USA)isaddedbyspincoatingat1500RPMfor30seconds,withsubsequentbakingat twofilamentsbecomeszero,fullyresolvingthepeaks.Asomewhat 180uCfor15minutesonahotplate.Next,polymethylmethacrylate,PMMA950A5 less conservative requirement is Dx . w. If we then take into (MicrochemCorp.,Newton,MA,USA)isspincoatedontopat6000RPMfor60 consideration that a minimum between two peaks can be fully seconds,followedbybakingat160uCfor15minutes.Thisdoubleresistlayeris resolved only if at least three data points are recorded, we obtain exposedtoEBL(Raith150,Dortmund,Germany)forformationoftheAuline anadditionalconditioninthetimedomainDt5Dx/v.3f,where pattern.Afterexposure,thePMMAisdevelopedwithmethylisobutylketoneand isopropanolMIBK:IPA(MerckKGaA,Darmstadt,Germany)ataratioof1:3forone f is the time between frames recorded by the camera, and v is the minute,followedbyrinsingwithIPAfor30seconds.Next,thesampleissubjecttoO 2 velocityofthefilaments.ThissecondconditioncanbewrittenasDx plasmaashinginaPlasmaPreenat5mBarfor15seconds.Thisplasmaashingstepis .3fvandislimitedbythespeedofthecamera. toremovepossibleresiduesofPMMAfromthetopoftheLORlayerbeforeetching. Then,theLORlayerisetchedwithMF-319:H0(MicropositMF-319Developer, Foratwo-linedetectorsystem(Fig.6(a)),withtheassumptionthat 2 RohmandHaasElectronicMaterials,Coventry,UK)intheratio(1:1)for4minutes l 5 w for optimal signal strength, geometry requires a centre-to- andrinsedwithHOfor30secondstohalttheetchingofLOR.Cr(usedasasticking 2 centrelinespacingofatleastd.wandweassumeareasonabled layer)andAuareevaporatedonthesurfacetothicknessesof2and40nm, 52w.ThesignalI fromapairofdetectors(seeFig.6(b))willyield respectively.Theunwantedmetal(outsidethepattern)andtheresistsareremoved corr twofullyseparatedpeaksfortwofilamentswithDx.d–worDx. fromthesurfaceduringaliftoffprocessinRemover1165(MicropositRemover1165, RohmandHaasElectronicMaterials,Coventry,UK)at80uConahotplate,with w5l,usingtheaboveassumptions.Inthiscontextitisworthnoting subsequentrinsinginHO,leavingbehindthedesiredAupattern.HSQ;6%inMIBK, 2 that,foractin,instandardIVMAprocedures,wemustrequirethatl (XR-1541,DowCorning,USA)isthenspunontopat1500RPMfor30sandbakedat .1 mmsothatactinfilamentsmaintainmotilityintheabsenceof 350uConahotplatetoconverttheresistintoaSiO2-likelayer,seebelow.Asecond methylcelluloseonthesurface36.Thesearesuitableconditions8,37for layerofHSQ;4%inMIBK,isthenspunontopat4500RPMandbakedat350uCona hotplatetoconverttheresistintoaSiO-likelayer,resultinginatotalthicknessof relevant nanotechnological applications involving actomyosin. In 2 d 5240nm(seeFig.3(a)).Nanochannelandloadingzonepatternsareproducedin 2 conclusion, the optimal detector design has pairs of detector lines thesamewayastheAulinepattern.Acrosssectionofthenanochannelisshownin ofwidthl<wandwithDx.w. Figure2(a). Fluorescenceinterferencecontrast.FLICisillustratedinFigure3:fluorophoresare Discussion exciteddirectlyfromasourceofwavelengthl ,orindirectlybylightreflectedfroma ex TheFLICmethoddescribedhereisintendedforuseindeviceswhere surface(SiorAuinFig.3).Lightofwavelengthlem,emittedfromthefluorophores, cantraveltothecameradirectlyorindirectlyafterreflectionfromtheAusurface,after largenumbersoffilamentsneedtobeaccuratelyandautomatically travellingthroughasemi-transparentoxidelayerofSiO (thicknessd,seeFig.3a). recordedinverymanydifferentlocationsofadevice,andwithmin- 2 2 Differencesintheopticalpathwaysofindirectanddirectemissionpathwaysgiverise imaldataacquisition,forexampleinascalable,highlyparalleldevice. toaphaseshiftcausingeitherconstructiveordestructiveinterference38–40,enhancing SCIENTIFICREPORTS |3:1092|DOI:10.1038/srep01092 5 www.nature.com/scientificreports orquenchingthefluorescencerespectively.Here,weareinterestedinconstructive 10.Ramachandran,S.,Ernst,K.H.,Bachand,G.D.,Vogel,V.&Hess,H.Selective interferenceontopofAulines,inordertoenhancethefluorescencesignalof loadingofkinesin-poweredmolecularshuttleswithproteincargoandits fluorescentlylabelledfilamentscrossingtheAuline.Calculationofthefluorescent applicationtobiosensing.Small2,330–334(2006). intensitywasperformedasin38,accordingto: 11.Kumar,S.etal.AntibodiesCovalentlyImmobilizedonActinFilamentsforFast (cid:2)2p (cid:3) (cid:2)2p (cid:3) MyosinDrivenAnalyteTransport.PLoSONE7,e46298(2012). IFLIC~sin2 l ðnSiO2d2znwhactinÞ sin2 l ðnSiO2d2znwhactinÞ , ð2Þ 12.Paguirigan,A.L.&Beebe,D.J.Microfluidicsmeetcellbiology:bridgingthegapby ex em validationandapplicationofmicroscaletechniquesforcellbiologicalassays. whereexcitationandemissionwavelengthswere540nmand605nm,respectively, BioEssays30,811–821(2008). indexofrefractionforwaterandSiO weren 51.333andn 51.46,andfora 13.Squires,T.M.&Quake,S.R.Microfluidics:fluidphysicsatthenanoliterscale. 2 w SiO2 fluorophoreheightofh 540nm,i.e.theheightthatactinisheldabovethe Rev.Mod.Phys.77,977–1026(2005). actin surface41.Thisfluorescenceintensityasafunctionofd indicatesthefirstfluorescence 14.Whitesides,G.M.Theoriginsandthefutureofmicrofluidics.Nature442, 2 maximaatapproximatelyd 550nmandd 5240nmaboveAu,seeFigure3(b). 368–373(2006). 2 2 DuetoinstabilitiesofverythinHSQlayers,thelargerd 5240nmwasused.Forthe 15.Wang,J.Cargo-towingsyntheticnanomachines:towardsactivetransportin 2 thicknessoftheSiO layerontopoftheSisubstrate(d inFig.3(a)),weuse845nm, microchipdevices.LabChip12,1944–1950(2012). 2 1 effectivelyeliminatinganyFLICeffectabovetheSi.Ifdesired,onecanadditionally 16.vandenHeuvel,M.G.L.&Dekker,C.Motorproteinsatworkfor usethedestructiveFLICeffecttoeliminatefluorescenceofftheAulines,bytuningd nanotechnology.Science317,333–336(2007). 1 andd. 17.Takatsuki,H.etal.Transportofsinglecellsusinganactinbundle–myosin 2 bionanomotortransportsystem.Nanotechnology22,245101(2011). HSQapplication.Weusedthenegative-toneresisthydrogensilsesquioxane(HSQ) 18.Patolsky,F.,Weizmann,Y.&Willner,I.Actin-basedmetallicnanowiresasbio- tocoattheAulines.ThisresististransformedintoaSiO–likelayer42,whenbakedat nanotransporters.Nat.Mater.3,692–695(2004). 2 hightemperaturesorexposedtoEBL.HSQhasbeenusedinavarietyof 19.Agarwal,A.&Hess,H.Biomolecularmotorsattheintersectionof applications43,44andisasuitablesubstituteforformingSiO filmsbydirect nanotechnologyandpolymerscience.Prog.Polym.Sci.35,252–277(2010). 2 deposition45.HSQcanalso,asshownhere,supportactomyosinmotility.Herewe 20.Fischer,T.,Agarwal,A.&Hess,H.Asmartdustbiosensorpoweredbykinesin havechosentouseHSQasaSiO layerduetoitseaseofuse.Othertechniquessuchas motors.Nat.Nanotech.4,162–166(2009). 2 atomiclayerdeposition(ALD)haveadvantagesanddrawbackscomparedtousing 21.vandenHeuvel,M.G.,deGraaff,M.P.&Dekker,C.Molecularsortingby HSQ.UsingALDonecanapplyahighlyuniformSiO layer,however,duetothe electricalsteeringofmicrotubulesinkinesin-coatedchannels.Science312, 2 depositionmethod,arepeatingsandwichlayerofAlO andSiO mustbeusedto 910–914(2006). 2 3 2 increasethickness46.ThismayaffecttheFLICsignalsandhasthereforenotbeen 22.Meyhofer,E.&Howard,J.Theforcegeneratedbyasinglekinesinmolecule considered. againstanelasticload.Proc.Natl.Acad.Sci.U.S.A.92,574–578(1995). 23.NicolauJr.,D.V.,Burrage,K.&Nicolau,D.V.Computingwithmotilebio-agents. Surfacetreatmentsforactomyosinmotility.Afterformationofnanochannels, Proc.SPIE-Int.Soc.Opt.Eng.6416(2007). plasmatreatmentwasusedtoensurethatthetopresistlayerofPMMAwas 24.Nicolau,D.V.etal.Molecularmotors-basedmicro-andnano-biocomputation sufficientlyhydrophilicandthereforeunabletosupportmotility5.Asanextstep, devices.MicroelectronEng83,1582–1588(2006). silanizationusingchemicalvapourphasedeposition(CVD)of98%(GC) 25.NicolauJr.,D.V.&Nicolau,D.V.Biocomputationschemesbasedonthedirected trimethylchlorosilane,TMCS(Sigma-AldrichSwedenAB,Stockholm,Sweden)was anddirectionalmovementsofmotilebiologicalobjects.Proc.SPIE5651,134–143 performedtopromotemotilityontheflooroftheloadingzonesandnanochannels, (2005). namelytheexposedSiOxsubstrate28.Caution:TMCSishighlyflammableandreacts 26.Adleman,L.M.Molecularcomputationofsolutionstocombinatorialproblems. violentlywithwater!Wettingofthesurfacewasdonetoreducethepossibilityofair Science266,1021–1024(1994). bubblesforminginthechannels4. 27.Rozenberg,G.&Salomaa,A.Vol.1644LectureNotesinComputerScience(edsJir´ı Wiedermann,PetervanEmdeBoas,&MogensNielsen)106–118(Springer Fluorescencemicroscopy.RhodaminePhalloidin(RhPh)labelledfilamentswere Berlin/Heidelberg,1999). observedusinganinvertedfluorescencemicroscope(Nikon,EclipseTE300) 28.Sundberg,M.etal.Silanizedsurfacesforinvitrostudiesofactomyosinfunction equippedwitha100xoilimmersionobjective(Nikon,NA1.4)andaTetramethyl andnanotechnologyapplications.Anal.Biochem.323,127–138(2003). RhodamineIso-Thiocyanate(TRITC)filterset(Ex540/25,DM565,BA605/25). 29.Ruhnow,F.,Zwicker,D.&Diez,S.Trackingsingleparticlesandelongated ImageswererecordedwithanEMCCDcamera(HamamatsuC9100)andanalyzed filamentswithnanometerprecision.Biophys.J.100,2820–2828(2011). withImageJ(Rasband,W.SImageJ,U.S.NationalInstitutesofHealth,Bethesda, 30.Ernest,N.C.,Wall,R.A.,Jed,C.M.&George,H.Speckledmicrotubulesimprove Maryland,USA,http://imagej.nih.gov/ij/,1997–2012).Actinfilamentsliding trackinginmotor-proteinglidingassays.Phys.Bio.4,10(2007). velocitieswerecalculatedusingapreviouslydescribedMatlabalgorithm32.Thiswas 31.Hamelink,W.,Zegers,J.G.,Treijtel,B.W.&Blange´,T.Pathreconstructionasa donebymanuallyfollowingthetipofactinfilamentsmovinginthenanostructured toolforactinfilamentspeeddeterminationintheinvitromotilityassay.Anal. channel.Allinvitromotilityassays(IVMAs)wereperformedwiththeactomyosin Biochem.273,12–19(1999). systemasdescribedpreviously37,41.Inbrief,proteinsweredilutedinbufferA(10mM 32.Mansson,A.&Tagerud,S.Multivariatestatisticsinanalysisofdatafromthein MOPS,1mMMgCl,1mMDTT,0.1mMEGTA,50mMKCl,pH7.4).Flowcells vitromotilityassay.Anal.Biochem.314,281–293(2003). 2 werethenincubatedasfollows:(i)120mg/mlHMMfor4minutes(ii)1mg/mlBSA 33.Haustein,E.&Schwille,P.Fluorescencecorrelationspectroscopy:novel for1minute(iii)1mMblockactin(shortandunlabeledactinfilaments)inBufferA variationsofanestablishedtechnique.Annu.Rev.Biophys.Biomol.Struct.36, with1mMATPfor2minutes(iv)rinsedwitha40(bufferAwithfinalconcentrations 151–169(2007). of10mMDTTand25mMKCl,1mMATP,2.5mMcreatinephosphate,56units/ml 34.Du,P.,Kibbe,W.A.&Lin,S.M.Improvedpeakdetectioninmassspectrumby creatinekinase)(v)rinsedwithBufferA(vi)100nMRhPhlabelledactinfilamentsfor incorporatingcontinuouswavelettransform-basedpatternmatching. 1minute(vii)rinsedwithBufferA(viii)a60(a40withfinalconcentrationsof45mM Bioinformatics22,2059–2065(2006). KCl,3mg/mlglucose,20units/mlglucoseoxidase,460units/mlcatalase.Themotility 35.Pyenta,P.S.,Holowka,D.&Baird,B.Cross-correlationanalysisofinner-leaflet- assayswereperformedat26uC. anchoredgreenfluorescentproteinco-redistributedwithIgEreceptorsandouter leafletlipidraftcomponents.Biophys.J.80,2120–2132(2001). 36.Toyoshima,Y.Y.,Kron,S.J.&Spudich,J.A.Themyosinstepsize:measurement 1. Kron,S.J.&Spudich,J.A.Fluorescentactinfilamentsmoveonmyosinfixedtoa oftheunitdisplacementperATPhydrolyzedinaninvitroassay.Proc.Natl.Acad. glasssurface.Proc.Natl.Acad.Sci.83,6272–6276(1986). Sci.87,7130–7134(1990). 2. Kron,S.J.,Toyoshima,Y.Y.,Uyeda,T.Q.&Spudich,J.A.Assaysforactinsliding 37.Sundberg,M.etal.Selectivespatiallocalizationofactomyosinmotorfunctionby movementovermyosin-coatedsurfaces.MethodsEnzymol.196,399–416(1991). chemicalsurfacepatterning.Langmuir22,7302–7312(2006). 3. Howard,J.,Hudspeth,A.J.&Vale,R.D.Movementofmicrotubulesbysingle 38.Parthasarathy,R.&Groves,J.T.Opticaltechniquesforimagingmembrane kinesinmolecules.Nature342,154–158(1989). topography.CellBiochem.Biophys.41,391–414(2004). 4. Bunk,R.etal.Guidingmotor-propelledmoleculeswithnanoscaleprecision 39.Lambacher,A.&Fromherz,P.Luminescenceofdyemoleculesonoxidizedsilicon throughsilanizedbi-channelstructures.Nanotechnology16,710–717(2005). andfluorescenceinterferencecontrastmicroscopyofbiomembranes.JOptSoc 5. Bunk,R.etal.Actomyosinmotilityonnanostructuredsurfaces.Biochem.Biophys. AmB19,1435–1453(2002). Res.Commun.301,783–788(2003). 40.Kerssemakers,J.,Howard,J.,Hess,H.&Diez,S.Thedistancethatkinesin-1holds 6. Hess,H.,Clemmens,J.,Qin,D.,Howard,J.&Vogel,V.Light-controlled itscargofromthemicrotubulesurfacemeasuredbyfluorescenceinterference molecularshuttlesmadefrommotorproteinscarryingcargoonengineered contrastmicroscopy.Proc.Natl.Acad.Sci.U.S.A.103,15812–15817(2006). surfaces.NanoLett1,235–239(2001). 41.Persson,M.etal.Heavymeromyosinmoleculesextendingmorethan50nm 7. Hiratsuka,Y.,Tada,T.,Oiwa,K.,Kanayama,T.&Uyeda,T.Q.Controllingthe aboveadsorbingelectronegativesurfaces.Langmuir26,9927–9936(2010). directionofkinesin-drivenmicrotubulemovementsalongmicrolithographic 42.Yang,C.-C.&Chen,W.-C.Thestructuresandpropertiesofhydrogen tracks.Biophys.J.81,1555–1561(2001). silsesquioxane(HSQ)filmsproducedbythermalcuring.J.Mater.Chem.12, 8. Sundberg,M.etal.Actinfilamentguidanceonachip:towardhigh-throughput 1138–1141(2002). assaysandlab-on-a-chipapplications.Langmuir22,7286–7295(2006). 43.Namatsu,H.etal.Three-dimensionalsiloxaneresistfortheformationof 9. Mansson,A.etal.Invitroslidingofactinfilamentslabelledwithsinglequantum nanopatternswithminimumlinewidthfluctuations.J.Vac.Sci.Technol.,B16, dots.Biochem.Biophys.Res.Commun.314,529–534(2004). 69–76(1998). SCIENTIFICREPORTS |3:1092|DOI:10.1038/srep01092 6 www.nature.com/scientificreports 44.Egard,M.etal.Hightransconductanceself-alignedgate-lastsurfacechannel Authorcontributions In0.53Ga0.47AsMOSFET.Proc.IEEEIEDM,13,12.11–13.12.14(2011). M.L.plannedthestudy,performedtheexperiments,analyzedtheresultsandwrotethe 45.Arkles,B.etal.Stageddevelopmentofmodifiedsilicondioxidefilms.J.Sol-GelSci. paper.LtSperformedtheexperimentsandcontributedtotheanalysis.A.M.andH.L. Technol.8,465–469(1997). conceivedandinitiatedthestudy,contributedtotheanalysisandeditedthepaper. 46.Hausmann,D.,Becker,J.,Shenglong,W.&Gordon,R.G.Rapidvapordeposition ofhighlyconformalsilicananolaminates.Science298,402(2002). Additionalinformation Competingfinancialinterests:Theauthorsdeclarenocompetingfinancialinterests. Acknowledgements License:ThisworkislicensedunderaCreativeCommons Attribution-NonCommercial-NoDerivs3.0UnportedLicense.Toviewacopyofthis TheworkleadingtothisinventionhasreceivedfundingfromtheEuropeanUnionSeventh license,visithttp://creativecommons.org/licenses/by-nc-nd/3.0/ FrameworkProgramme(FP7/2007-2011)undergrantagreementnu228971(Molecular Motors-basedNanoDevices–MONAD),theSwedishResearchCouncilundergrantnu Howtocitethisarticle:Lard,M.,Siethoff,L.t.,Ma˚nsson,A.&Linke,H.Tracking 621-2010-5146,nmC@LU,theKnutandAliceWallenbergFoundation,andtheCarl ActomyosinatFluorescenceCheckPoints.Sci.Rep.3,1092;DOI:10.1038/srep01092 Trygger’sfoundation. (2013). SCIENTIFICREPORTS |3:1092|DOI:10.1038/srep01092 7