ebook img

Top-quark and Higgs boson perspectives at heavy-ion colliders PDF

0.54 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Top-quark and Higgs boson perspectives at heavy-ion colliders

Nucl.&Part.Phys. Proceeds NuclearandParticlePhysicsProceedings00(2017)1–4 Top-quark and Higgs boson perspectives at heavy-ion colliders Davidd’Enterria CERN,EPDepartment,1211Geneva,Switzerland 7 1 0 2 Abstract n The perspectives for measuring the top quark and the Higgs boson in nuclear collisions at the LHC and Future a Circular Collider (FCC) are summarized. Perturbative QCD calculations at (N)NLO accuracy, including nuclear J partondistributionfunctions,areusedtodeterminetheircrosssectionsandvisibleyieldsafterstandardanalysiscuts 7 √ √ 2 inPbPbandpPbcollisionsattheLHC( s =5.5,8.8TeV)andFCC( s =39,63TeV).Intheir“cleanest”decay NN NN channels,t¯t→bb¯2(cid:96)2νandH→γγ; 4(cid:96),about103(105)top-quarkand10(103)Higgs-bosoneventsareexpectedat ] theLHC(FCC)fortheirtotalnominalintegratedluminosities.Whereasthet¯tobservationisclearcutatbothcolliders, x evidenceforHiggsproduction,perfectlypossibleattheFCC,requiresintegrating×30moreluminositiesattheLHC. e - p Keywords: Topquark,Higgsboson,heavy-ions,LHC,FCC e h [ 1. Introduction tions) from t¯t → bb¯2(cid:96)2ν t¯t decays provide accurate 1 information [3] on the underlying nuclear gluon distri- v ThetopquarkandtheHiggsboson(togetherwiththe bution function in the unexplored high-x region where 7 τlepton)aretheonlyelementaryStandardModel(SM) “antishadowing” and “EMC” effects are supposed to 4 particlesthatremainunobservedsofarinnuclearcolli- modify its shape compared to the free proton case [4]. 0 8 sions. Their production cross sections in hadronic col- On the other hand, the Higgs boson has a lifetime of 0 lisions are dominated by gluon-gluon fusion processes τ ≈50fm/cand,onceproduced,traversestheproduced 0 1. (gg → t¯t+X;H+X), computable today at the high- medium and scatters with the surrounding partons, re- 0 est degree of theoretical accuracy: NNLO+NNLL for sultinginapotentialdepletionofitsyieldscomparedto 7 the top quark [1], and N3LO for the H boson [2]. The the pp case [5]. The amount of Higgs boson suppres- 1 study of their yield modifications in heavy-ion com- sion can be thereby used to accurately determine the : v pared to pp collisions would provide novel extremely final-state density of the produced QGP. The perspec- i wellcalibratedprobesoftheinitialandfinalpAandAA tivesoft-quark[3]andHiggsboson[6]measurements X states. Both elementary particles, the heaviest known, in nuclear collisions at current and future colliders are ar have very different decay channels and lifetimes, and summarizedhere. can thereby be used to uniquely probe various aspects ofstrongly-interactingmatterinnuclearcollisions. On The theoretical cross sections and yields in pPb theonehand, thetop-quarkdecaysveryrapidlybefore and PbPb are obtained with mcfm at NLO (v.6.7) for hadronizing (τ = (cid:126)/Γ ≈ 0.1 fm/c, much shorter than top-quarks [7], and at NNLO (v.8.0) for the Higgs 0 t typical O(1 fm/c) QGP formation times) into t → Wb boson [8], using CT10 proton PDFs [9] and EPS09 with∼100%branchingratio,withtheWthemselvesde- nPDFs (including its 30 eigenvalues sets) for the Pb caying either leptonically (t → Wb → (cid:96)ν,b, 1/3 of ion [4]. The following mcfm processes are run: the times) or hadronically (t → Wb → qq¯b, 2/3 of 141 for t¯t, 161,166,171,176,181,186 for single-top thetimes). Thekinematicaldistributionsofthecharged in the t-,s-channels and associated with W [3]; and leptons ((cid:96) = e,µ unaffected by any final-state interac- 119,116 for gluon-fusion H → γγ, 4(cid:96) (plus 285,90 Davidd’Enterria/NuclearandParticlePhysicsProceedings00(2017)1–4 2 b)106 MCFM (v.6.7) NLO: b) MCFM v8.0 s (n105 nm =PmDFt=EPS09,PDF=CT10 s (n104 PbPb 103 104 Pb-Pb 102 103 pPb 10 102 p-Pb 1 10 pp 10- 1 1 10- 1 p-p 10- 2 NNLO, pp,pPb,PbPbfi H+X 10- 2 top pair (tt + X) 10- 3 PDF=CT10,nPDF=EPS09 single top (t-ch.,s-ch.,t+W) m =m,m/2 H H 10- 3 10- 4 1 2 3 456 10 20 30 100 3 4 567 10 20 30 100 s (TeV) s (TeV) NN NN Figure1:Totalproductioncrosssectionsfortop-pairandsingle-topatNLO(left)[3]andfortheHiggsbosonatNNLO(right)[6]inpp,pPband √ PbPbcollisionsasafunctionof s (theshadedboxesindicatethenominalLHCandFCCenergies). NN Table1:Crosssections,andexpectednumberofcountsafterstandardacceptanceandefficiencycuts,fort¯tandsingle-top(s-,t-andtWchannels combined)atNLO(total,andintheirrespectiveleptonicdecays)[3]andHiggsboson(total,anddi-γand4-leptonchannels,atNNLO)[6]inpPb andPbPbcollisionsatLHCandFCC.Maximumtheoretical(scaleandPDF)uncertainties(notquoted)arearound10%. √ System s L t¯t t¯t→bb¯(cid:96)(cid:96)νν single-t tW→b(cid:96)(cid:96)νν H H→γγ H→ZZ∗(4(cid:96)) NN int (TeV) σ yields σ yields σ yields yields tot tot tot PbPb 5.5 10nb−1 3.4µb 450 2.0µb 30 500nb 6 0.3 pPb 8.8 1pb−1 59nb 750 27nb 50 6.0nb 7 0.4 PbPb 39 33nb−1 300µb 1.5×105 80µb 8000 11.5µb 450 25 pPb 63 8pb−1 3.2µb 4×105 775nb 2.1×104 115nb 950 50 for the corresponding γγ, 4(cid:96) backgrounds), as well as LHC and FCC energies are listed in Table 1. Com- 91,101,215,540correspondingtotherestofHiggspro- pared to the corresponding pp results at each c.m. en- duction channels (vector-boson-fusion, and associated ergy, antishadowing nPDF modifications increase the with W, Z and top) to obtain the total H cross sec- totaltop-quarkyieldsby2–8%,whereastheHiggscross tions[6]. Allnumericalresultshavebeenobtainedwith sections are just slightly enhanced (depleted) by ∼3% the latest SM parameters [10], and fixing the default at the LHC (FCC). The PDF uncertainties, obtained renormalization and factorization scales at µ = µ = addinginquadraturetheCT10andEPS09uncertainties, F R m fort¯tandsingle-top,µ = µ = p = 50GeV are around (below) 10% for the top (Higgs) case. The t F R T,min;b−jet for tW, and µ = µ = m /2 for Higgs. These cal- O(5−10%) theoretical µ ,µ scale uncertainties, not F R H F R culations reproduce very well the top and Higgs cross quotedeither,canceloutintheratiosof(pPb,PbPb)/(pp) √ sectionsmeasuredinppcollisionsat s=7,8,13TeV crosssectionsatthesamec.m.energy. attheLHC.Thecollisionenergydependenceofthetotal top-quarkandHiggsbosoncrosssectionsareshownin 2. Topquarkmeasurement Fig.1. Thecrosssectionsincreasebyafactorof×55– 90 for t¯t and ×20 for the Higgs boson between LHC Top quarks decay almost exclusively to a b quark and FCC energies. The cross sections at the nominal and a W boson and, in a heavy-ion environment, it is the W leptonic decays that can be best resolved Davidd’Enterria/NuclearandParticlePhysicsProceedings00(2017)1–4 3 p+Pb→tt+X→bb+(cid:96)+(cid:96)−+νν+X s √ √ s √ √ s s=8.8TeV Pb+Pb→tt+X→bb+(cid:96)+(cid:96)−+νν+X s √ √ s √ √ s s=39TeV Figure2: Left: Pseudodatafornuclearmodificationfactorsasafunctionofrapidityofchargedleptonsproducedint¯tdecaysattheLHC(pPb, top)[3]andFCC(PbPb,bottom)[11].Right:OriginalEPS09gluonnuclearmodificationatQ=mtop(reddashedcurves)andestimatedimprove- mentsobtainedbyHessianreweighting(greyarea)usingtheLHC(pPb,top)[3]andFCC(PbPb,bottom)[11]pseudodata. fromthebackgrounds.Theestimatedmeasurableyields EPS09 global fit of the nuclear PDFs is quantified via using realistic luminosities and analysis cuts (b-jets: the Hessian reweighting technique [12]. The expected anti-k algorithm with R = 0.5, p > 30 GeV/c, improvements of the gluon PDF nuclear modification T T |η| < 3, 5(LHC,FCC), 50% b-tagging efficiency; factor RPb(x,Q2) = gPb(x,Q2)/gp(x,Q2) at Q2 = m2 g top charged leptons: R = 0.3, p > 20 GeV/c, |η| < areshowninFig.2(right). Theuncertaintiesonthenu- isol T 3, 5(LHC,FCC),m >20GeV,|m −m |>15GeV; cleargluonPDFarereducedbymorethan10%(50%)at (cid:96)(cid:96) (cid:96)(cid:96) Z neutrinos: missingtransverseenergyE/ >40GeV)are theLHC(FCC)mostlyintheantishadowingandEMC T listedinTable1.Afterbranchingratios(BR≈5%fort¯t, xregions[3,11]. 22% for single-t) and acceptance and efficiency losses (40–50%fort¯t,20–30%forsingle-t),weexpectabout 3. Higgsbosonmeasurement 500and800leptonictop-quarkeventsinPbPbandpPb collisionsattheLHC(withcontrollablebackgroundsin The discovery of the Higgs boson in pp collisions thet¯tcase). AtFCC,thehigherc.m.energyandlumi- at the LHC was carried out in the clean diphoton and nositieswillyieldverylargedatasampleswith150-and four-leptonchannelswithverylowbranchingratiosbut 400-thousandpairsinPbPbandpPb. Theresultingnu- smalland/orcontrollablebackgrounds[13,14]. Afirst clearmodificationratiosoft¯tdecayleptonsyieldsasa measurement in heavy-ion collisions will certainly ex- function of rapidity, RpPb(y(cid:96)) = dσpPb(y(cid:96))/(Adσpp(y(cid:96))) ploit the same final states. Table 1 lists the estimated and RPbPb(y(cid:96)) = dσPbPb(y(cid:96))/(A2dσpp(y(cid:96))), are shown measurable yields for nominal luminosities after ac- in Fig. 2 (left) for pPb at the LHC (top) and PbPb counting for typical ATLAS/CMS analysis cuts (pho- at the FCC (bottom). The effect of antishadowing tons: p > 30,40 GeV/c, |η| < 2.5, 5(LHC,FCC), T (shadowing)inthenPDFresultsinsmallenhancements R =0.3;chargedleptons: p >20,15,10,10GeV/c, isol T (deficits)atcentral(forward)rapiditiesy(cid:96) ≈0(|y(cid:96)|(cid:38)3). |η| < 2.5, 5(LHC,FCC), Risol = 0.3). After branch- The impact that these pseudodata would have in an ing ratios (BR = 0.23% for γγ, 0.012% for 4(cid:96)) and Davidd’Enterria/NuclearandParticlePhysicsProceedings00(2017)1–4 4 V V e2000 pPb fi H fi g g , 8.8 TeV, L =30 pb-1 e3000 PbPb fi H fi g g , 39 TeV, L =33 nb-1 G int G int s/ s/2800 nt1800 Pseudodata nt Pseudodata e e2600 v Fitted S+B v Fitted S+B E E 1600 g g background 2400 g g background 2200 1400 2000 1200 1800 1600 1000 MCFM, NNLO MCFM, NNLO 1400 PDF: CT10, nPDF=EPS09 PDF: CT10, nPDF=EPS09 800 1200 100 105 110 115 120 125 130 135 100 105 110 115 120 125 130 135 m (GeV) m (GeV) g g g g √ Figure3:ExpectedinvariantmassdiphotondistributionsinpPbat s =8.8TeV(withenhancedLHCintegratedluminosities,L =30pb−1, left)andinPbPbat √s =39TeV(nominalFCCluminosities,right)NfNoraHiggsbosonsignalinjectedontopoftheγγbackgroundinst[6]. NN signal losses from acceptance and efficiency (45–60% Phys.Rev.Lett.110(2013)252004.arXiv:1303.6254,doi: for diphotons, 50% for 4-leptons), we expect about 10 10.1103/PhysRevLett.110.252004. [2] C. Anastasiou, C. Duhr, F. Dulat, F. Herzog, B. Mistlberger, (1000)HiggsbosonsinPbPbandpPbcollisionsatthe HiggsBosonGluon-FusionProductioninQCDatThreeLoops, LHC(FCC),ontopofthecorrespondingγγand4(cid:96)non- Phys. Rev. Lett. 114 (2015) 212001. arXiv:1503.06056, resonant backgrounds [6]. In the γγ case, the back- doi:10.1103/PhysRevLett.114.212001. grounds include the irreducible QCD diphoton contin- [3] D.d’Enterria,K.Krajczr,H.Paukkunen,Top-quarkproduction in proton nucleus and nucleus nucleus collisions at LHC en- uum plus 30% of events coming from misidentified γ- ergies and beyond, Phys. Lett. B746 (2015) 64–72. arXiv: jet and jet-jet processes. For the nominal LHC lumi- 1501.05879,doi:10.1016/j.physletb.2015.04.044. nosities,thesignificanceofthediphoto√nsignal(S)over [4] K.J.Eskola,H.Paukkunen,C.A.Salgado,EPS09:ANewGen- the background (B), computed via S/ B at the Higgs erationofNLONuclearPDFs,JHEP04(2009)065. arXiv: 0902.4154,doi:10.1088/1126-6708/2009/04/065. peak, is 0.5,0.6σ in PbPb and pPb collisions, and thus [5] D.d’Enterria,C.Loizides,tobesubmitted. one needs a factor of ×30–40 larger integrated lumi- [6] D.d’Enterria,tobesubmitted. nosities to reach 3σ evidence (which would be further [7] J.M.Campbell, R.K.Ellis, MCFMfortheTevatronandthe enhanced by including the H → 4(cid:96) results). Such a LHC,Nucl.Phys.Proc.Suppl.205-206(2010)10–15. arXiv: 1007.3492,doi:10.1016/j.nuclphysbps.2010.08.011. largeL increasewouldrequire,first,runningonefull- int [8] R.Boughezal,J.M.Campbell,R.K.Ellis,C.Focke,W.Giele, year(insteadofthenominalheavy-ionmonth)plusin- X.Liu, F.Petriello, C.Williams, ColorSingletProductionat creasingtheinstantaneousluminositybyafactorof3–4. NNLOinMCFM,Eur.Phys.J.C77(1)(2017)7.arXiv:1605. Whereas the feasibility of such a setup seems difficult 08011,doi:10.1140/epjc/s10052-016-4558-y. [9] H.-L. Lai, M. Guzzi, J. Huston, Z. Li, P. M. Nadolsky, in the PbPb case, it’s not unrealistic in the pPb mode J. Pumplin, C. P. Yuan, New parton distributions for collider duringthehigh-luminosityLHCphase(HL-LHC).Fig- physics,Phys.Rev.D82(2010)074024. arXiv:1007.2241, ure 3 shows the expected diphoton invariant mass dis- doi:10.1103/PhysRevD.82.074024. tributionsforpPbattheLHC(withL =30pb−1,left) [10] Review of Particle Physics, Chin. Phys. C40 (10) (2016) int 100001.doi:10.1088/1674-1137/40/10/100001. and in PbPb collisions at the FCC. The significance of [11] A. Dainese, et al., Heavy ions at the Future Circular Col- theH(γγ)peaksare3σand5.5σrespectively. liderarXiv:1605.01389. [12] H.Paukkunen,P.Zurita,PDFreweightingintheHessianmatrix Acknowledgments–Discussionsand/orcommonwork approach,JHEP12(2014)100. arXiv:1402.6623,doi:10. withA.David,C.Loizides,andH.Paukkunenaregrate- 1007/JHEP12(2014)100. [13] G.Aad,etal.,Observationofanewparticleinthesearchfor fullyacknowledged. theStandardModelHiggsbosonwiththeATLASdetectorat theLHC,Phys.Lett.B716(2012)1–29. arXiv:1207.7214, doi:10.1016/j.physletb.2012.08.020. References [14] S.Chatrchyan,etal.,Observationofanewbosonat125GeV withtheCMSexperimentattheLHC,Phys.Lett.B716(2012) 30–61. arXiv:1207.7235, doi:10.1016/j.physletb. [1] M. Czakon, P. Fiedler, A. Mitov, Total Top-Quark Pair- 2012.08.021. ProductionCrossSectionatHadronCollidersThroughO(α4), s

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.