Downloaded from orbit.dtu.dk on: Mar 13, 2023 Thermodynamics, Experimental, and Modelling of Aqueous Electrolyte and Amino Acid Solutions Breil, Martin Peter Publication date: 2001 Document Version Publisher's PDF, also known as Version of record Link back to DTU Orbit Citation (APA): Breil, M. P. (2001). Thermodynamics, Experimental, and Modelling of Aqueous Electrolyte and Amino Acid Solutions. General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. Users may download and print one copy of any publication from the public portal for the purpose of private study or research. You may not further distribute the material or use it for any profit-making activity or commercial gain You may freely distribute the URL identifying the publication in the public portal If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Thermodynamics, Experimental, and Modelling of Aqueous Electrolyte and Amino Acid Solutions Martin P. Breil 2001 IVC-SEP Department of Chemical Engineering Technical University of Denmark DK-2800 Kongens Lyngby, Denmark Preface iii Preface This thesis is submitted as a partial fulfilment of the Ph.D. degree at the Technical University ofDenmark. The project, granted by the IVC-SEP, has been carried out from October 1998 to September 2001attheDepartmentofChemicalEngineering, TechnicalUniversityof Denmarkunderthe supervisionofJørgenMollerup. Iwishtothank mysupervisorforhis guidance,hisideas, and hisabilitytoencourageme. I would also like to thank Kaj Thomsen for our many discussions on matters of electrolytes andforlettingmeborrowarticlesfromhisextensivelibrarywhennecessary. My thanks also extend to the people that I met during my sabbatical at the Kluyver Laboratoryfor Biotechnology, Delft Universityof Technologyin the Netherlands. Especially, Luuk van der Wielen and Marcel Ottens who made the stay possible, and Susanne Rudolph whowasmysupervisor. Finally, I wish to thank the staff of the IVC-SEP and of the Kluyver Laboratory for making thepastthree yearssosuccessful. MartinPeterBreil KongensLyngby,September2001 Preface iv Summary v Summary The thesis addresses the thermodynamics involved when describing the properties of solutions of amino acids and dipeptides. Furthermore, it presents the solubilitymeasurements of two dipeptides (glycylglycine and glycyl-L-alanine) in aqueous salt solutions and electrode potentialmeasurementsofthesametwodipeptidesinaqueousNaClsolutions. Chapter 1 is an introduction to the chemistry of amino acids and dipeptides. It presents the principles of the Bjerrum diagram and the isoelectric point of a polyvalent compound. The industrialandmedicaluseofaminoacidsisbrieflytouched. Chapter 2 is the main thermodynamic chapter where most of the required properties are presented and defined. The schism of defining the activity coefficient at infinite dilution in a non-binarymixtureispointedoutaswellasthealternativetypesofconcentrationscales. In Chapter 3 the four most common types for experimental methods for determination of solvent or solute activity are described by using the thermodynamic properties of the proceedingchapter. Chapter 4 focuses on the thermodynamics of electrochemistry and is based on the principles of Chapter 2. As an example experimental data obtained on a so-called Harned cell is presented. Chapter 5 presents the results of the experimental work carried out during the sabbatical, namely the solubility of glycylglycine and glycyl-L-alanine in aqueous NaCl, Na2SO4, and (NH ) SO solutions - and electrode potential measurements with ISE's of solutions 4 2 4 containingNaClandthetwodipeptidesmentionedabove. Chapter 6 presents the basis for the so-called McMillan-Mayer framework in relation to statisticalthermodynamicsandinrelationtotheusual(Lewis-Randall)framework. InChapter7,theosmoticequilibriumandlimitationsofthevan'tHoffequationareexamined. In Chapter 8, the continuum concept is described and related to the McMillan-Mayer framework. Different types of electrolyte models are presented: Debye-Hückel, extended UNIQUAC,andHS-MSA.Theusuallyapproachtomodelsolubilitydataispresented. Summary vi In Chapter 9, the modelling results of the extended UNIQUAC model on binary and ternary aqueous solutions containing amino acid are presented. The solubility prediction of the extendedUNIQUACmodelcommented.Furthermore,ananalysisofthe behaviouroftheHS- MSAmodelinelectrolytesolutionsiscarriedoutandcommented. Chapter10isgivinganoverviewoftheextentofthedatabasecreatedduringthisproject. Chapter11isaconclusion,summarisingtheresultsachievedduringthisproject. Three appendices are included: one on Euler's theorem, one on equilibrium, and one on electrostatics. Resumépådansk vii Resumé på dansk Afhandlingen omhandler den termodynamik, der er involveret, når man skal beskrive egenskaberne af opløsninger af aminosyrer og dipeptider. Ydermere præsenteres opløse- lighedsmålinger af to dipeptider (glycylglycin og glycyl-L-alanin) i vandige salt-opløsninger ogmålingerafelektrode-potentialerafdesammetodipeptiderivandigNaClopløsninger. Kapitel 1 er en introduktion til aminosyrer og dipeptiders kemi. Det præsenterer principperne ved Bjerrum-diagrammerne og det isoelektriske punkt af et fler-valent stof. Den industrielle ogmedicinalebrugafaminosyrererkortberørt. Kapitel 2 er det centrale termodynamiske kapitel, hvor de fleste af de krævede egenskaber er præsenteret og defineret. Skismaet ved definitionen af aktivitetskoefficienten ved uendelig fortyndingienikke-binærblandingerbelyst,ligeledessomalternativekoncentrationsskalaer. I Kapitel 3 er de fire mest almindelige typer af eksperimentelle metoder til bestemmelse af aktiviteten af opløsningsmidlet eller det opløste stof beskrevet af hjælp af de termodynamiske egenskaberfradetforegåendekapitel. Kapitel 4 fokuserer på termodynamikken i elektrokemien og er baseret på principperne fra Kapitel2. SometeksempelereksperimentelledatafraensåkaldtHarned-cellepræsenteret. Kapitel 5 præsenterer resultaterne af det eksperimentelle arbejde, som er udført under det eksterne forskningsophold, nemlig opløseligheden af glycylglycin og glycyl-L-alanin i vandig NaCl, Na SO og (NH ) SO opløsninger - og målinger af elektrode-potentialer med 2 4 4 2 4 ionselektiveelektroderiopløsningerindeholdendeNaClogdetoovennævntedipeptider. Kapitel 6 præsenterer grundlaget for det såkaldte McMillan-Mayer framework i relation til statistisktermodynamikogirelationtildetsædvanlige(Lewis-Randall)framework. IKapitel7forklaresdenosmotiskeligevægtogbegrænsningerneafvan'tHoff-ligningen. I Kapitel 8 beskrives kontinuum-konceptet og relateres til McMillan-Mayer framework'et. Forskellige typer af elektrolyt-modeller er præsenterede: Debye-Hückel, udvidet UNIQUAC ogHS-MSA.Densædvanligemåde,hvorpåopløselighedsdatamodelleres,erpræsenteret. I Kapitel 9 præsenteres modelleringsresultaterne fra den udvidede UNIQUAC-model på binære og ternære vandige opløsninger indeholdende aminosyre. Den udvidede UNIQUAC- Resumépådansk viii models forudsagte opløseligheder er kommenteret. Ydermere er der udført en analyse af forløbetafHS-MSA-modellenielektrolyt-opløsningerogkommenteret. Kapitel10giveretoverblikoveromfangetafdendatabase,somerskabtiløbetafprojektet. Kapitel11erenkonklusion,deropsummererdeopnåederesultater. Treappendiceserinkluderede:étomEuler'stheorem,étomligevægtogétomelektrostatik. TableofContents ix Table of Contents Preface................................................................................................................................... i Summary............................................................................................................................... iii Resumépådansk................................................................................................................... v TableofContents.................................................................................................................. vii 1.IntroductiontotheChemistryofAminoAcids................................................................. 1 1.1Structureofaminoacids.................................................................................................................. 1 1.2Stereochemistry............................................................................................................................... 2 1.3TheinfluenceofpH......................................................................................................................... 2 1.4Theisoelectricpoint......................................................................................................................... 6 1.5Theuseofaminoacids.................................................................................................................... 9 2.BasicThermodynamics..................................................................................................... 13 2.1States................................................................................................................................................ 13 2.2TheresidualpropertyoftheGibbsenergy....................................................................................... 14 2.3Purephase........................................................................................................................................ 14 2.4Theonespeciesinthepurephase.................................................................................................... 14 2.5Mixture............................................................................................................................................ 16 2.6Speciesinthemixture...................................................................................................................... 17 2.7Referencestate................................................................................................................................. 18 2.8Idealsolution................................................................................................................................... 19 2.9Definitionoftheactivitycoefficient................................................................................................ 19 2.10TheexcesspropertyoftheGibbsenergy....................................................................................... 19 2.11Thereferencestatefortheasymmetricactivitycoefficient........................................................... 21 2.12Thereferencestateforthemolalityactivitycoefficient................................................................ 23 2.13Thereferencestateforthemolarityactivitycoefficient................................................................ 24 3.ThermodynamicsofExperimentalMethods..................................................................... 27 3.1Thethermodynamicsofvapourpressuremeasurements................................................................. 27 3.2Simplificationsonthevapourpressuremeasurements.................................................................... 29 3.3Thethermodynamicsoffreezingpointdepressionmeasurements.................................................. 29 3.4Simplificationsonfreezingpointdepressionmethods.................................................................... 31 3.5Boilingpointelevationmeasurements............................................................................................. 32 3.6Thethermodynamicsofisopiesticmeasurements............................................................................ 32 4.Electrochemistry................................................................................................................ 35 4.1Electrochemicalequilibrium............................................................................................................ 35 4.2Equilibriumofanelectrochemicalcell............................................................................................ 37
Description: