ebook img

Topics in Multivariate Approximation PDF

334 Pages·1987·20.766 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Topics in Multivariate Approximation

Topics in Multivariate Approximation Edited by C. K. Chui L. L. Schumaker Center for Approximation Theory Department of Mathematics Texas A&M University College Station, Texas F.I. Utreras Department of Mathematics and Computer Science University of Chile Santiago, Chile ACADEMIC PRESS, INC. Harcourt Brace Jovanovich, Publishers Boston Orlando San Diego New York Austin London Sydney Tokyo Toronto Copyright © 1987 by Academic Press, Inc. All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopy, recording, or any information storage and retrieval system, without permission in writing from the publisher. ACADEMIC PRESS, INC. Orlando, Florida 32887 United Kingdom Edition published by ACADEMIC PRESS, INC. (LONDON) LTD. 24-28 Oval Road, London NWl 7DX Library of Congress Cataloging-in-Publication Data Topics in multivariate approximation. Proceedings of an international workshop held at the University of Chile in Santiago, Chile, December 15-19, 1986. Bibliography: p. 1. Approximation theory—Congresses. 2. Functions of several real variables—Congresses. I. Chui, C. K. II. Schumaker, Larry L., 1939- III. Utreras F.I. QA297.5.T66 1987 51Γ.4 87-17454 ISBN 0-12-174585-6 Printed in the United States of America 87 88 89 90 9 8 7 6 5 4 3 21 PREFACE During the week of December 15 - 19, 1986, an international workshop on multi vari ate approximation was held at the University of Chile in Santiago, Chile. The purpose of the conference was to bring leading researchers in the field together for an intensive discussion of several current problem areas. The conference was organized by an international committee consisting of Mira Bozzini (Italy), Charles Chui (USA), Kurt Jetter (Germany), Pierre-Jean Laurent (France), Larry Schumaker (USA), and Florencio Utreras (Chile). Twenty-four researchers from ten countries gave one-hour survey lectures. The topics covered by the lectures (and summarized in the papers included in this proceedings volume) included the following: - multivariate splines - fitting of scattered data - tensor approximation methods - multivariate polynomial approximation - numerical grid generation - finite element methods - constrained interpolation and smoothing. In addition to the survey papers, this volume includes a bibliography with over 1100 entries. While the authors, R. Franke and L. Schumaker, make no claim of completeness, we feel that this bibliography will be a very useful tool for researchers interested in working in the areas of multivariate approximation discussed here, as well as in related areas. The conference was supported by grants from a number of international scientific organizations. These included CNR (Italy), INS A (France), CON- ICYT (Chile), DFG (Germany), NSF (USA), and PNUD-UNESCO (United Nations). We would also like to acknowledge the support of the Departa- mento de Relaciones Internacionales and the Facultad de Ciencias Fisicas y Matemâticas of the University of Chile, as well as the extensive work of the lo­ cal organizing committee which included Patricio Basso, Maria Cecilia Rivara, and Maria Leonor Varas, all of the University of Chile. The manuscript for this volume was prepared at the Center for Approx­ imation Theory at Texas A&M University, College Station, Texas, using the TßX typesetting system. In this connection we would like to thank Dr. Nor­ man W. Naugle for his help with the T^Knical aspects of putting the book together, and Mrs. Jan Want who assisted with the preparation of a number of the papers. April 15, 1987 vii PARTICIPANTS Raul Aguila, Universidad Católica de Valparaiso, Instituto de Matematica, Blanco Viel 596, Cerro Barón, Valparaiso, Chile Herman Alder, Universidad de Concepción, Departamento de Matematicas, Concepción, Chile Nélida Iris Auriol, Universidad Nacional de San Luis, Martin de Loyola 1835- 13° San Luis, Argent ina Patricio Basso, Depto. Matematicas Aplicadas, Fac. de Ciencias Fisicas y Matematicas, Universidad de Chile, Casilla 170-3, Correo 3, Santi­ ago, Chile Maria E. Canales Tapia, Avda. Angamos 601, Departamento Matematicas, Universidad de Antofagasta, Antofagasta, Chile Magdalena Cantizani, Universidad de San Luis, Estado de Israel 1436, San Luis, Argent ina Eduardo Carrizo, Dept. de Computación, Universidad de Buenos Aires, Maipu 241 4° piso, Buenos Aires, Argentina Norma Cenzola, Universidad Nacional de San Luis, Av. Figueroa 828, San Luis, Argentina E. W. Cheney, Department of Mathematics, University of Texas, Austin, Texas, 78712 Charles K. Chui, Center for Approximation Theory, Texas A&M University, College Station, Texas, 77843 Miguel Cifuentes, ASMAR, Talcahuano, Chile. Wolfgang Dahmen, Fakultät für Mathematik, Universität Bielefeld, D-4800 Bielefeld, West Germany Guido E. Del Pino, Pontifìcia Universidad Católica de Chile, Departamento de Estadistica, Santiago, Chile. Franz-Jurgen Delvos, Lehrstuhl für Mathematik I, Universität Siegen, Hölder- linstr. 3, D-5900 Siegen, West Germany Nira Dyn, Department of Mathematics, Tel-Aviv University, Tel Aviv, Israel Sergio Favier, Universidad Nacional de San Luis, Bolivar 1349, San Luis, Argent ina Adela Fernandez, Universidad Nacional de San Luis, Caseros 1065, San Luis, Argentina Osvaldo Ferreiro, Pontifìcia Universidad Católica de Chile, Departamento de Estadistica, Santiago, Chile. vin Participants ix Melitta Fiebig, Departamento de Matematicas, Universidad de Concepción, Casilla 2017, Concepción, Chile Ferruccio Fontanella, Dipartimento di Energetica, Via di S. Marta 3, 150139, Firenze, Italia Richard Franke, Department of Mathematics, Naval Postgraduate School, Monterey, California 93943 Willi Freeden, Institut für Reine und Angewandte Mathematik, Rheinisch- Westfälische, Technische Hochschule Aachen, Templersgraben 55, D-5100 Aachen, West Germany Marcos Guerrero, Depto. Matematicas Aplicadas, Fac. de Ciencias Fisicas y Matematicas, Universidad de Chile, Casilla 170-3 Correo 3, Santiago, Chile Werner Haussman, Department of Mathematics, University of Duisburg, Lotharstr. 65, D-4100 Duisburg, West Germany Ivan Huerta, Facultad de Matematica, Universidad Católica de Chile, Casilla 114-D, Santiago, Chile Kurt Jetter, FB Mathematik, Universität-GH-Duisburg, Lotharstr. D-4100, West Germany Alain J. Y. Le Méhauté, Laboratoire de Mathématiques, INS A, 35043 Rennes Cedex, France Rafael Leiva, Depto. Matematicas Aplicadas, Fac. de Ciencias Fisicas y Matematicas, Universidad de Chile, Casilla 170-3 Correo 3, Santiago, Chile Jerónimo Lorente Pardo, Universidad de Granada, Dpto. Matemàtica Aplicada, Facultad de Ciencias, 18071 Granada, Espana George G. Lorentz, Department of Mathematics, University of Texas, Austin, Texas 78712 Miguel A. Marano, Departamento de Matematicas, Universidad Nacional de Rio Cuarto, 5800 Rio Cuarto, Argentina Charles A. Micchelli, IBM Research, P. O. Box 218, Yorktown Heights, New York, 10598 Joaquin Morales, Universidad de La Serena, Area Ingenieria Industrial, Benavente 980, La Serena, Chile Henni ter Morsche, Eindhoven University of Technology, P. O. Box 513, 5600 MV Eindhoven, The Netherlands Gregory M. Nielson, Computer Science Department, Arizona State University, Tempe, Arizona 85287 Carlos Obreque, ASM AR, Talcahuano, Chile. Fernando Paredes Cajas, Universidad Catolica de Valparaiso, Instituto de Matematica, Blanco Viel 596, Cerro Barón, Valparaiso, Chile Joäo Prolla, Departamento de Matematica, IMECC-UNICAMP, 13100 Camp­ inas, SP, Brasil X Participants Victoriano Ramirez G., Universidad de Granada, Dpto. Matematica Aplicada, Facultad de Ciencias, 18071 Granada, Espana Maria Cecilia Rivara Z., Depto. de Matemàticas, Fac. de Ciencias Fisicas y Matemàticas, Universidad de Chile, Casilla 170/3 Correo 3, Santi­ ago, Chile Oscar Rojo, Universidad del Norte, Latorre 3174, Antofagasta, Chile. Paul Sablonnière, INSA de Rennes, 20, Avenue des Buttes de Coesmes, 35043 Rennes Cedex, France Oscar Schnake, Depto. Matemàticas Aplicadas, Fac. de Ciencias Fisicas y Matemàticas, Universidad de Chile, Casilla 170-3 Correo 3, Santiago, Chile Larry L. Schumaker, Center for Approximation Theory, Texas A&M Univer­ sity, College Station, Texas, 77843 Ledya Spencer, Depto. Matemàticas Aplicadas, Fac. de Ciencias Fisicas y Matemàticas, Universidad de Chile, Casilla 170-3 Correo 3, Santiago, Chile Florencio Utreras, Depto. de Matemàticas, Fac. de Ciencias Fisicas y Mate­ màticas, Universidad de Chile, Casilla 170-3 Correo 3, Santiago, Chile Maria Leonor Varas, Depto. Matemàticas Aplicadas, Fac. de Ciencias Fisi­ cas y Matemàticas, Universidad de Chile, Casilla 170-3 Correo 3, Santiago, Chile Grace Wahba, Department of Statistics, University of Wisconsin-Madison, Madison, Wisconsin 53706 Joseph D. Ward, Department of Mathematics, Texas A&M University, College Station, Texas 77843 Antonella Zambrana, Universidad Mayor de San Andres, Jaén No. 283 esq. Velasco Galvarro, Oruro, Bolivia. Felipe Zó, Universidad Nacional de San Luis, Escuela de Matemàticas, 5700 San Luis, Argentina BOOLEAN METHODS IN FOURIER APPROXIMATION by G. Baszenski and F.-J. Del vos Abstract It is the objective of this paper to apply Boolean methods of approximation in combination with the theory of right invertible op­ erators to bivariate Fourier expansions. We construct the operator of Fourier operational calculus and relate its spectral properties to the construction of Korobov spaces. We will derive error estimates for Fourier product approximation, Fourier blending approximation, Fourier hyperbolic approximation, and the related Krylov-Lanczos approximation in these spaces. 1. The Operational Taylor Formula Let X be a linear space, X\ a linear subspace of X, and R : X -+ X & linear and injective map such that range(i?) C Χ. (1) λ Assume that P is a linear projector on Χχ with ker(P) = range(Ä). (2) Then for any / G X there is a unique g = B(f) such that f = P(f) + R(B(f)). (3) B is a linear operator in X with dom(i?) = Xi defined by R and P. R is a right inverse of J5, i.e., BR = /, (4) and the relation ker(B) = range(P) (5) Topics in Multivariate Approximation 1 Copyright © 1987 by Academic Press, Inc. All rights of reproduction in any form reserved. ISBN 0-12-174585-6 2 G. Baszenski and F.-J. Delvos holds. The operational Taylor formula follows from relation (3) by an iterative application: m — 1 / = Σ RiPBJ(f) + Rm(Bmf) (/ G dom(Bm)). (6) j=0 It can be shown that Rm is injective on X with range(Äm) C dom(jBm), and that m —1 P = Σ WPB* m j=0 is a projector on dom(jBm) satisfying ker(P ) = range(Pm) (7) m [1, 4, 13, 14, 15]. For instance, we consider the space C m(J), J = [0,2π]. C(J) = C°(J) is a unitary space with inner product 1 r2* (/,#) = 2^ / f{x)g{x)dx and orthonormal basis ek(x) = exo(ikx), k G Z. Any / G C 77^/), m G IN, has a convergent Fourier series which represents the periodic extension of /. An important example is the Bernoulli function 6 , m G IN, which is given by m M*) = Σ W'meikx \k\>0 We define R by R(f) = h */ + (/,eo), where / * g is the convolution of the Fourier series of / and g. R is injective and satisfies range(i?) Ç C1(J). The projector P is defined on Cl(J) by P(/) = -(D/, e )6i = ± (/(0) - /(27Γ)) 6 . 0 X The operator 5 defined by R and P is given by S(/) = D/+(/-D/,eo). Moreover, we have the relations Rm(f) = b *f + (f,e), m 0 Boolean Methods in Fourier Approximation Bm(f) = Omf + (f-Omf,e ), 0 and ra—1 1 i=o Proposition 1. For any f G Cm(J), the following Lanzcos decomposition holds for 0 < x < 2π: m —1 - /(*) = Σ 2Î(D,/(0) - ^'/(2'))&ί+ι(ϊ) j'=0 (8) + ^jf"/M** 2π Γ + ^[nbm(x-u)Drnf(u)du. Proof: Relation (8) follows immediately from the operational Taylor formula (6) and the representation BT(Bmf) = ^Jn /(«) du + ~tJn M* - u)Dm/(u) du (9) of the remainder projector J — P [11, 14, 16]. It follows from the well-known m properties of the Bernoulli functions that kei(P ) = CZT1(J)nCm(J), rn where C^^l{J) is the subspace of functions / G Cm(J) with Dj/(0) = Ό·7(2π) (0<j<m). ■ Corollary 1. For any f e Οψ~λ Π Cm( J), the representation /»2π i /»2ir /(*) = -^ / π /(«) du + ^ y" * 6 (x - «)Dm/(«) du (10) m holds. We give an important application to Fourier approximation. Let λ^ = (i/c)-1 (k φ 0) and λ = 1. The univariate Korobov space Ea(J), a > 1, is 0 given by Ea(J) = {/ € L2(J) : |(/,e )| = 0(\X\a) (\k\ — oo)} fe k (cf. [7, 8, 10]). It follows from (8) that CHJJÇÊ'W· (H) Using (10) and (11) we obtain CZT^J) ncra+1(J) ç Em+1(j). (12) For n e IN and / e Ea(J), let F (f)= X)(/,e )e . n fc fe \k\<n F is the Fourier partial sum projector on Ea(J). n 4 G. Baszenski and F.-J. Delvos Proposition 2. Let f G Ea(J), a>\. Then 11/ - ^n(/)||oo = 0(n"a+1) (n —> oo). (13) Proof: Since a > 1 we get |/(x)-F (/)(x)|< £ l(/,e)l = ö(E^i=0(n_a+1)· " n fc |fc|>n \k>n / The Krylov-Lanczos-approximant K (f) is defined for functions / G n Cm+1(J) by ^n(/) = Pm(/)+i ?,n(/-Pm(/)). Proposition 3. Let / G C m+1(J). Then the asymptotic error relation ΙΙ/-·Μ/)ΙΙ~ = σ ( ^) (n—»oo) (14) holds. Proof: Since ||/ - 2f (/)||oo = ||(/ - Pm(f)) - F (f - P (/))||oo, n n m relation (14) follows from (13), (12), (8) and (9). ■ 2. The Bivariate Lanczos Decomposition Let Cm,m(J2), m G Z+, denote the linear space of functions / G C(J 2) = C°'°{J2) satisfying OjOkf G C(J2) (j, fc = 0,..., m). C ^'m(J2) is the linear x y 2 subspace of functions / G Cm,m(J2) with DÌDj;/(0,-)=DÌD|;/(2^.) DÌDj/(·, 0) =DÌDj/(·, 2ττ) Ü, * = 0,..., m). C(J2) is a linear subspace of the unitary space L2(J2) with inner product -| /»27Γ /»27Γ (/^) = τ^Λ2 / / }{x,y)g{x,y)dxdy and orthonormal basis e ,(rr, y) = e (a;)e(y) (A;, r G Z). fcr fc r Clearly the algebraic tensor product spaces Cm(J) <g> Cm(J) and C^W (8) Cm(J) are subspaces of Cm^{J2) and C ™'m(J2) respectively. Let U be a 2

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.