ebook img

Towards the Next Generation of Industrial Cyber-Physical Systems PDF

23 Pages·2015·1.72 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Towards the Next Generation of Industrial Cyber-Physical Systems

Chapter 1 Towards the Next Generation of Industrial Cyber-Physical Systems ArmandoW.Colombo,StamatisKarnouskos,ThomasBangemann Abstract IntelligentNetworkedembeddedsystemsandtechnologies,rangingfrom components and software to Cyber-Physical Systems (CPS) [1], are increasingly gainingimportancefortheICTsupplyindustry,thesystemintegratorsandallma- jormainstreamsectorsfortheeconomy[9].Developmentofnewtechnologiesfor provisioninginnovativeservicesandproductscanleadtonewbusinessopportuni- tiesfortheindustry.MonitoringandControlareseenaskeyforachievingvisions inseveralCPSdominatedareassuchasindustrialautomationsystems,automotive electronics, telecommunication equipment, smart-grid, building controls, digitally drivensmartcities,homeautomation,greenertransport,waterandwastewaterman- agement,medicalandhealthinfrastructures,onlinepublicservices,andmanyothers [10].Thischapterintroducesthecloud-basedindustrialCPSanddescribesthefirst resultsofmakingitarealitytowardstheNextGenerationSOA-basedSCADA/DCS systems.Thereaderistaughtabouttheresearch,developmentandinnovationwork carriedoutbyasetofexpertscollaboratingundertheumbrellaoftheIMC-AESOP project,forspecifying,developing,implementinganddemonstratingmajorfeatures ofIntelligentMonitoringandControlSystemsandtheadvantagesofimplementing themindifferentindustrialprocesscontrolenvironments. ArmandoW.Colombo Schneider Electric & University of Applied Sciences Emden/Leer, Germany e-mail: armando. [email protected],e-mail:[email protected] StamatisKarnouskos SAP,Germanye-mail:[email protected] ThomasBangemann ifak,Germanye-mail:[email protected] 1 Colomboetal. 1.1.CurrentParadigmsandTechnologiesassociatedtoCPS 1.1 CurrentParadigmsandTechnologiesassociatedtoCPS The advances in computation and communication resources have given rise to a new generation of high-performance, low-power electronic components that have advanced communication capabilities and processing power. This has led to new possibilitiesthatenableimprovedintegrationofheterogeneousdevicesandsystems, withparticularemphasisonplatformindependence,real-timerequirements,robust- ness,security,stabilityofsolutions,amongothermajorrequirements. Industrialists,researchersandpractitionersareassociatingtheseadvanceswitha 4thIndustrialRevolution(referredtoasIndustrie4.0inGermany[15])happening today,wherephysical“Things”getconnectedtoInternet[12]allowingthatthereal touchableworldintegratespartofthecyber-space. WiththesefoundationsinCPS [1] and IoT, a number of different system concepts and architectures (e.g. www. iot-a.eu) have become apparent in the broader context of Cyber-Physical Systems [20,1,4]overthepastcoupleofyearssuchasCollaborativeSystems[11],Service- Oriented Architectures (SOA) [3], networked cooperating embedded devices and systems[22],cloudcomputing[2]etc. Fig.1.1 CollaborativeManufacturingModel Theumbrellaparadigmunderpinningnovelcollaborativesystemsistoconsider the set of intelligent system units as a conglomerate of distributed, autonomous, intelligent,pro-active,fault-tolerantandreusableunits,whichoperateasasetofco- operatingentities[6].Theseentitiesarecapableofworkinginapro-activemanner, initiatingcollaborativeactionsanddynamicallyinteractingwitheachotherinorder toachievebothlocalandglobalobjectives,andthisalongthethreebasiccollabora- 2 Thisisapreprintversion,whichmaydeviatefromthefinalversionwhichcanbeacquiredfromhttps://www.springer.com/gp/book/9783319056234 Colomboetal. 1.1.CurrentParadigmsandTechnologiesassociatedtoCPS tionaxes(asdepictedinFig.1.1)associatedtoanyapplicationdomainandrelated infrastructure,i.e.enterprise,supply-chainandlifecycleaxes[11]. Fromthephysicaldevicecontrolleveluptothehigherlevelsofthebusinesspro- cessmanagementsystem,asdefinedinISA-95(www.isa-95.com):fromsuppliers through the enterprise to the customer [5], and from design through operation to recyclingphasesofanengineeringsystemlifecycle,collaborationwillbeenabled if, on one hand, the involved systems act and react on their environment, sharing someprincipalcommonalitiesand,ontheotherhand,havesomedifferentaspects thatcomplementeachothertoformacoherentgroupofobjectsthatcooperatewith eachothertointeractwiththeirenvironment[22]. As we are moving towards Smart Cyber-Physical Systems and the “Internet of Things”,millionsofdevices,notalltimesmart,areinterconnected,providingand consuminginformationavailableonthenetworkandareabletoexchangecapabili- tiescollaboratinginreachingcommongoals.Asthesedevicesneedstointeroperate, bothatcyberandalsoatphysicallevel,theservice-orientedapproachseemstobe apromisingsolution,i.e.eachdeviceshouldofferitsfunctionalityasstandardser- vices,whileinparallelitispossibletodiscoverandinvokenewfunctionalityfrom other services on-demand. These technologies can be leveraged to build advanced functionalityintosmartCyber-PhysicalSystems,thusenablingbuildingad-hocnew distributedapplicationparadigmsbasedoninterconnected“smartcomponents”with ahighlevelofautonomy. Thisevolutiontowardsglobalservice-basedinfrastructures[6]indicatesthatnew functionality will be introduced by combining services in a cross-layer form, i.e. servicesrelyingontheenterprisesystem,onthenetworkitselfandatdevicelevel will be combined. New integration scenarios can be applied by orchestrating the servicesinscenario-specificways.Inaddition,sophisticatedservicescanbecreated atanylayer(evenatdevicelayer)takingintoaccountandbasedonlyontheprovided functionalityofotherentitiesthatcanbeprovidedasaservice[18,7].Inparallel, dynamicdiscoveryandpeer-to-peercommunicationwillallowtooptimallyexploit thefunctionalityofagivendevice.Itisclearthatwemoveawayfromisolatedstand- alonehardwareandsoftwaresolutionstowardsmorecooperativemodels.However, inordertoachievethat,severalchallengesneedtobesufficientlytackled. TheconvergenceofsolutionsandproductstowardstheSOAparadigmadopted for smart Cyber-Physical Systems contributes to the improvement of the reactiv- ity and performance of industrial processes, such as manufacturing, logistics, and others. This is leading to a situation where information is being available in near real-timebasedonasynchronousevents,andtobusiness-levelapplicationsthatare abletousehigh-levelinformationforvariouspurposes,suchasdiagnostics,perfor- manceindicators,traceability,etc.SOA-basedverticalintegrationwillalsohelpto reducethecostandeffortrequiredtorealizeagivenbusinessscenarioasitwillnot requireanytraditionalhigh-costsolutionssuchascustom-developeddevicedrivers orthird-partyintegrationsolutions. 3 Thisisapreprintversion,whichmaydeviatefromthefinalversionwhichcanbeacquiredfromhttps://www.springer.com/gp/book/9783319056234 Colomboetal. 1.2.AService-orientedcross-layerAutomationandManagementInfrastructure 1.2 AService-orientedcross-layerAutomationandManagement Infrastructure AService-orientedcross-layerAutomationandManagementInfrastructureadopts the “collaborative automation” paradigm, combining cloud computing and Web services technologies [16], among others. The aim is to effectively develop tools and methods, to achieve flexible, reconfigurable, scalable, interoperable network- enabled collaboration between decentralized and distributed Cyber-Physical Sys- tems.Afirststeptowardsthisinfrastructureistocreateaservice-orientedecosys- tem.Thatis,networkedsystemsthatarecomposedbysmartembeddeddevicesthat are Web service compliant (as depicted in Fig. 1.2 and Fig. 1.3), interacting with bothphysicalandorganisationalenvironment,abletoexpose,consumeandsome- timesprocess(compose,orchestrate)services,pursuingwell-definedsystemgoals. Fig. 1.2 An industrial component virtualised by a Web service interface embedded into smart automationdevice(adaptedfrom[23]) Taking the granularity of intelligence to the automation device level allows in- telligent system behaviour to be obtained by composing configuration of devices that introduce incremental fractions of the required intelligence. From a run-time infrastructureviewpoint,theresultisanewbreedofveryflexiblereal-timeembed- deddevices(wired/wireless)thatarefault-tolerant,reconfigurable,safeandsecure. Amongothercharacteristicsofsuchsystems,automaticconfigurationmanagement isanewchallengethatisaddressedthroughbasicplug-and-playandplug-and-run mechanisms. The approach favours adaptability and rapid reconfigurability, as re- programming of large monolithic systems is replaced by configuring loosely cou- pledembeddedunits. Theuseofdevice-levelService-OrientedArchitecturecontributestothecreation of an open, flexible and agile environment, by extending the scope of the collab- orative architecture approach through the application of a unique communication infrastructure[26],downfromthelowestlevelsofthedevicehierarchyupintothe manufacturingenterprise’shigher-levelbusinessprocessmanagementsystems[18]. Theresultofhavingasingleunifyingapplication-levelcommunicationtechnology 4 Thisisapreprintversion,whichmaydeviatefromthefinalversionwhichcanbeacquiredfromhttps://www.springer.com/gp/book/9783319056234 Colomboetal. 1.2.AService-orientedcross-layerAutomationandManagementInfrastructure Fig.1.3 Anindustrialsystemviewedasadistributedsetofsmartservice-compliantdevicesand systems acrosstheenterprise,labelledas“servicebus(network)”inFig.1.4,transformsthe traditional hierarchical view of the industrial environments into a flat automation, controlandmanagementinfrastructure.Thatis,devicesandsystemslocatedindif- ferentlevelsareallhavingthesameWebserviceinterfaceandareabletointeract. Thisfunctionalinteractioniscompletelyindependentfromthephysicallocationin thetraditionallyimplementedenterprisehierarchy. Fromapurefunctionalperspective,oneofthemajorchallengesisfocussed,on onesideonmanagingthevastlyincreasednumberofintelligentdevicesandsystems populatingthecollaborativeSOA-basedsystemandmasteringtheassociatedcom- plexity.Ontheotherside,followingemergingrequirementsofcontrol,automation, managementandbusinessapplications,otherchallengesaretheengineering,devel- opmentandimplementationoftherightinfrastructuretomakeusabletheexplosion ofavailableinformationexposedasservicesinthe“servicecloud”originated,e.g. ontheSOA-basedshopfloor[24].Industrialapplicationscannowberapidlycom- posed/orchestrated,byselectingandcombiningthenewservicesandcapabilities offeredasserviceinanautomationcloud,whichrepresentsthepartialortotalvir- tualisationoftheautomationpyramid,asdepictedinFig.1.5andexplainedinthis book’sChapter3. 5 Thisisapreprintversion,whichmaydeviatefromthefinalversionwhichcanbeacquiredfromhttps://www.springer.com/gp/book/9783319056234 Colomboetal. 1.2.AService-orientedcross-layerAutomationandManagementInfrastructure Fig.1.4 Aservice-orientedviewofanindustrialsystem(adaptedfrom[23]) Fig.1.5 Buildingsupervisorycontrolandmanagementfunctionsasapplicationsusingservices exposedbydevicesandsystemsinthephysicalworldandbytheIMC-AESOPcloudinthecyber world 6 Thisisapreprintversion,whichmaydeviatefromthefinalversionwhichcanbeacquiredfromhttps://www.springer.com/gp/book/9783319056234 Colomboetal. 1.3.IntelligentService-orientedMonitoringandControl–TheIMC-AESOPApproach 1.3 IntelligentService-orientedMonitoringandControl–The IMC-AESOPApproach Theworldmarketfortechnologies,products,andapplicationsalonethatarerelated towhattheInternetofThingsenables,i.e.monitoringandcontrol(M&C),willin- creasesignificantlyinthenextyears.WorldM&Cmarketisexpectedtogrowreach- ing500eBillionin2020.TheM&CEuropeanmarketfollowsthesametrendsas the M&C world one in terms of product repartition and also market product evo- lution.TheEuropeanmonitoringandcontrolmarketwillbereaching143eBnin 2020[25].Whenanalysingthemajorapplicationdomainsforreal-timemonitoring andcontrol,fromthelargeprocessindustryviewpoint,theseindexesandtherelated expectationsoutlinethetremendouspotentialandvalue. Largeprocessindustrysystemsareacomplex(potentiallyverylarge)setof(fre- quently) multi-disciplinary, connected, heterogeneous systems that function as a complex distributed system whose overall properties are greater than the sum of its parts, i.e. very large scale integrated devices (not all time smart) and systems ofwhichthecomponentsarethemselvessystems.Multidisciplinaryinnature,they link many component systems of a wide variety of scales, from individual groups ofsensorstoe.g.wholecontrol,monitoring,supervisorycontrolsystems,perform- ingSCADAandDCSfunctions.Theresultingcombinedsystemsareabletoaddress problemswhichtheindividualcomponentsalonewouldbeunabletodoandtoyield controlandautomationfunctionalitythatisonlypresentasaresultofthecreation ofnew,“emergent”,informationsources,andresultsofcomposition,aggregationof existingandemergentfeature-andmodel-basedmonitoringindexes. TheseverylargescaledistributedprocessautomationsystemsthatIMC-AESOP isaddressing,constitutesystemsofsystems[14],andarerequiredtomeetabasic setofcriteriaknownasMaier’scriteria[21],i.e.: 1. Operationalindependenceoftheconstituentsystems 2. Managerialindependenceoftheconstituentsystems 3. Geographicaldistributionoftheconstituentsystems 4. Evolutionarydevelopment 5. Emergentbehaviour Suchsystemsshouldbebasedonprocesscontrolalgorithms,architecturesandplat- forms that are scalable and modular (plug & play) and applicable across several sectors, going far beyond what current Supervisory Data Acquisition and Control (SCADA),andDistributedControlSystems(DCS)anddevicescandelivertoday. AfirstfastanalysisofcurrentimplementedSCADAandDCSsystemsdetectsa setofmajorhindersfornotcompletelyfulfillingsomeofallthosecriteria:thebig numberofincompatibilitiesamong thesystems,“hardcoded”data, differentview onhowsystemsshouldbeconfiguredandused,co-existenceoftechnologiesfroma verylongperiodsoftime(oftenmorethan20years),useofreactiveprocessautoma- tioncomponentsandsystemsinsteadofhavingthemworkinginaproactivemanner. Ifwebeganhookingallthesehinders,wewouldsoonhaveanunmanageablemess ofwiring,andcustomsoftware,andlittleornooptimalcommunication.Todaythis 7 Thisisapreprintversion,whichmaydeviatefromthefinalversionwhichcanbeacquiredfromhttps://www.springer.com/gp/book/9783319056234 Colomboetal. 1.3.IntelligentService-orientedMonitoringandControl–TheIMC-AESOPApproach hasbeentheusualresult,where“pointsolutions”havebeenimplementedwithout anoverallplantointegratethesedevicesintoameaningful“InformationArchitec- ture”. Looking at latest reported R&D solutions for Control and Automation of very largedistributedsystems,itispossibletoidentifytodaythattherearealreadymany known possibilities for covering some and if possible many or all the criteria ad- dressed above. The IMC-AESOP concept is pointing to optimisation at architec- turalandfunctionallevelsofthelogicalandphysicalnetworkarchitecturesbehind the process automation systems, mainly towards a potential optimal configuration andoperation,e.g.ofenergyconsumption[17]incurrentcomplexandpowerhun- gry process industries, based on service-oriented process control algorithms, scal- ableandmodularSOA-basedSupervisoryDataAcquisitionandControl(SCADA) and Distributed Control Systems (DCS) platforms, going far beyond what current mainlycentralizedSCADAandDCScandelivertoday[16]. To address integration of very large numbers of subsystems and devices, the IMC-AESOPapproachtakesitsrootsinpreviousworkinseveralresearchandde- velopmentprojects[13,7,18],whichdemonstratedthatembeddingWebservicesat thedevicelevelandintegratingthesedeviceswithMESandERPsystemsatupper levelsofanenterprisearchitecturewasfeasiblenotonlyatconceptualbutalsoatin- dustrialapplicationlevel.Thefirstresultsshowninpilotapplicationsrunninginthe car manufacturing, electromechanical assembly and continuous process scenarios havebeenverysuccessful,confirmingthattheuseofcross-layerService-Oriented Architectures in the Industrial automation domain is a very promising approach, abletobeextendedtothedomainofcontrolandmonitoringofbatchandcontinu- ousprocesses. Thisapplicationdomainoflargeprocesssystemscomposedofverylargenum- bersofsystemsisverychallengingintermsof: • Distributedmonitoringandcontrolofverylargescalesystems(tensofthousands ofinterconnecteddevicesareencounteredinasingleplant)enablingplanteffi- ciencycontrol,productandproductionqualitycontrol. • A multitude of plant functions requesting information and functionality due to continuouslychangingandincreasingbusinessrequirements. • Integrationofexistingdeviceswhichgeneratesthedataandinformationneces- saryforthemultitudeofplantfunctionalitieslikeplantoperation,maintenance, engineering,businessandtechnology,i.e.systemofsystemsintegration,opera- tionandevolution. • Theverylargespreadindeviceandsystemperformancerequirementsregarding e.g.responsetime,powerconsumption,communicationbandwidth,security. • Legacy compatibility (20 years old systems have to interoperate with modern ones). WhenusingService-OrientedArchitecturesinProcessControlapplications,sev- eraladvantagesareexpected.Foropenbatchand/orprocessautomationmonitoring andcontrolsystemstheseinclude: 8 Thisisapreprintversion,whichmaydeviatefromthefinalversionwhichcanbeacquiredfromhttps://www.springer.com/gp/book/9783319056234 Colomboetal. 1.4.PositioningtheIMC-AESOPApproachwithintheIndustrialAutomationLandscape • theabilitytobeaccessedbyanyothersystemoftheenterprisearchitectureable tocallotherservices • improved ease-of-use and simplified operation and maintenance of SOA-based SCADAandDCSsystemembeddeddevicesduetotheuniversalintegrationca- pabilitiesthattheservicesareoffering • anextgenerationofSOA-basedprocessautomationcomponentsofferingplug- and-playcapabilities,providingself-discoveryofalldevicesandservicesofthe completeplant-widesystem. Forproactivebatchand/orprocessautomationmonitoringandcontrolsystemsthese include: • theabilitytoexposetheirfunctionalitiesasservices • the ability to compose, aggregate and/or orchestrate services exposed by them- selvesandfromotherdevicesinordertogeneratenewdistributedSCADAand DCSfunctions(alsoexposedas“services”attheshopfloor) • attheshopfloorthesesystemsareinteroperablewithSOA-basedsystemsofthe upper levels of the enterprise architecture (e.g. integrating ERP and MES with theSCADAandDCS). • anextgenerationofSOA-baseddevicesandsystemexposingSCADAandDCS self-adaptable(emergent)functionalities(asaresultofautomaticservicecompo- sitionororchestration),takingcareofreal-timechangesinthedynamicsystem • thegenerationofnewmonitoringindexesandcontrolfunctionsatdifferentlevels of the plant-wide system, as a result of using event propagation, aggregation / orchestration/compositionofservicesandmanagementpropertiesoftheSOA- baseddistributedSCADAandDCS. Allofthesystemscanbenefitfromcost-effectiveness,thankstooptimizedSCADA andDCSdistributionatthedevicelevelontheshopfloorandatupperITsystemlev- els.Anadditionalbenefitstemsfromtheeasiernetworkmanagementoflarge-scale networkedsystems.Basedontheseadvantagesaclearpossibilityistogeneratesys- temenergyusageoptimisation.WiththeSOA-approachintegrationofsubsystems havingtheappropriateinformation,itcanbedonebothattheoperatorlevelandat thebusinesslevel,wheredifferentapproachestoenergyoptimisationcanbeapplied. 1.4 PositioningtheIMC-AESOPApproachwithintheIndustrial AutomationLandscape The degree of reliability and efficiency of energy consumption / utilisation in the operationofindustrialenvironmentsdependsnotonlyontheoperationoftheindi- vidualmechatronic/hardwarecomponentsbutalsoonthestructureandbehaviourof theembeddedsupervisorycontrolsystem.Supervisorytaskshavetobeperformed attwodifferentandseparatebutnetworkedlevels,i.e.theshopfloorandtheupper levels of the enterprise architecture. At each of those levels is possible to identify a set of functional and logical components that are responsible for performing the 9 Thisisapreprintversion,whichmaydeviatefromthefinalversionwhichcanbeacquiredfromhttps://www.springer.com/gp/book/9783319056234 Colomboetal. 1.4.PositioningtheIMC-AESOPApproachwithintheIndustrialAutomationLandscape following functions: sensing, information collection, signal and information pro- cessing,decision-makinganddiagnosis,anddiscrete-eventcontrol. Each level (enumerated as 1–6 in Fig. 1.6), is having its own time-constraints (frommicro-secondstodaysandweeks)anditsowndomainofdataandinforma- tionprocessing.Monitoringofoperations,ofthebehaviourofthemechatronic/hard- ware components, and ofthe system as a whole, is anessential function of such a supervisory control system. Consider the definition of “monitoring” as the act of identifying the characteristic changes in a process and in the behaviour of mecha- tronic/hardwareresourcesbyevaluatingprocessandcomponentsignatureswithout interruptingnormaloperations[8]. Fig.1.6 SchneiderElectricEnterpriseSystemArchitecture“TransparentReadyTM” Intheplant,thereareasetofprocesscontrolstationsthatcontroldifferentpro- cesssectionsintheplant,numberedas2and3inFig.1.6).Theyareconnectedto various devices, distributed I/O stations, PLCs etc. that are themselves connected totheprocessequipmentlabelledwiththenumber1.Formuchlargerandprocess- specific equipment, the supplier also includes dedicated and unique devices, sys- temsorcompletecontrol.Intheoverallplantmonitoringandcontrol,othersystems andsectionsarealsointegratedlikelubricationsystems,transformers,switchgears, valves,ventilation,heatingetc.Foroperators,engineers,maintenancepersonneland management, there are one or several control and engineering rooms available, as wellasmobiledevicesforlocalmonitoringandcontrol,depictedunderthenumber 4inFig.1.6).Attheenterpriselevel,thereareinformationaccess,controlandanal- ysis through various management and enterprise information and control systems, identifiedbythenumbers5and6inFig.1.6). 10 Thisisapreprintversion,whichmaydeviatefromthefinalversionwhichcanbeacquiredfromhttps://www.springer.com/gp/book/9783319056234

Description:
In book: Industrial Cloud-based Cyber-Physical Systems: The IMC-AESOP . infrastructure, i.e. enterprise, supply-chain and life cycle axes [11] The convergence of solutions and products towards the SOA paradigm adopted.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.