ebook img

Topological phases and polaron physics in ultra cold quantum gases PDF

386 Pages·2015·13.64 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Topological phases and polaron physics in ultra cold quantum gases

Topological phases and polaron physics in ultra cold quantum gases Dissertation Fabian Grusdt Vom Fachbereich Physik der Technischen Universit¨at Kaiserslautern zur Erlangung des akademischen Grades ”Doktor der Naturwissenschaften” genehmigte Dissertation Betreuer: Prof. Dr. Michael Fleischhauer Zweitgutachter: Prof. Dr. Eugene Demler Datum der wissenschaftlichen Aussprache: 15. April 2015 D 386 Gewidmet den wichtigsten Lehrern und Betreuern w¨ahrend meiner Schulzeit: Anton P¨opperl Matthias Schweinberger Rudolf Lehn Contents Abstract 7 Kurzfassung 10 I Topological States of Interacting Bosons 13 1 Introduction 15 1.1 Summary and Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 1.2 Fundamental Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 1.2.1 Topological order . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 1.2.2 (Abelian) topological invariants . . . . . . . . . . . . . . . . . . . . . . . 25 1.2.3 Non-Abelian topological invariants . . . . . . . . . . . . . . . . . . . . . 33 1.2.4 The Hofstadter-Bose-Hubbard model . . . . . . . . . . . . . . . . . . . . 37 2 Topology in the Superlattice Bose Hubbard Model 43 2.1 Outline and Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 2.2 Superlattice Bose Hubbard model . . . . . . . . . . . . . . . . . . . . . . . . . . 44 2.2.1 Hard-core bosons and chiral symmetry . . . . . . . . . . . . . . . . . . . 45 2.2.2 Bulk phase diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 2.3 Topological order in the superlattice Bose Hubbard model . . . . . . . . . . . . 47 2.4 Topological edge states in the superlattice Bose Hubbard model . . . . . . . . . 49 2.4.1 Failure of the bulk-boundary correspondence . . . . . . . . . . . . . . . 50 2.4.2 Generalized bulk-boundary correspondence . . . . . . . . . . . . . . . . 51 2.4.3 Experimental considerations . . . . . . . . . . . . . . . . . . . . . . . . . 52 2.4.4 Relation to Majorana fermions . . . . . . . . . . . . . . . . . . . . . . . 55 2.5 Extended superlattice Bose Hubbard model . . . . . . . . . . . . . . . . . . . . 56 2.5.1 Model and bulk phases. . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 2.5.2 Symmetry-protected topological classification of Mott insulators . . . . 60 2.5.3 Topological excitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 2.6 Thouless pump classification of inversion-symmetric models in one dimension . 67 2.7 Summary and Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 3 Realization of Fractional Chern Insulators in the Thin-torus Limit 73 3.1 Outline and Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 3.2 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 3.2.1 Relation to the thin-torus-limit of the Hofstadter-Hubbard model . . . . 75 3.2.2 Possible experimental implementation . . . . . . . . . . . . . . . . . . . 76 3.3 Topology in the non-interacting system – Thouless pump . . . . . . . . . . . . 79 5 6 CONTENTS 3.4 Interacting topological states . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 3.4.1 Grand-canonical phase diagram . . . . . . . . . . . . . . . . . . . . . . . 80 3.4.2 Harmonic trapping potential . . . . . . . . . . . . . . . . . . . . . . . . 81 3.5 Topological classification and fractional Thouless pump . . . . . . . . . . . . . 82 3.5.1 1+1D model and fractional Thouless pump . . . . . . . . . . . . . . . . 82 3.5.2 1D model and SPT CDW . . . . . . . . . . . . . . . . . . . . . . . . . . 84 3.6 Summary and Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 4 Fractional Quantum Hall E↵ect with Rydberg Interactions 87 4.1 Summary and Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 4.2 The Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 4.2.1 Rydberg dressing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 4.2.2 Rydberg-interaction pseudopotentials in the LLL . . . . . . . . . . . . . 89 4.3 Ground state for small blockade radii . . . . . . . . . . . . . . . . . . . . . . . . 91 4.3.1 Ground states at ⌫ = 1/2 and ⌫ = 1/4 . . . . . . . . . . . . . . . . . . . 91 4.3.2 Ground states at small fillings. . . . . . . . . . . . . . . . . . . . . . . . 92 4.3.3 Correlated Wigner crystal of composite particles . . . . . . . . . . . . . 95 4.4 E↵ects of finite blockade radius . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 4.4.1 Bubble crystal at small fillings . . . . . . . . . . . . . . . . . . . . . . . 97 4.4.2 Large filling – indications for cluster liquids . . . . . . . . . . . . . . . . 99 4.5 Summary and Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 5 Topological Growing Scheme for Laughlin States 103 5.1 Outline and Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 5.2 Growing quantum states with topological order . . . . . . . . . . . . . . . . . . 104 5.3 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 5.4 Protocol – continuum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 5.5 Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 5.6 Protocol – lattice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 5.6.1 Buckyball-Hofstadter-Bose-Hubbard model . . . . . . . . . . . . . . . . 113 5.6.2 Numerical Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114 5.6.3 Possible experimental realizations. . . . . . . . . . . . . . . . . . . . . . 115 5.7 Outlook – Beyond Laughlin states . . . . . . . . . . . . . . . . . . . . . . . . . 116 II Interferometry-based Detection of Topological Invariants 117 6 Introduction 119 6.1 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119 6.2 Fundamental Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120 6.2.1 Interferometric Measurement of Topological Invariants . . . . . . . . . . 121 6.2.2 Z2 topological invariant . . . . . . . . . . . . . . . . . . . . . . . . . . . 122 7 Interferometric Measurement of Z2 Topological Invariants 127 7.1 Outline and Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127 7.2 Interferometric measurement of the Z2 invariant . . . . . . . . . . . . . . . . . 128 7.2.1 Discontinuity of time-reversal polarization . . . . . . . . . . . . . . . . . 129 7.2.2 The twist scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130 7.2.3 The Wilson loop scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . 130 CONTENTS 7 7.2.4 Relation between Wilson loops and TRP . . . . . . . . . . . . . . . . . 131 7.3 Twist scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132 7.3.1 Interferometric sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . 132 7.3.2 Dynamical-phase-free sequence . . . . . . . . . . . . . . . . . . . . . . . 135 7.3.3 Experimental realization and limitations . . . . . . . . . . . . . . . . . . 137 7.3.4 Formal definition and calculation of cTRP . . . . . . . . . . . . . . . . . 138 7.3.5 Example: Kane-Mele model . . . . . . . . . . . . . . . . . . . . . . . . . 141 7.4 Wilson loop scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142 7.4.1 TR Wilson loops and their phases . . . . . . . . . . . . . . . . . . . . . 143 7.4.2 Zak phases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145 7.4.3 Experimental realization . . . . . . . . . . . . . . . . . . . . . . . . . . . 146 7.5 Summary and outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149 8 Interferometric Measurement of Many-Body Topological Invariants 151 8.1 Outline and Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151 8.2 Theoretical Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153 8.2.1 The Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153 8.2.2 Strong coupling approximation . . . . . . . . . . . . . . . . . . . . . . . 154 8.2.3 TP invariant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155 8.2.4 Topological invariants: general considerations . . . . . . . . . . . . . . . 157 8.2.5 Strong coupling external TP invariant . . . . . . . . . . . . . . . . . . . 160 8.3 Integer Chern insulators and Integer Quantum Hall e↵ect . . . . . . . . . . . . 160 8.3.1 Topological invariants . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161 8.3.2 TP in the Hofstadter Chern insulator - single hole approximation . . . . 163 8.3.3 Solution in strong coupling approximation . . . . . . . . . . . . . . . . . 165 8.3.4 Interacting fermions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166 8.3.5 Numerical results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167 8.3.6 TP in the integer quantum Hall e↵ect . . . . . . . . . . . . . . . . . . . 168 8.4 Fractional Quantum Hall e↵ect and Fractional Chern Insulators . . . . . . . . . 170 8.4.1 Topological invariants . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170 8.4.2 Fractional Chern insulators . . . . . . . . . . . . . . . . . . . . . . . . . 172 8.4.3 Fractional quantum Hall e↵ect . . . . . . . . . . . . . . . . . . . . . . . 173 8.4.4 Experimental considerations . . . . . . . . . . . . . . . . . . . . . . . . . 173 8.5 Mott insulators and symmetry protected topological order . . . . . . . . . . . . 174 8.5.1 The model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174 8.5.2 Polaron transformation . . . . . . . . . . . . . . . . . . . . . . . . . . . 177 8.5.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178 8.5.4 Approximate descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . 179 8.6 Conclusions and Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182 III Polaron Physics with Ultra Cold Atoms 185 9 Introduction 187 9.1 Summary and Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187 9.2 Fundamental Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189 9.2.1 Polaron Hamiltonian for Impurities in a BEC . . . . . . . . . . . . . . . 189 9.2.2 Experimental Considerations . . . . . . . . . . . . . . . . . . . . . . . . 196 9.2.3 The Lee-Low-Pines Transformation . . . . . . . . . . . . . . . . . . . . . 198 8 CONTENTS 9.2.4 Weak-coupling or Mean-Field Polaron Theory . . . . . . . . . . . . . . . 200 9.2.5 Strong-coupling polaron theory . . . . . . . . . . . . . . . . . . . . . . . 206 10 RF Spectra of Fr¨ohlich Polarons in a BEC 209 10.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209 10.2 RF spectra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210 10.2.1 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212 10.2.2 Formulation as a non-equilibrium problem . . . . . . . . . . . . . . . . . 212 10.3 Time-dependent MF theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213 10.3.1 Equations of motion – Dirac’s variational principle . . . . . . . . . . . . 213 10.4 Discussion of RF spectra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214 10.4.1 Leading-order expansions . . . . . . . . . . . . . . . . . . . . . . . . . . 214 10.4.2 Universal high-energy RF tail . . . . . . . . . . . . . . . . . . . . . . . . 215 10.5 Non-equilibrium polaron dynamics . . . . . . . . . . . . . . . . . . . . . . . . . 216 11 Weak-coupling theory of polaron Bloch oscillations in optical lattices 219 11.1 Summary and Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219 11.2 The Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221 11.2.1 Derivation from microscopic model . . . . . . . . . . . . . . . . . . . . . 221 11.2.2 Time-dependent Lee-Low-Pines transformation in the lattice . . . . . . 225 11.3 Weak-coupling Theory of Lattice Polarons . . . . . . . . . . . . . . . . . . . . . 226 11.3.1 Mean-field polaron wavefunction . . . . . . . . . . . . . . . . . . . . . . 227 11.3.2 Results: equilibrium properties . . . . . . . . . . . . . . . . . . . . . . . 228 11.4 Polaron Bloch Oscillations and Adiabatic Approximation . . . . . . . . . . . . 230 11.4.1 Time-dependent variational wavefunctions . . . . . . . . . . . . . . . . . 230 11.4.2 Adiabatic approximation . . . . . . . . . . . . . . . . . . . . . . . . . . 232 11.4.3 Polaron trajectory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232 11.5 Non-Adiabatic Corrections. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233 11.5.1 Impurity dynamics beyond the adiabatic approximation . . . . . . . . . 233 11.5.2 Beyond wavepacket dynamics . . . . . . . . . . . . . . . . . . . . . . . . 236 11.6 Polaron Transport . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236 11.6.1 General observations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236 11.6.2 Numerical results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237 11.6.3 Semi-analytical current-force relation . . . . . . . . . . . . . . . . . . . . 238 11.6.4 Insu�ciencies of the phenomenological Esaki-Tsu model . . . . . . . . . 241 12 All-coupling Theory of the Fr¨ohlich Polaron 245 12.1 Summary and Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245 12.2 Fr¨ohlich Model and RG coupling constants . . . . . . . . . . . . . . . . . . . . 248 12.2.1 Towards the supersonic regime . . . . . . . . . . . . . . . . . . . . . . . 249 12.3 Renormalization Group Formalism for the Fr¨ohlich model . . . . . . . . . . . . 250 12.3.1 Dimensional analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250 12.3.2 Formulation of the RG . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252 12.4 Polaron Groundstate Energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255 12.4.1 Logarithmic UV Divergence of the polaron energy . . . . . . . . . . . . 257 12.4.2 Regularization of the Polaron Energy . . . . . . . . . . . . . . . . . . . 258 12.5 Other Groundstate Polaron Properties – Derivation. . . . . . . . . . . . . . . . 260 12.5.1 Polaron Mass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260 12.5.2 Phonon Number . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261 CONTENTS 9 12.5.3 Quasiparticle weight . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261 12.6 Other Groundstate Polaron Properties – Results . . . . . . . . . . . . . . . . . 262 12.6.1 Solutions of RG flow equations . . . . . . . . . . . . . . . . . . . . . . . 262 12.6.2 Polaron Mass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263 12.6.3 Phonon Number . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 266 12.6.4 Quasiparticle weight . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 266 13 Dynamical RG for Intermediate-coupling Fr¨ohlich Polarons 269 13.1 Formulation of the dynamical RG . . . . . . . . . . . . . . . . . . . . . . . . . . 270 13.1.1 Phonon number and momentum . . . . . . . . . . . . . . . . . . . . . . 270 13.1.2 Time-dependent overlap . . . . . . . . . . . . . . . . . . . . . . . . . . . 275 13.2 Results: Spectral Function of the Fr¨ohlich Polaron . . . . . . . . . . . . . . . . 281 13.3 Results: Dynamics of polaron formation . . . . . . . . . . . . . . . . . . . . . . 283 IV Appendices 287 A Quantization of the fractional part of the charge on the edge 289 B Exact diagonalization in the lowest Landau level 293 C Proof of the Wilson loop formula for the Z2 invariant 295 D Bloch oscillation’s equations of motion 297 E Non-universal Franck-Condon factor phases 299 F TR invariant non-adiabatic two-band dynamics 301 G Hofstadter TP in the polaron frame 305 H Measurement of TP invariant in the Hofstadter problem 309 H.0.1 E↵ect of driving terms on impurity . . . . . . . . . . . . . . . . . . . . . 309 H.0.2 Exact treatment of driving terms . . . . . . . . . . . . . . . . . . . . . . 310 I Lowest Chern band projection 313 J Impurity-boson interactions in a lattice 315 K Static MF polarons in a lattice 317 L Impurity density in the lab frame 319 M Adiabatic wavepacket dynamics 321 N Discussion and extension of the analytical current-force relation 323 O Alternative derivation of polaron current 325 P Renormalized impurity mass 327 10 CONTENTS Q Polaron Properties from RG 329 Q.1 Polaron phonon number . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 329 Q.2 Polaron momentum. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 330 Q.3 Quasiparticle weight . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 331 R Alternative Check of the RG – Kagan-Prokof’ev theory 333 R.1 Simplified Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 333 R.2 Relation to Kagan and Prokof’ev theory . . . . . . . . . . . . . . . . . . . . . . 334 R.2.1 Kagan-Prokof’ev theory . . . . . . . . . . . . . . . . . . . . . . . . . . . 334 R.2.2 Polaron Hamiltonian . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 334 R.2.3 Application to polaron case . . . . . . . . . . . . . . . . . . . . . . . . . 335 R.3 Comparison with RG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 335 R.4 Results: Kagan-Prokof’ev versus RG . . . . . . . . . . . . . . . . . . . . . . . . 336 R.4.1 Polaron mass term . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 336 R.4.2 Polaron energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 337 R.5 Asymptotic solutions of Kagan-Prokof’ev theory . . . . . . . . . . . . . . . . . 337 R.5.1 UV asymptotics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 338 R.5.2 IR asymptotics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 339 S Summary of the dRG 341 S.1 Time-dependent observables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 341 S.2 Time-dependent overlap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 343 T Time-dependent overlap – MF versus dRG 345 Publications 347 Bibliography 350 Thanks to... 377

Description:
phases corresponding to such loops provide signatures for non-trivial geometry even in a one- dimensional Topological phases have become an intensely studied subject in many fields of physics. A key signature of was chosen to be M/mB = 2.5; These spectra were calculated by Aditya Shashi.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.