Chapter 1 Towards the Next Generation of Industrial Cyber-Physical Systems ArmandoW.Colombo,StamatisKarnouskos,ThomasBangemann Abstract IntelligentNetworkedembeddedsystemsandtechnologies,rangingfrom components and software to Cyber-Physical Systems (CPS) [1], are increasingly gainingimportancefortheICTsupplyindustry,thesystemintegratorsandallma- jormainstreamsectorsfortheeconomy[9].Developmentofnewtechnologiesfor provisioninginnovativeservicesandproductscanleadtonewbusinessopportuni- tiesfortheindustry.MonitoringandControlareseenaskeyforachievingvisions inseveralCPSdominatedareassuchasindustrialautomationsystems,automotive electronics, telecommunication equipment, smart-grid, building controls, digitally drivensmartcities,homeautomation,greenertransport,waterandwastewaterman- agement,medicalandhealthinfrastructures,onlinepublicservices,andmanyothers [10].Thischapterintroducesthecloud-basedindustrialCPSanddescribesthefirst resultsofmakingitarealitytowardstheNextGenerationSOA-basedSCADA/DCS systems.Thereaderistaughtabouttheresearch,developmentandinnovationwork carriedoutbyasetofexpertscollaboratingundertheumbrellaoftheIMC-AESOP project,forspecifying,developing,implementinganddemonstratingmajorfeatures ofIntelligentMonitoringandControlSystemsandtheadvantagesofimplementing themindifferentindustrialprocesscontrolenvironments. ArmandoW.Colombo Schneider Electric & University of Applied Sciences Emden/Leer, Germany e-mail: armando. [email protected],e-mail:[email protected] StamatisKarnouskos SAP,Germanye-mail:[email protected] ThomasBangemann ifak,Germanye-mail:[email protected] 1 Colomboetal. 1.1.CurrentParadigmsandTechnologiesassociatedtoCPS 1.1 CurrentParadigmsandTechnologiesassociatedtoCPS The advances in computation and communication resources have given rise to a new generation of high-performance, low-power electronic components that have advanced communication capabilities and processing power. This has led to new possibilitiesthatenableimprovedintegrationofheterogeneousdevicesandsystems, withparticularemphasisonplatformindependence,real-timerequirements,robust- ness,security,stabilityofsolutions,amongothermajorrequirements. Industrialists,researchersandpractitionersareassociatingtheseadvanceswitha 4thIndustrialRevolution(referredtoasIndustrie4.0inGermany[15])happening today,wherephysical“Things”getconnectedtoInternet[12]allowingthatthereal touchableworldintegratespartofthecyber-space. WiththesefoundationsinCPS [1] and IoT, a number of different system concepts and architectures (e.g. www. iot-a.eu) have become apparent in the broader context of Cyber-Physical Systems [20,1,4]overthepastcoupleofyearssuchasCollaborativeSystems[11],Service- Oriented Architectures (SOA) [3], networked cooperating embedded devices and systems[22],cloudcomputing[2]etc. Fig.1.1 CollaborativeManufacturingModel Theumbrellaparadigmunderpinningnovelcollaborativesystemsistoconsider the set of intelligent system units as a conglomerate of distributed, autonomous, intelligent,pro-active,fault-tolerantandreusableunits,whichoperateasasetofco- operatingentities[6].Theseentitiesarecapableofworkinginapro-activemanner, initiatingcollaborativeactionsanddynamicallyinteractingwitheachotherinorder toachievebothlocalandglobalobjectives,andthisalongthethreebasiccollabora- 2 Thisisapreprintversion,whichmaydeviatefromthefinalversionwhichcanbeacquiredfromhttps://www.springer.com/gp/book/9783319056234 Colomboetal. 1.1.CurrentParadigmsandTechnologiesassociatedtoCPS tionaxes(asdepictedinFig.1.1)associatedtoanyapplicationdomainandrelated infrastructure,i.e.enterprise,supply-chainandlifecycleaxes[11]. Fromthephysicaldevicecontrolleveluptothehigherlevelsofthebusinesspro- cessmanagementsystem,asdefinedinISA-95(www.isa-95.com):fromsuppliers through the enterprise to the customer [5], and from design through operation to recyclingphasesofanengineeringsystemlifecycle,collaborationwillbeenabled if, on one hand, the involved systems act and react on their environment, sharing someprincipalcommonalitiesand,ontheotherhand,havesomedifferentaspects thatcomplementeachothertoformacoherentgroupofobjectsthatcooperatewith eachothertointeractwiththeirenvironment[22]. As we are moving towards Smart Cyber-Physical Systems and the “Internet of Things”,millionsofdevices,notalltimesmart,areinterconnected,providingand consuminginformationavailableonthenetworkandareabletoexchangecapabili- tiescollaboratinginreachingcommongoals.Asthesedevicesneedstointeroperate, bothatcyberandalsoatphysicallevel,theservice-orientedapproachseemstobe apromisingsolution,i.e.eachdeviceshouldofferitsfunctionalityasstandardser- vices,whileinparallelitispossibletodiscoverandinvokenewfunctionalityfrom other services on-demand. These technologies can be leveraged to build advanced functionalityintosmartCyber-PhysicalSystems,thusenablingbuildingad-hocnew distributedapplicationparadigmsbasedoninterconnected“smartcomponents”with ahighlevelofautonomy. Thisevolutiontowardsglobalservice-basedinfrastructures[6]indicatesthatnew functionality will be introduced by combining services in a cross-layer form, i.e. servicesrelyingontheenterprisesystem,onthenetworkitselfandatdevicelevel will be combined. New integration scenarios can be applied by orchestrating the servicesinscenario-specificways.Inaddition,sophisticatedservicescanbecreated atanylayer(evenatdevicelayer)takingintoaccountandbasedonlyontheprovided functionalityofotherentitiesthatcanbeprovidedasaservice[18,7].Inparallel, dynamicdiscoveryandpeer-to-peercommunicationwillallowtooptimallyexploit thefunctionalityofagivendevice.Itisclearthatwemoveawayfromisolatedstand- alonehardwareandsoftwaresolutionstowardsmorecooperativemodels.However, inordertoachievethat,severalchallengesneedtobesufficientlytackled. TheconvergenceofsolutionsandproductstowardstheSOAparadigmadopted for smart Cyber-Physical Systems contributes to the improvement of the reactiv- ity and performance of industrial processes, such as manufacturing, logistics, and others. This is leading to a situation where information is being available in near real-timebasedonasynchronousevents,andtobusiness-levelapplicationsthatare abletousehigh-levelinformationforvariouspurposes,suchasdiagnostics,perfor- manceindicators,traceability,etc.SOA-basedverticalintegrationwillalsohelpto reducethecostandeffortrequiredtorealizeagivenbusinessscenarioasitwillnot requireanytraditionalhigh-costsolutionssuchascustom-developeddevicedrivers orthird-partyintegrationsolutions. 3 Thisisapreprintversion,whichmaydeviatefromthefinalversionwhichcanbeacquiredfromhttps://www.springer.com/gp/book/9783319056234 Colomboetal. 1.2.AService-orientedcross-layerAutomationandManagementInfrastructure 1.2 AService-orientedcross-layerAutomationandManagement Infrastructure AService-orientedcross-layerAutomationandManagementInfrastructureadopts the “collaborative automation” paradigm, combining cloud computing and Web services technologies [16], among others. The aim is to effectively develop tools and methods, to achieve flexible, reconfigurable, scalable, interoperable network- enabled collaboration between decentralized and distributed Cyber-Physical Sys- tems.Afirststeptowardsthisinfrastructureistocreateaservice-orientedecosys- tem.Thatis,networkedsystemsthatarecomposedbysmartembeddeddevicesthat are Web service compliant (as depicted in Fig. 1.2 and Fig. 1.3), interacting with bothphysicalandorganisationalenvironment,abletoexpose,consumeandsome- timesprocess(compose,orchestrate)services,pursuingwell-definedsystemgoals. Fig. 1.2 An industrial component virtualised by a Web service interface embedded into smart automationdevice(adaptedfrom[23]) Taking the granularity of intelligence to the automation device level allows in- telligent system behaviour to be obtained by composing configuration of devices that introduce incremental fractions of the required intelligence. From a run-time infrastructureviewpoint,theresultisanewbreedofveryflexiblereal-timeembed- deddevices(wired/wireless)thatarefault-tolerant,reconfigurable,safeandsecure. Amongothercharacteristicsofsuchsystems,automaticconfigurationmanagement isanewchallengethatisaddressedthroughbasicplug-and-playandplug-and-run mechanisms. The approach favours adaptability and rapid reconfigurability, as re- programming of large monolithic systems is replaced by configuring loosely cou- pledembeddedunits. Theuseofdevice-levelService-OrientedArchitecturecontributestothecreation of an open, flexible and agile environment, by extending the scope of the collab- orative architecture approach through the application of a unique communication infrastructure[26],downfromthelowestlevelsofthedevicehierarchyupintothe manufacturingenterprise’shigher-levelbusinessprocessmanagementsystems[18]. Theresultofhavingasingleunifyingapplication-levelcommunicationtechnology 4 Thisisapreprintversion,whichmaydeviatefromthefinalversionwhichcanbeacquiredfromhttps://www.springer.com/gp/book/9783319056234 Colomboetal. 1.2.AService-orientedcross-layerAutomationandManagementInfrastructure Fig.1.3 Anindustrialsystemviewedasadistributedsetofsmartservice-compliantdevicesand systems acrosstheenterprise,labelledas“servicebus(network)”inFig.1.4,transformsthe traditional hierarchical view of the industrial environments into a flat automation, controlandmanagementinfrastructure.Thatis,devicesandsystemslocatedindif- ferentlevelsareallhavingthesameWebserviceinterfaceandareabletointeract. Thisfunctionalinteractioniscompletelyindependentfromthephysicallocationin thetraditionallyimplementedenterprisehierarchy. Fromapurefunctionalperspective,oneofthemajorchallengesisfocussed,on onesideonmanagingthevastlyincreasednumberofintelligentdevicesandsystems populatingthecollaborativeSOA-basedsystemandmasteringtheassociatedcom- plexity.Ontheotherside,followingemergingrequirementsofcontrol,automation, managementandbusinessapplications,otherchallengesaretheengineering,devel- opmentandimplementationoftherightinfrastructuretomakeusabletheexplosion ofavailableinformationexposedasservicesinthe“servicecloud”originated,e.g. ontheSOA-basedshopfloor[24].Industrialapplicationscannowberapidlycom- posed/orchestrated,byselectingandcombiningthenewservicesandcapabilities offeredasserviceinanautomationcloud,whichrepresentsthepartialortotalvir- tualisationoftheautomationpyramid,asdepictedinFig.1.5andexplainedinthis book’sChapter3. 5 Thisisapreprintversion,whichmaydeviatefromthefinalversionwhichcanbeacquiredfromhttps://www.springer.com/gp/book/9783319056234 Colomboetal. 1.2.AService-orientedcross-layerAutomationandManagementInfrastructure Fig.1.4 Aservice-orientedviewofanindustrialsystem(adaptedfrom[23]) Fig.1.5 Buildingsupervisorycontrolandmanagementfunctionsasapplicationsusingservices exposedbydevicesandsystemsinthephysicalworldandbytheIMC-AESOPcloudinthecyber world 6 Thisisapreprintversion,whichmaydeviatefromthefinalversionwhichcanbeacquiredfromhttps://www.springer.com/gp/book/9783319056234 Colomboetal. 1.3.IntelligentService-orientedMonitoringandControl–TheIMC-AESOPApproach 1.3 IntelligentService-orientedMonitoringandControl–The IMC-AESOPApproach Theworldmarketfortechnologies,products,andapplicationsalonethatarerelated towhattheInternetofThingsenables,i.e.monitoringandcontrol(M&C),willin- creasesignificantlyinthenextyears.WorldM&Cmarketisexpectedtogrowreach- ing500eBillionin2020.TheM&CEuropeanmarketfollowsthesametrendsas the M&C world one in terms of product repartition and also market product evo- lution.TheEuropeanmonitoringandcontrolmarketwillbereaching143eBnin 2020[25].Whenanalysingthemajorapplicationdomainsforreal-timemonitoring andcontrol,fromthelargeprocessindustryviewpoint,theseindexesandtherelated expectationsoutlinethetremendouspotentialandvalue. Largeprocessindustrysystemsareacomplex(potentiallyverylarge)setof(fre- quently) multi-disciplinary, connected, heterogeneous systems that function as a complex distributed system whose overall properties are greater than the sum of its parts, i.e. very large scale integrated devices (not all time smart) and systems ofwhichthecomponentsarethemselvessystems.Multidisciplinaryinnature,they link many component systems of a wide variety of scales, from individual groups ofsensorstoe.g.wholecontrol,monitoring,supervisorycontrolsystems,perform- ingSCADAandDCSfunctions.Theresultingcombinedsystemsareabletoaddress problemswhichtheindividualcomponentsalonewouldbeunabletodoandtoyield controlandautomationfunctionalitythatisonlypresentasaresultofthecreation ofnew,“emergent”,informationsources,andresultsofcomposition,aggregationof existingandemergentfeature-andmodel-basedmonitoringindexes. TheseverylargescaledistributedprocessautomationsystemsthatIMC-AESOP isaddressing,constitutesystemsofsystems[14],andarerequiredtomeetabasic setofcriteriaknownasMaier’scriteria[21],i.e.: 1. Operationalindependenceoftheconstituentsystems 2. Managerialindependenceoftheconstituentsystems 3. Geographicaldistributionoftheconstituentsystems 4. Evolutionarydevelopment 5. Emergentbehaviour Suchsystemsshouldbebasedonprocesscontrolalgorithms,architecturesandplat- forms that are scalable and modular (plug & play) and applicable across several sectors, going far beyond what current Supervisory Data Acquisition and Control (SCADA),andDistributedControlSystems(DCS)anddevicescandelivertoday. AfirstfastanalysisofcurrentimplementedSCADAandDCSsystemsdetectsa setofmajorhindersfornotcompletelyfulfillingsomeofallthosecriteria:thebig numberofincompatibilitiesamong thesystems,“hardcoded”data, differentview onhowsystemsshouldbeconfiguredandused,co-existenceoftechnologiesfroma verylongperiodsoftime(oftenmorethan20years),useofreactiveprocessautoma- tioncomponentsandsystemsinsteadofhavingthemworkinginaproactivemanner. Ifwebeganhookingallthesehinders,wewouldsoonhaveanunmanageablemess ofwiring,andcustomsoftware,andlittleornooptimalcommunication.Todaythis 7 Thisisapreprintversion,whichmaydeviatefromthefinalversionwhichcanbeacquiredfromhttps://www.springer.com/gp/book/9783319056234 Colomboetal. 1.3.IntelligentService-orientedMonitoringandControl–TheIMC-AESOPApproach hasbeentheusualresult,where“pointsolutions”havebeenimplementedwithout anoverallplantointegratethesedevicesintoameaningful“InformationArchitec- ture”. Looking at latest reported R&D solutions for Control and Automation of very largedistributedsystems,itispossibletoidentifytodaythattherearealreadymany known possibilities for covering some and if possible many or all the criteria ad- dressed above. The IMC-AESOP concept is pointing to optimisation at architec- turalandfunctionallevelsofthelogicalandphysicalnetworkarchitecturesbehind the process automation systems, mainly towards a potential optimal configuration andoperation,e.g.ofenergyconsumption[17]incurrentcomplexandpowerhun- gry process industries, based on service-oriented process control algorithms, scal- ableandmodularSOA-basedSupervisoryDataAcquisitionandControl(SCADA) and Distributed Control Systems (DCS) platforms, going far beyond what current mainlycentralizedSCADAandDCScandelivertoday[16]. To address integration of very large numbers of subsystems and devices, the IMC-AESOPapproachtakesitsrootsinpreviousworkinseveralresearchandde- velopmentprojects[13,7,18],whichdemonstratedthatembeddingWebservicesat thedevicelevelandintegratingthesedeviceswithMESandERPsystemsatupper levelsofanenterprisearchitecturewasfeasiblenotonlyatconceptualbutalsoatin- dustrialapplicationlevel.Thefirstresultsshowninpilotapplicationsrunninginthe car manufacturing, electromechanical assembly and continuous process scenarios havebeenverysuccessful,confirmingthattheuseofcross-layerService-Oriented Architectures in the Industrial automation domain is a very promising approach, abletobeextendedtothedomainofcontrolandmonitoringofbatchandcontinu- ousprocesses. Thisapplicationdomainoflargeprocesssystemscomposedofverylargenum- bersofsystemsisverychallengingintermsof: • Distributedmonitoringandcontrolofverylargescalesystems(tensofthousands ofinterconnecteddevicesareencounteredinasingleplant)enablingplanteffi- ciencycontrol,productandproductionqualitycontrol. • A multitude of plant functions requesting information and functionality due to continuouslychangingandincreasingbusinessrequirements. • Integrationofexistingdeviceswhichgeneratesthedataandinformationneces- saryforthemultitudeofplantfunctionalitieslikeplantoperation,maintenance, engineering,businessandtechnology,i.e.systemofsystemsintegration,opera- tionandevolution. • Theverylargespreadindeviceandsystemperformancerequirementsregarding e.g.responsetime,powerconsumption,communicationbandwidth,security. • Legacy compatibility (20 years old systems have to interoperate with modern ones). WhenusingService-OrientedArchitecturesinProcessControlapplications,sev- eraladvantagesareexpected.Foropenbatchand/orprocessautomationmonitoring andcontrolsystemstheseinclude: 8 Thisisapreprintversion,whichmaydeviatefromthefinalversionwhichcanbeacquiredfromhttps://www.springer.com/gp/book/9783319056234 Colomboetal. 1.4.PositioningtheIMC-AESOPApproachwithintheIndustrialAutomationLandscape • theabilitytobeaccessedbyanyothersystemoftheenterprisearchitectureable tocallotherservices • improved ease-of-use and simplified operation and maintenance of SOA-based SCADAandDCSsystemembeddeddevicesduetotheuniversalintegrationca- pabilitiesthattheservicesareoffering • anextgenerationofSOA-basedprocessautomationcomponentsofferingplug- and-playcapabilities,providingself-discoveryofalldevicesandservicesofthe completeplant-widesystem. Forproactivebatchand/orprocessautomationmonitoringandcontrolsystemsthese include: • theabilitytoexposetheirfunctionalitiesasservices • the ability to compose, aggregate and/or orchestrate services exposed by them- selvesandfromotherdevicesinordertogeneratenewdistributedSCADAand DCSfunctions(alsoexposedas“services”attheshopfloor) • attheshopfloorthesesystemsareinteroperablewithSOA-basedsystemsofthe upper levels of the enterprise architecture (e.g. integrating ERP and MES with theSCADAandDCS). • anextgenerationofSOA-baseddevicesandsystemexposingSCADAandDCS self-adaptable(emergent)functionalities(asaresultofautomaticservicecompo- sitionororchestration),takingcareofreal-timechangesinthedynamicsystem • thegenerationofnewmonitoringindexesandcontrolfunctionsatdifferentlevels of the plant-wide system, as a result of using event propagation, aggregation / orchestration/compositionofservicesandmanagementpropertiesoftheSOA- baseddistributedSCADAandDCS. Allofthesystemscanbenefitfromcost-effectiveness,thankstooptimizedSCADA andDCSdistributionatthedevicelevelontheshopfloorandatupperITsystemlev- els.Anadditionalbenefitstemsfromtheeasiernetworkmanagementoflarge-scale networkedsystems.Basedontheseadvantagesaclearpossibilityistogeneratesys- temenergyusageoptimisation.WiththeSOA-approachintegrationofsubsystems havingtheappropriateinformation,itcanbedonebothattheoperatorlevelandat thebusinesslevel,wheredifferentapproachestoenergyoptimisationcanbeapplied. 1.4 PositioningtheIMC-AESOPApproachwithintheIndustrial AutomationLandscape The degree of reliability and efficiency of energy consumption / utilisation in the operationofindustrialenvironmentsdependsnotonlyontheoperationoftheindi- vidualmechatronic/hardwarecomponentsbutalsoonthestructureandbehaviourof theembeddedsupervisorycontrolsystem.Supervisorytaskshavetobeperformed attwodifferentandseparatebutnetworkedlevels,i.e.theshopfloorandtheupper levels of the enterprise architecture. At each of those levels is possible to identify a set of functional and logical components that are responsible for performing the 9 Thisisapreprintversion,whichmaydeviatefromthefinalversionwhichcanbeacquiredfromhttps://www.springer.com/gp/book/9783319056234 Colomboetal. 1.4.PositioningtheIMC-AESOPApproachwithintheIndustrialAutomationLandscape following functions: sensing, information collection, signal and information pro- cessing,decision-makinganddiagnosis,anddiscrete-eventcontrol. Each level (enumerated as 1–6 in Fig. 1.6), is having its own time-constraints (frommicro-secondstodaysandweeks)anditsowndomainofdataandinforma- tionprocessing.Monitoringofoperations,ofthebehaviourofthemechatronic/hard- ware components, and ofthe system as a whole, is anessential function of such a supervisory control system. Consider the definition of “monitoring” as the act of identifying the characteristic changes in a process and in the behaviour of mecha- tronic/hardwareresourcesbyevaluatingprocessandcomponentsignatureswithout interruptingnormaloperations[8]. Fig.1.6 SchneiderElectricEnterpriseSystemArchitecture“TransparentReadyTM” Intheplant,thereareasetofprocesscontrolstationsthatcontroldifferentpro- cesssectionsintheplant,numberedas2and3inFig.1.6).Theyareconnectedto various devices, distributed I/O stations, PLCs etc. that are themselves connected totheprocessequipmentlabelledwiththenumber1.Formuchlargerandprocess- specific equipment, the supplier also includes dedicated and unique devices, sys- temsorcompletecontrol.Intheoverallplantmonitoringandcontrol,othersystems andsectionsarealsointegratedlikelubricationsystems,transformers,switchgears, valves,ventilation,heatingetc.Foroperators,engineers,maintenancepersonneland management, there are one or several control and engineering rooms available, as wellasmobiledevicesforlocalmonitoringandcontrol,depictedunderthenumber 4inFig.1.6).Attheenterpriselevel,thereareinformationaccess,controlandanal- ysis through various management and enterprise information and control systems, identifiedbythenumbers5and6inFig.1.6). 10 Thisisapreprintversion,whichmaydeviatefromthefinalversionwhichcanbeacquiredfromhttps://www.springer.com/gp/book/9783319056234
Description: