Three-dimensional Monte Carlo model of pulsed-laser treatment of cutaneous vascular lesions Matija Milanicˇ Boris Majaron Downloaded From: https://www.spiedigitallibrary.org/journals/Journal-of-Biomedical-Optics on 12 Mar 2023 Terms of Use: https://www.spiedigitallibrary.org/terms-of-use JournalofBiomedicalOptics16(12),128002(December2011) Three-dimensional Monte Carlo model of pulsed-laser treatment of cutaneous vascular lesions MatijaMilanicˇa andBorisMajarona,b aJozˇefStefanInstitute,Jamova39,SI-1000Ljubljana,Slovenia bUniversityofLjubljana,FacultyofMathematicsandPhysics,Jadranska19,SI-1000Ljubljana,Slovenia Abstract.Wepresentathree-dimensionalMonteCarlomodelofopticaltransportinskinwithanovelapproachto treatmentofsideboundariesofthevolumeofinterest.Thisrepresentsaneffectivewaytoovercometheinherent limitationsof“escape”and“mirror”boundaryconditionsandenableshigh-resolutionmodelingofskininclusions with complex geometries and arbitrary irradiation patterns. The optical model correctly reproduces measured valuesofdiffusereflectancefornormalskin.Whencoupledwithasophisticatedmodelofthermaltransportand tissuecoagulationkinetics,italsoreproducesrealisticvaluesofradiantexposurethresholdsforepidermalinjury andforphotocoagulationofportwinestainbloodvesselsinvariousskinphototypes,withorwithoutapplication ofcryogenspraycooling.(cid:2)C2011SocietyofPhoto-OpticalInstrumentationEngineers(SPIE).[DOI:10.1117/1.3659205] Keywords:MonteCarlo;opticalmodel;threedimensions;boundarycondition;diffusereflectance;lasersurgery;vascularlesion;port winestain;epidermalinjury;cryogenspraycooling. Paper11390RreceivedJul.21,2011;revisedmanuscriptreceivedSep.23,2011;acceptedforpublicationOct.19,2011;published onlineNov.23,2011. 1 Introduction relevantexampleisportwinestain(PWS)lesions,withblood vesseldiametersrangingfrom20to300μm,whichareroutinely The Monte Carlo (MC) technique is a powerful approach for treatedwithlasersbeamswithadiameterof5mmormore. modeling of light transport in strongly scattering biological Toovercomethisproblem,wehavedevelopedanalternative tissues. The resulting energy deposition maps can be used in approach, called “extended layers.” Outside of the voxelized numericalsimulationsofheattransportandconsequentphysio- VOI, model photons are propagated in laterally infinite tissue logicaleffectsinvarioustissuesandorgans.Inordertoobtain layers,butwithoutrecordingthelocalenergydeposition.This realisticresultsandtrustablepredictions,however,onemustap- idea was introduced in the 3D MC optical model by Barton ply appropriate optical parameters and a representative model et al.,4 but only at the VOI bottom boundary, thus extending ofthelesiongeometry. the optical properties of dermis to the semi-infinite column of Several earlier studies have extended the multilayer MC modeldevelopedbyWangetal.1 tothreedimensions.2–4 This tissuebelowtheVOI.Aswedemonstrateinthefollowing,ex- tendingthesameprincipletothelateraldimensionsoffersgreat hasenabledtreatmentofskininclusionswitharbitraryshapesir- advantages in terms of modeling flexibility, accuracy, and/or radiatedwithspatiallyconfinedlaserbeams.Herein,wepresent computationaldemands,dependingonwhichoftheformerap- andtestanaugmentedMCmodeloflaser-irradiatedhumanskin, proachesisusedforthepurposeofcomparison. withspecialattentiondevotedtotreatmentofsideboundariesof Afterdiscussingthemodelgeometryandselectionoftissue thespatiallydiscretizedvolumeofinterest(VOI). opticalproperties,wepresentfirstourpredictionsofdiffusere- In earlier documented three-dimensional (3D) MC models, flectanceofskinatwavelengthsof532,585,and595nm,which eitheraperfectlyreflecting(mirror)orescapeboundarycondi- are most commonly used for treatment of cutaneous vascular tion (BC) was applied at the VOI’s side surfaces. Rigorously lesions. Three epidermal melanin concentrations are consid- speaking,however,thefirstapproachimpliesaninfinitelywide ered, representing Caucasian, Asian, and African skin. Next, irradiation beam and periodically distributed skin structures, weanalyzethedifferencesbetweentheMCsimulationresults whilethesecondissuitableonlyfortreatmentofentireorgans as obtained by using the two boundary conditions mentioned surroundedbyair. aboveandourextendedlayersapproach,forirradiationofone For all other cases, a common solution to prevent edge- ortwobloodvesselsinhumanskinwitha1-mmdiameterlaser related artifacts from affecting the results is to move the VOI beam. sideboundaries(usuallyoftheescapetype)sufficientlyfarfrom Finally,wesimulatelasertreatmentofPWSlesionsbymeans theinvestigatedstructure.However,thisapproachmaybecome ofselectivephotothermolysis.5Tothisend,wecomplementour prohibitively time- and memory consuming when studying MC optical model by numerical modeling of thermal trans- the response of small absorbing inclusions, requiring fine dis- portandtissue-specificcoagulationkinetics.Radiantexposure cretizationoftheVOI,toirradiationwithsignificantlylarger,yet thresholds for complete photocoagulation of a typical PWS still finite and not necessarily homogeneous laser beams. One bloodvessel,aswellasforonsetofepidermalthermaldamage, arecomputedfordifferentcombinationsoflaserwavelengthand skinphototype,withandwithoutapplicationofcryogenspray Address all correspondence to: Matija Milanic, Jozef Stefan Institute, Com- plex Matter Department, Jamova 39, SI-1000 Ljubljana, Slovenia; Tel: 0038614773975;Fax:0038614235400;E-mail:[email protected]. 1083-3668/2011/16(12)/128002/12/$25.00(cid:2)C 2011SPIE (cid:2) JournalofBiomedicalOptics 128002-1 December2011 Vol.16(12) Downloaded From: https://www.spiedigitallibrary.org/journals/Journal-of-Biomedical-Optics on 12 Mar 2023 Terms of Use: https://www.spiedigitallibrary.org/terms-of-use MilanicˇandMajaron:Three-dimensionalMonteCarlomodelofpulsed-lasertreatment... (CS) cooling,6 and correlated with values from some clinical layers are inherited from the border VOI elements at the re- reports. spectivedepths,andthemajorityruleswhenevernotallofthem Namely, despite the unquestionable enhancement of PWS representthesametissue.Perhapsmostimportantly,energyde- treatment efficacy and safety offered by CS cooling, the risk positioniscomputedandrecordedonlywithintheVOI,which of permanent epidermal injury still limits the applicable radi- keepsmemoryrequirementsatamanageablelevelandgreatly ant exposure to levels inadequate for permanent PWS vessel reducesthecomputationtime. coagulationinmanypatients,especiallythosewithdarkerskin The same principle is applied also at the bottom boundary phototypes. Development of sufficiently detailed and realistic of the VOI. Specifically, the entire semi-space below the VOI numericalmodelsofPWSresponsetolaserirradiationshould bottom boundary inherits the optical properties from the low- facilitatepreliminarytestingofnoveltreatmentstrategieswith est VOI layer, which is occupied by adipose in all presented the potential to allow safe and effective treatment for a larger examples. numberofPWSpatients. TheMCcodeisimplementedinVisualC++ (VisualStudio 2008,Microsoft,Redmond,Washington).Utilizationofmulti- plethreadshelpsspeedupthecomputation. 2 Methodology 2.1 OpticalTransportModel 2.2 SkinModelGeometryandOpticalParameters Our simulation of light transport in PWS skin is based on the Ourbasicskinmodeliscomposedofthreelayers,whichrepre- well-established weighted-photon MC technique.1 In this ap- senttheepidermis(thickness:60μm),dermis(1.5mm),anda proach,alargenumberofenergypackets(“photons”)propagate semi-infinitelayerofsubcutis. throughthetissueanddepositafractionoftheirenergyintospe- Melaninisassumedtobehomogeneouslydistributedwithin cificvolumeelements,accordingtothelocalabsorptionprop- theepidermis.Theeffectivefractionalcontentofmelanin(f ) erties.Stochasticrelationsareusedtodetermineeachphoton’s mel is calculated from absorption coefficient at 694 nm (μ ) as randomtrajectory,accordingtophysicallawsoflightscattering, a,epi determinedfromdiffusereflectancemeasurementsbySvaasand reflection,andrefraction.Specificsoftheserelationsdependon etal.7Tothisend,weusethewell-knownrelations:8 opticalproperties,i.e.,absorptioncoefficient(μ ),scatteringco- a efficient(μs),anisotropy(g),andindexofrefraction(n)ofthe μa,epi = fmelμa,mel+(1− fmel)μa,base, (1a) involvedtissues.Withanincreasingnumberofsimulatedpho- tonsandeverfinerspatialdiscretizationofthetreatedvolume, (cid:2) (cid:3) λ −3.33 tthheecreosrureltcitnsgpaetniearlgdyisdtreibpuotsiiotinonofmthaepaibdseoarlblyedcloingvhetregneesrgtoyw. ard μa,mel =6.6·1010mm−1 nm , (1b) Extending the multilayer MC model1 to three dimensions (cid:2) (cid:3) allowstreatmentofskininclusionsofarbitrarycomplexshape λ−154nm and optical heterogeneity. In the presented examples, the VOI μa,base =0.0244mm−1+8.53mm−1 exp − 66.2nm , hasdimensionsof1×1mm2 intheplaneparalleltotheskin (1c) surface (coordinates x and y) and 1.5 mm in depth (z). The where μ represents the absorption coefficient of a,mel spatialdiscretizationstepis2×2μm2 inthe(x,z)planeand melanosomeandμ isthebaselinevalueforskin. a,base 20 μm in the y direction, resulting in a 3D grid with TheresultingmelaninfractionalcontentsforfairCaucasian, 500×50×750voxels. moderately pigmented Middle Eastern or Asian, and African A special care is devoted to realistic treatment of the VOI skin are f = 1.3%, 3.5%, and 9%, respectively. The corre- mel sideboundaries.Asindicatedabove,neithermirror,norescape spondingepidermalabsorptioncoefficientsat532,585,and595 BCissuitableforhigh-resolutiontreatmentofrelativelysmall nm,obtainedbyusingthewavelengthdependencerelations(1), volumesinhumanskin,irradiatedwithspatiallyconfinedlaser arecollectedinTable1. beams. In our approach, named extended layers, photons are Forblood,weassumeahematocritof40%andoxygensat- launchedaccordingtothelaserbeamintensityprofileandprop- urationof70%.Theabsorptioncoefficientsatthreeconsidered agated in laterally infinite tissue layers until they deposit all wavelengths are obtained by linear interpolation of the values their energy or escape into the air. Optical properties of these for oxygenated and deoxygenated whole blood as reported by Table 1 Epidermalabsorptioncoefficientsatthreecommonlaserwavelengths,representativeofthree skinphototypes. Epidermalabsorptioncoefficient(mm−1) Skintype/melaninfractionalcontent 532nm 585nm 595nm FairCaucasian/f =1.3% 0.770 0.560 0.530 mel ModeratelypigmentedAsian/f =3.5% 1.984 1.445 1.366 mel African/f =9.0% 5.020 3.659 3.457 mel (cid:2) JournalofBiomedicalOptics 128002-2 December2011 Vol.16(12) Downloaded From: https://www.spiedigitallibrary.org/journals/Journal-of-Biomedical-Optics on 12 Mar 2023 Terms of Use: https://www.spiedigitallibrary.org/terms-of-use MilanicˇandMajaron:Three-dimensionalMonteCarlomodelofpulsed-lasertreatment... Table 2 Absorption coefficient (μa), scattering coefficient (μs), anisotropycoefficient(g),andrefractiveindex(n)valuesusedinour MCmodelofopticaltransportinskin. Tissue λ(nm) μa(mm−1) μs(mm−1) g n Epidermis 532 a 53.0 0.770 1.45 585 50.0 0.790 1.44 595 50.0 0.790 1.44 Dermis 532 0.248 20.0 0.770 1.37 585 0.211 20.0 0.790 1.37 595 0.100 20.0 0.790 1.37 Subcutis 532 0.075 6.0 0.770 1.34 Fig. 1 Cross-sectional view of our PWS model geometry, including the epidermal layer (dark gray), six dermal layers with different ab- 585 0.084 5.4 0.770 1.34 sorptionproperties(gray),onehorizontalbloodvessel(white),anda semi-infiniteadiposelayerunderneath.DashedlinesdelineatetheVOI. 595 0.072 5.4 0.770 1.34 Blood 532 19.55 69.7 0.9638 1.33 Thephotonlaunchingpatternsimulatesanincidentlaserbeam withatop-hatprofile(diameter:5mm)centeredabovethePWS 585 17.41 72.1 0.9646 1.33 bloodvessel. 595 6.44 82.4 0.9740 1.33 2.3 HeatTransportandThermalDamage aSeeTable1. TemperaturefieldevolutioninPWSskiniscomputedusingthe two-dimensionalheatdiffusionequation Meinkeetal.9(seeTable2).Theabsorptioncoefficientsofsub- cutis(adipose)arefromBashkatovetal.10 ∂T (x,z,t) ρc = k∇2T (x,z,t)+S(x,z,t) (4) Awiderangeofscatteringparametervaluesforconstituents p ∂t of human skin can be found in the literature. We have tested severalcombinationsofthereportedvaluesinMCsimulations wherekisthermalconductivity,ρisdensity,andcpspecificheat. of both normal (assumed 1% blood in dermis) and PWS skin. Theheat-sourcetermS(x,z,t)assumesthespatialdistribution Forthisstudy,wehaveselectedthosevaluesofμ andgfrom of energy deposition as obtained from the MC simulation for s recent reports, which resulted in good agreement between the thedurationofpulsedlaserexposure(1ms). predicteddiffusereflectanceandreportedexperimentalvalues. Two-dimensional treatment of heat transport in the central The value of μ for adipose was calculated from the reduced plane perpendicular to the vessel axis (y = 0.5 mm) will be s scattering coefficient (μ(cid:2)) as measured by Baskhatov et al.,10 sufficientbecause—aswewilldemonstratebelow—deposition s andtheanisotropycoefficient(g)fromFlocketal.11 of laser energy in the discussed examples is nearly homoge- Forouranalysisofbloodphotocoagulationinlasertherapy neous along the y direction (i.e., parallel to the vessel axis). ofPWS,weincludeonebloodvesselwithdiameterd=150μm Consequently,heatflowinthisdirectionisnegligible. andahorizontalaxis400μmbelowtheskinsurface(Fig.1). Inordertoaccountforopticalshadingbyother,notexplicitly modeled PWS vessels,12 the dermis is divided into five 0.2- Table 3 Mean blood vessel radii (ri), fractional blood contents (fi) mm thick layers and one layer with a thickness of 0.5 mm. (=Re5f3.211n)m, afonrdththeesirxemsuoltdineglPaWbsSorlapytieorns.coefficient values (μa,i) at λ The corresponding absorption coefficients μ (Table 3) are a,i calculated by considering the reported fractional contents of blood(f)ineachlayer:13 i z(μm) ri(μm) fi(%) μa,i(mm−1) i μa,i = fiCiμa,bld+(1− fi)μa,der. (2) 1 60to260 25 5.2 0.383 Here, μ is the absorption coefficient of bloodless dermis 2 260to460 37 8.0 0.436 a,der (0.053 mm−1 at 532 nm),14 and C is the correction factor i 3 460to660 34 3.8 0.247 accountingforopticalscreeningwithinabloodvesselofradius r:15,16 4 660to860 27 2.5 0.204 i (cid:4) (cid:5) C = 0.03895+ 0.48588 exp −μa,bldri 5 860to1060 24 2.0 0.183 i 0.1928 (cid:4) (cid:5) +0.46803 exp −μa,bldri . (3) 6 1060to1560 24 1.5 0.151 0.91443 (cid:2) JournalofBiomedicalOptics 128002-3 December2011 Vol.16(12) Downloaded From: https://www.spiedigitallibrary.org/journals/Journal-of-Biomedical-Optics on 12 Mar 2023 Terms of Use: https://www.spiedigitallibrary.org/terms-of-use MilanicˇandMajaron:Three-dimensionalMonteCarlomodelofpulsed-lasertreatment... Heatexchangeduetotissueperfusioncanbesafelyneglected ing)ataselectedradiantexposure(H)andcompute(cid:5)(4)along during the short time periods (below 0.2 s) considered in this thelaserbeamaxis,bothwithintheepidermallayerandthrough study.17Inaddition,duetothelowbloodvelocityintheectatic thebloodvesselaxis.ByincreasingHinincrementsof0.1J/cm2, PWSvenules18,19andtheirtortuousshape,onlyasmallfraction wethendeterminetheminimalradiantexposure,atwhichthe of heated blood can leave the VOI within the studied time in- entirelumenofthesimulatedPWSvesseliscoagulated,H . PWS terval.Moreover,sinceourVOIrepresentsonlyasmallpartof Analogously,weassessthemaximalsaferadiantexposurevalue, theirradiatedvolume,thisbloodwillbereplacedbybloodwith H ,wherenothermaldamageisgeneratedwithintheepider- epi asimilarlyelevatedtemperature.Forthesereasons,weneglect mis(i.e.,(cid:5) ≤1).Thisrepresentsanestimateoftheepidermal epi heatlossduetobloodflowinthepresentdemonstrationexample. damagethreshold. Thermalpropertiesofmostskinconstituentsarethesameas usedinourrecentreport.20Thisincludesthetemperaturedepen- 3 Results dentspecificheatofbloodlessskin,21 andthewayweaccount forthelatentheatofwatervaporization(inagreementwithother 3.1 DiffuseReflectivity similarstudies).22,23 Inthepresentstudy,weadditionallytake As a first test of our MC optical model, we compute diffuse intoaccountthetemperaturedependenceoftissuethermalcon- reflectance of healthy skin (with 1 vol.% of blood distributed ductivity,k(T),whichwasfoundtohaveanobservableeffecton evenly throughout the dermis) at 532, 585, and 595 nm. The predicted temperature dynamics, and consequently the extent epidermallayerthicknessisvariedfrom60to80and100μm, of epidermal, blood, and perivascular thermal damage.20 This whicharetypicalvaluesforhumanskin,32,33 inordertoobtain temperature dependence is estimated by considering the data arealisticrangeofdiffusereflectance(DR)values. forwater24 andaccountingfortheproteincontentinbloodand Figure2presentstheobtainedDRvaluesforthethreeepi- otherskinlayers. dermalthicknesses(seethelegend)indifferentskinphototypes. ForthedurationofCScooling,weapplyaconvectivebound- TheDRspectraasmeasuredonforearmsofhealthyvolunteers aryconditionattheskinsurface,withaheattransfercoefficient bySvaasandetal.7arepresentedforcomparison(dashedlines). H = 5000 W/m2K and outer temperature of −50 ◦C.25,26 At For fair Caucasian skin [Fig. 2(a)], our diffuse reflectance allothertimes,andfortheexampleswithoutactivecooling,we values (open symbols) fall completely within the range of the applyatypicalnaturalconvectionvalue(H=10W/m2K)and DRspectrameasuredonthevolaranddorsalsideofthefore- ambient temperature (25◦C). Adiabatic boundary condition is arm,respectively(dashedlines).InAsianskin[Fig.2(b),gray appliedatthelateralandbottomboundariesoftheVOIandthe symbols],thepredictedrangeofDRvaluesmatchesthereported initialskintemperatureissetto35◦C. spectrumratherwell.Thepredictedvaluesatλ=532nmare Equation(3)issolvedusingthefiniteelementmethodwithin alittlehigher,butarematchedwiththeexperimentalreportby thesoftwarepackageFEMLAB(COMSOL,California). Randebergetal.(R=0.20).34Anexcellentmatchbetweenthe The laser-induced thermal damage is assessed within the predicted DR values and experimental spectrum in vivo is ob- customaryArrheniusmodelofproteindenaturationkinetics,by servedforAfricanskin,specificallyforepidermalthicknessof computingthethermaldamagecoefficient, 80μm(blacksquares). (cid:6) τ Our model results illustrate how an increase in epidermal (cid:5)(x, z, t)= A exp[−E /RT(x,z,t(cid:2))]dt(cid:2), (5) thickness leads to lower diffuse reflectivity of skin, due to in- a 0 creased melanin absorption. Moreover, this effect is enhanced whereRistheuniversalgasconstant.Forblood,thefrequency withincreasingmelanincontent(f ).Consequently,wecanob- m factor and activation energy are A = 7.6 × 1066 s−1 and E serveasubstantialchangeofDRwiththeepidermalthickness a =427kJ/mol,respectively.27,28 Forepidermisanddermis,we inAsianandAfricanskinphototypes.Incontrast,theeffectis applythevaluesfromGayloretal.29 (A=2.9×1037 s−1,E rather small, and probably often not discernable from experi- a =240kJ/mol),whichwererecentlyconfirmedtobemoresuit- mentaldata,infairCaucasianskin. able than the values used in earlier modeling.30 Indeed, when Atallthreephototypes,however,thelargestinfluenceofepi- applying,e.g.,thevaluesfromHenriques,31 oursimulationre- dermalthicknessonDRispredictedatthelongestwavelength, sultsindicateextensiveperivasculardamagealreadyatradiant 595nm. exposuresthatdonotinducecoagulationofthevessellumen,20 incontradictionwithhistologicalevidenceintheliterature. 3.2 InfluenceofBoundaryCondition All calculations cover an interval of 100 ms after the laser pulse,toensurethatthevalueof(cid:5)hasstoppedincreasing. BeforeembarkingonsimulationsofPWStreatment,weanalyze theinfluenceofBCimplementedatthesidesoftheVOI.Forthis analysis,weaugmentourmodelofhealthyskin(fairCaucasian; 2.3.1 Simulationstudyprotocol:lasertreatmentof f = 1.3%), as presented above, with one cylindrical blood m PWSwithandwithoutcryogencooling vesselinthedermallayer.Thevessel(diameter:120μm)lies As a demonstration example, we consider laser irradiation of horizontallyunderthelaserbeamaxis,atasubsurfacedepthof a PWS blood vessel at wavelengths of 532, 585, and 595 nm, 0.25or0.50mm. withandwithoutapplicationofCScooling.TheCScoolingis In addition, we consider the case where both vessels are appliedfor50ms,immediatelybeforethe1mslonglaserpulse. presentsimultaneously.Thisenablesquantitativeassessmentof FortheexampleswithoutCScooling,thiselementisomitted. theinfluenceofonevesselonenergyuptakeinanothervessel Foreachlaserwavelengthandskinphototype,wesimulate incloseproximity(a.k.a.opticalshading).Thesamegeometry thelasertherapysequence(bothwithandwithoutCSprecool- was used in one of the first studies of this effect, as well as (cid:2) JournalofBiomedicalOptics 128002-4 December2011 Vol.16(12) Downloaded From: https://www.spiedigitallibrary.org/journals/Journal-of-Biomedical-Optics on 12 Mar 2023 Terms of Use: https://www.spiedigitallibrary.org/terms-of-use MilanicˇandMajaron:Three-dimensionalMonteCarlomodelofpulsed-lasertreatment... (a) (a) (b) (b) (c) Fig. 2 Diffusereflectancevaluesat532,585,and595nmforhealthy skinof:(a)fairCaucasian(opensymbols),(b)moderatelypigmented Asian(gray),andAfricanphototype(black).Theepidermalthicknessis setto60,80,or100μm(seethelegend).Dashedlinesindicatethe correspondingdiffusereflectancespectrainvivo(Ref.5). of optical screening within individual blood vessels, using 3D MCmodeling.2Forevenclosercorrespondence,wealsosetthe epidermal thickness to 60 μm, laser beam diameter to 1 mm, andradiantexposureto1J/cm2.Foreachmodelgeometry,we calculate energy deposition maps upon irradiation at 585 nm whenapplyingthemirrororescapeBC,andcomparethemwith ourextendedlayer(EL)approach. The resulting energy deposition profiles along the vertical beam axis (passing through both vessels’ axes) are presented Fig. 3 Energydepositionprofilesthroughtheaxesoftwohorizontal in Fig. 3. Clearly, the choice of BC is reflected primarily vesselslocatedatsubsurfacedepthof0.25and0.5mm(solidblack in the result for the deeper vessel (z0 = 0.50 mm). For this line),comparedwiththeresultforasinglevessellocatedat0.25mm vessel, using the mirror BC [fig. 3(a)] results in a 73% larger (thinner, blue), or at 0.5 mm (dashed, red). The boundary condition appliedatthesidesoftheVOIis:(a)mirror,(b)escape,and(c)extended energy deposition (integrated over the entire vessel lumen) as layers. comparedtotheELresult[Fig.3(c);seeTable4].Theescape BC[Fig.3(b)],ontheotherhand,resultsin16%lowerenergy depositioninthesamevesselthantheELapproach. see that the influence of the deeper vessel on the laser energy For the shallower vessel (z = 0.25 mm), the influence of depositionintheshallowerone—albeitnotverylarge—varies 0 BCissomewhatlesspronounced.ApplicationofthemirrorBC strongly with the choice of BC. Specifically, by applying the resultsinanoverestimationoftheenergyuptakeby32%,while mirror BC at the side boundaries of the VOI, a reduction of theescapeBCleadstoa7%lowerenergydepositionestimate depositedenergyby6.3%isobtaineduponintroductionofthe ascomparedtotheELresult. deepervessel.Thisprediction,however,ismorethantwiceas The energy deposition results in Table 4 also allow quan- largeastheresultobtainedwiththemorerealisticELapproach titative assessment of optical shading, i.e., the relative change (i.e., −2.7%). Applying the escape BC, in contrast, yields to of energy uptake by the presence of a nearby vessel. We can underestimationoftheshadingeffectby∼30%. (cid:2) JournalofBiomedicalOptics 128002-5 December2011 Vol.16(12) Downloaded From: https://www.spiedigitallibrary.org/journals/Journal-of-Biomedical-Optics on 12 Mar 2023 Terms of Use: https://www.spiedigitallibrary.org/terms-of-use MilanicˇandMajaron:Three-dimensionalMonteCarlomodelofpulsed-lasertreatment... Table 4 Energy deposition per unit length within a single vessel (z0 = 0.25 or 0.50 mm) and with both vessels present simultane- ously(seeFig.3).Resultsforthreeboundaryconditionsarepresented (λ=585nm). Boundary Depth Onevessel Bothvessels Relative condition (mm) (mJ/mm) (mJ/mm) change Mirror 0.25 137 128 −6.3% 0.50 85 61 −28.4% Escape 0.25 96 95 −1.9% 0.50 41 29 −29.2% Extendedlayers 0.25 104 101 −2.7% Fig. 4 Energy deposition profiles through the axis of a single vessel 0.50 49 35 −28.0% withdiameterof120μm(solidlines)or60μm(dashed),irradiatedat 532nm(thickerblackline),585nm(thinner;blue),and595nm(lighter; red).Allresultswereobtainedusingtheextendedlayerapproach. Theopticalshadingeffectinthedeepervessel,whileobvi- ouslysignificantlylargerinmagnitude(−28%),isaffectedby upon irradiation with a 5-mm diameter hat-top laser beam at selectionofeithermirrororescapeBCtoasignificantlylesser λ=532nminmoderatelypigmentedMiddleEasternorAsian degree. skin(fm=3.5%).TheradiantexposureisH=7.6J/cm2,which Figure4presentsenergydepositionprofilesthroughasingle is just below the epidermal damage threshold (see Secs. 3.5 vessel (z = 0.25 mm) with diameter of 60 or 120 μm, upon and 3.6). In the central plane perpendicular to the vessel axis 0 laserirradiationat532,585,and595nm,whentheELapproach [y=0.5mm;Fig.5(a)],theenergydepositionwithinthevessel is applied. At the wavelength of 595 nm, with the lowest μ isnonuniform,withthelargestvaluesnearthetopofthevessel a valueinblood,thenear-centralpartofthelargervessel(lighter; lumen.Figure5(b)presentstheenergydepositioninthevertical redsolidline)absorbsslightlymorelaserenergythanat532and planethroughthevesselaxis. 585nm(thicker;blackandthinner;blue,respectively).Thisis Figure6(a)presentsthecorrespondinglateralenergydepo- notthecaseforthe60μmvessel(dashedlines),whichisalmost sition profile through the vessel axis (y = z = 0.5 mm). The opticallythin(μ d<1)attheconsideredwavelengths. result indicates a dip in perivascular dermis, caused by reduc- a Energydepositionswithinthevessellumenfromtheresult tionoflightfluenceduetostrongabsorptioninthebloodvessel. in Fig. 4 are compared with predictions obtained when using Figure 6(b) presents the corresponding energy deposition pro- the mirror and escape BC in Table 5. The largest discrepancy files in the direction parallel to the vessel axis (x = 0.5 mm). between the mirror BC and EL approach is observed at λ Energy deposition along the vessel axis (solid black line) is = 595nm. The mirror BC yields 56% and 48%larger energy practicallyconstantthroughouttheVOI,duetoacomparatively depositionsin60and120μmvessels,respectively,ascompared largerlaserbeamdiameter(dl=5mm).Energydepositionalong totheELresults.TheescapeBC,incontrast,leadsto11%lower the top of the PWS vessel (lighter, blue line) is significantly predictions than the EL approach at both vessel diameters. At largerandshowsaslightdecreasetowardtheVOIborders.At 532 and 585 nm, similar trends but somewhat smaller relative theepidermal–dermal(ED)junction,energydepositionisagain differencescanbeobserved. nearlyconstant,andlargerthaninthevesselcenter(dashedline). ThelowernoiselevelinFigs.5(a)and6(a),ascomparedto Figs.5(b)and6(b)resultsprimarilyfromthefactthattheformer 3.3 DepositionofLaserEnergyinaModelPWS correspondtoa10timesthickertissueslicethanthelatter(i.e., BloodVessel (cid:7)y=20μmversus(cid:7)x=2μm).Inaddition,wehaveaveraged Figure 5 illustrates spatial distribution of deposited energy 5 centrally located slices to further suppress photon noise in in a model PWS vessel, as obtained by our MC simulation Fig. 5(a) and obtain a smooth heat source term for Eq. (4). Table5 Totalenergyuptakebyvesselsof60and120μmdiameterlocatedat0.25mmdepth,uponirradiationat532,585,and595nm.Results forallthreeboundaryconditionsarepresented. MirrorBC(mJ/mm) EscapeBC(mJ/mm) Extendedlayers(mJ/mm) Diameter(μm) 532nm 585nm 595nm 532nm 585nm 595nm 532nm 585nm 595nm 60 51 56 36 35 37 21 38 40 23 120 126 137 110 90 96 66 97 104 74 (cid:2) JournalofBiomedicalOptics 128002-6 December2011 Vol.16(12) Downloaded From: https://www.spiedigitallibrary.org/journals/Journal-of-Biomedical-Optics on 12 Mar 2023 Terms of Use: https://www.spiedigitallibrary.org/terms-of-use MilanicˇandMajaron:Three-dimensionalMonteCarlomodelofpulsed-lasertreatment... (a) (a) (b) (b) Fig. 6 HorizontalenergydepositionprofilesfromtheresultinFig.5: (a)throughthevesselaxis(y=z=0.5mm)and(b)alongthevessel Fig. 5 Cross-sectionalmapsoflaserenergydepositedinamodelPWS blood vessel (d = 150 μm, z0 = 400 μm) upon irradiation with a axis(solidblackline),alongthetopofthevessellumen(thinner,blue 5-mmdiameterhat-toplaserbeam(l=532nm)andradiantexposureH line),andattheepidermal-dermaljunction(z=60μm;dashed). =7.6J/cm2 inthecentralplanes:(a)perpendiculartothevesselaxis (y=0.5mm)and(b)throughthevesselaxis(x=0.5mm). Figure 8(a) presents temperature distribution in the central cross-sectionalplaneofthemodelPWSgeometryattheendof Obviously,thesamecouldnotbedoneinthecaseofFig.5(b), 1mslaserpulseirradiation,precededby50msCScooling.The leading to rather noisy appearance of the profiles in Fig. 6(b). temperature at the bottom of the vessel lumen is considerably This is not an issue, however, since the latter serves only as lowerthanatthetop. an illustration of the model behavior and is not used in the Thecorrespondingtemperaturedepthprofilethroughtheves- subsequentmodelingsteps. selcenterispresentedinFig.8(b)(solidline)andcomparedwith Thecentraldepthprofileofenergydepositionisverysimilar theresultobtainedforthecasewithoutCSprecooling(dashed). tothatshowninFig.4(forλ=532nm,d=120μm),andis Note, however, that these profiles correspond to different ra- thereforenotpresented. diant exposure values, selected to match the respective epi- dermal damagethresholds (as determinedfurther below):H epi =7.6J/cm2withCScoolingversus4.6J/cm2withoutcooling. Wecanseethatthetworadiantexposurevaluesindeedresultin 3.4 TemperatureandCoagulationMapsin comparable maximal temperatures within the epidermal layer Laser-IrradiatedPWSBloodVessel (T≈80◦C).Atthesametime,CScoolingallowssignificantly Figure 7(a) presents temperature evolution in the model PWS largertemperaturestobeachievedinthelowerpartofthevessel bloodvesselfromFig.5,irradiatedwitha1mslaserpulseat532 lumen,ascomparedtoirradiationwithoutprecooling. nmafter50mslongCScooling,asobtainedusingourthermal Theextentoftissuecoagulation,resultingfromeithertreat- transport model (3). At radiant exposure of H = 7.6 J/cm2, mentapproach,iscomparedinFig.9bypresentingthecross- epi justbelowtheepidermaldamagethreshold,thetemperatureat sectionaldistributionsofthedamageparameter(cid:5)(4).Coagu- thetopofthevessellumen(thinner,blueline)reaches100◦C, lation of blood and dermis is indicated by darker gray shades butremainsbelow70◦Catthevesselbottom(dashedline). ((cid:5) ≥ 1), while white and magenta areas indicate healthy and TemperatureevolutionattheEDjunction,meanwhile,shows partly compromised tissue, respectively. In moderately pig- aninitialdropto10◦CuponCSprecooling,followedbyajump mented Asian skin (f = 3.5%), used in this model example, m tothemaximaltemperatureof68◦C[Fig.7(b)]. the model PWS vessel can be only partly coagulated at the (cid:2) JournalofBiomedicalOptics 128002-7 December2011 Vol.16(12) Downloaded From: https://www.spiedigitallibrary.org/journals/Journal-of-Biomedical-Optics on 12 Mar 2023 Terms of Use: https://www.spiedigitallibrary.org/terms-of-use MilanicˇandMajaron:Three-dimensionalMonteCarlomodelofpulsed-lasertreatment... (a) (a) (b) (b) Fig. 7 Temperature evolution in laser irradiated PWS: (a) at the top Fig. 8 (a)Temperaturefieldinthecentralcross-sectionofthemodel (thinner, blue line), center (black), and bottom (short dashed) of the PWSgeometry(y=0.5mm)immediatelyafterpulsedlaserirradiation vessellumen;and(b)attheepidermal-dermaljunction.Radiantexpo- preceded by CS cooling. (b) Temperature depth profiles through the sureisH=7.6J/cm2;seetextforotherdetails. vessel center obtained with (solid line) and without CS precooling (dashed).TheradiantexposurevaluesforCScooling(7.6J/cm2)andno cooling(4.6J/cm2)matchtherespectiveepidermaldamagethresholds, maximalsaferadiantexposureallowedforlasertreatmentwith- Hepi. outCScooling[Fig.9(a)].TheCScoolingapproach[Fig.9(b)], incontrast,allowssafeapplicationofsignificantlylargerradi- antexposure.Thisenablesalmostcompletecoagulationofthe modelPWSbloodvessel,exceptfortheverybottompartofthe vessellumen(whiteandmagentaregions). 3.5 RadiantExposureThresholds Forthreelaserwavelengths(λ=532,585,and595nm),twoskin phototypes (fair Caucasian and moderately pigmented Asian), andtwocoolingapproaches(nocoolingandCScooling),wede- terminetheminimalradiantexposure,atwhichtheentirelumen ofthemodelPWSvesseliscoagulated(H ),andtheepider- PWS maldamagethreshold,H ,asdescribedbefore.Providedthat epi H islargerthanH ,theintervalbetweenthetwothresholds epi PWS indicatestherangeofsafeandtherapeuticallyeffectiveradiant exposurevaluesfortheselectedskinandtreatmentconditions. In Fig. 10(a), we compare the obtained radiant exposure thresholds for fair Caucasian skin. Clearly, a complete coag- Fig. 9 Cross-sectionalmapsofthecoagulationparameter(cid:5)inPWS ulation of the modelPWS vessel canbesafely achievedat all model geometry (fm = 3.5%): (a) immediately after irradiation with 1mslaserpulseafternaturalconvectioncooling;(b)afterirradiation testedconditions(seethelabels). with1mslaserpulseprecededbyCScooling.Theradiantexposurein Specifically,thesmallestsafetymarginispredictedforPWS eitherexampleisjustbelowtheepidermaldamagethreshold,i.e.,4.6 treatment at 532 nm without precooling of skin (H – H J/cm2and7.6J/cm2for(a)and(b),respectively. epi PWS (cid:2) JournalofBiomedicalOptics 128002-8 December2011 Vol.16(12) Downloaded From: https://www.spiedigitallibrary.org/journals/Journal-of-Biomedical-Optics on 12 Mar 2023 Terms of Use: https://www.spiedigitallibrary.org/terms-of-use MilanicˇandMajaron:Three-dimensionalMonteCarlomodelofpulsed-lasertreatment... Fromclinicalpractice,itiswellknownthattreatmentofPWS (a) lesionsinpatientswithmoderatelyanddarklypigmentedskin isverychallenging,andoftenimpossible,evenwithup-to-date PDLlasersequippedwithCScoolingdevices. A more detailed comparison of our predicted therapeutic thresholdswithradiantexposuresfromseveralclinicalreports canbefoundinSec.4. 4 Discussion Inourexperience,thepresentedELapproachisveryeffectivefor high-resolutionMCmodelingofsmallinclusionsinhumanskin irradiatedwithaspatiallyconfinedlaserbeam.Asdemonstrated in Sec. 3.2, the commonly applied mirror and escape BC can (b) significantly affect predictions of energy deposition when the VOIsideboundariesarenotpositionedsufficientlyfarfromthe investigatedinclusionandtheedgeofthelaserbeam. Specifically,forthecaseof1mmlaserbeamdiameter,the mirror BC produces severely overestimated energy deposition values[compareFigs.3(a)and3(c)],byupto73%inthedeeper model blood vessel, Table 4). This is a direct consequence of unrealisticallyslowdecreaseoflightfluencewithdepth,dueto thefactthatnophotonisallowedtoescapethroughtheperfectly reflecting VOI side walls. Such a large discrepancy is not so surprisingifweconsiderthattheresultobtainedwiththemirror BCcorrespondstothesituationwhereaninfinitenumberof1 mmlaserbeams(separatedby1mminbothxandydirection) Fig. 10 NumericallypredictedthresholdradiantexposuresHPWSand wouldirradiatetheskinsurface—clearlydeliveringmuchmore Hepi in (a) fair Caucasian skin (fm = 1.3%); and (b) moderately pig- lightthanasinglebeam. mentedAsianskin(fm =3.5%)forlaserirradiationat532,585,and Inadditiontotheabove,wehavedeterminedthatapplication 595nm,without(left)andwithapplicationofCScooling(right;note of the mirror BC emphasizes mutual shading between nearby thelabels). bloodvessels.Specifically,therelativereductionofenergyup- takeinthesuperficialvesselcausedbypresenceofthedeeper =2.1J/cm2).ByadditionofCScooling,theepidermaldamage vesselisoverestimatedbyafactorof2.3(Table4). threshold (H ) is markedly increased with almost no effect It is evident that the mirror BC can yield realistic predic- epi on H , thus increasing the safety margin to a much more tions of light transport in a small volume near the center of a PWS comfortable value of 7.5 J/cm2. These results agree very well sufficientlylargelaserbeam.Thiswasutilizedinmanyearlier withclinicalexperience.AgoodfractionofPWSlesionsinfair modelsofbloodvesselphotocoagulation.4,28,35,36 Byperform- skin could be treated with no adverse side effects using early ingadirectcomparisonforourPWSmodelgeometry(Fig.1), pulsed532nmlaserswithoutCScooling.However,introduction wecanconfirmthatthisapproachpredictspracticallyidentical ofthelatterhasdramaticallyimprovedthesafetyrecordofPWS energy deposition profiles as obtained with our EL approach therapy.Moreover,byallowingsafeuseofsignificantlyhigher forthe5-mmdiameterhat-toplaserbeamwiththesameenergy radiantexposures,ithasenabledtreatmentofmany“resistant” density.Tobeprecise,thebloodvesselenergyuptakeobtained PWSlesions,featuringdeeperand/orlargerbloodvessels. withthemirrorBCwasactually∼2%lower.Weattributethis Atthetwolongerlaserwavelengths(585and595nm),with effect to the fact that the reflecting VOI boundaries produce lowerabsorptioninepidermalmelaninascomparedto532nm, mirror images of not only the laser source but also of the ab- thedifferenceH –H isconsiderablylarger.Forourmodel sorbingstructuresinsidetheVOI,therebyreducingthefluence epi PWS geometry,thepredictedrangeofsafeyettherapeuticallyeffec- atthecorrespondingdepths,whichisnotthecasewithourEL tiveradiantexposurevaluesthusamountsto∼6J/cm2 without approach. cooling,andraisesto∼13J/cm2 withapplicationof50msCS However, without the ability to perform a more realistic cooling. This is also in good agreement with clinical experi- computation, it might be very difficult to determine the beam ence,whichmadesuchpulseddyelasers(PDLs)thepreferred diameter at which the limit of infinitely wide irradiation, in- treatmentmodalityforthemajorityofPWSpatients. herently implied by the mirror BC, is achieved for any spe- Incontrastwiththeabove,ourresultspredictthatcomplete cific combination of tissue optical properties, target structure coagulationofthemodelPWSvesselinmoderatelypigmented depth, VOI dimensions, etc. The results in Table 5, for exam- AsianskincannotbeobtainedsafelywithoutapplicationofCS ple, show that discrepancies between the mirror BC and our cooling, as H < H at all tested wavelengths [Fig. 10(b); EL approach increase with decreasing absorption coefficient epi PWS left part]. With CS cooling (right), however, safe treatment of of tissues (from 532 to 595 nm), which can be attributed di- PWS appears possible at 585 and 595 nm, but with only a rectly to consequently increasing effective free path. In addi- marginaldifferencebetweenH andH (1.8to2.0J/cm2). tion,ourELapproachalsoenableshigh-resolutionmodelingof epi PWS (cid:2) JournalofBiomedicalOptics 128002-9 December2011 Vol.16(12) Downloaded From: https://www.spiedigitallibrary.org/journals/Journal-of-Biomedical-Optics on 12 Mar 2023 Terms of Use: https://www.spiedigitallibrary.org/terms-of-use
Description: