ebook img

Thermodynamic and Dynamic Ice Thickness Changes in the Canadian Arctic Archipelago in ... PDF

24 Pages·2017·14.37 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Thermodynamic and Dynamic Ice Thickness Changes in the Canadian Arctic Archipelago in ...

TheCryosphereDiscuss.,https://doi.org/10.5194/tc-2017-197 ManuscriptunderreviewforjournalTheCryosphere Discussionstarted:10October2017 c Author(s)2017.CCBY4.0License. (cid:13) Thermodynamic and Dynamic Ice Thickness Changes in the Canadian Arctic Archipelago in NEMO-LIM2 Numerical Simulations XianminHu1,JingfanSun1,+,TingOnChan1,++,andPaulG.Myers1 1DepartmentofEarthandAtmosphericSciences,UniversityofAlberta,Edmonton,T6G2E3,Canada +summerinternfromZhejiangUniversity,38ZhedaRoad,Hangzhou,China,310027 ++nowatSkytechSolutionsLtd.,Canada Correspondenceto:XianminHu([email protected]) Abstract.SeaicethicknessevolutionwithintheCanadianArcticArchipelago(CAA)isofgreatinterest.Inthisstudy,based on the NEMO numerical frame work including the LIM2 sea ice module, simulations at both 1/4 and 1/12 horizontal ◦ ◦ resolution were conducted from 2002 to 2016. The model captures well the general spatial distribution of ice thickness in the CAA region, with very thick sea ice ( 4m and thicker) in the northern CAA, thick sea ice (2.5m to 3m) in the west- ∼ 5 centralParryChannelandM’ClintockChannel,andthin(<2m)ice(inwintermonths)ontheeastsideofCAA(e.g.,eastern ParryChannel,BaffinIslandscoast)andwaterchannelsinsouthernareas.Eventhoughtheconfigurationsstillhaveresolution limitations in resolving the exact observation sites, simulated ice thickness compares well with weekly Environment and ClimateChangeCanada(ECCC)NewIcethicknessProgramdataatnearbysitesexceptinthenorth.At1/4 to1/12 scale, ◦ ◦ modelresolutiondoesnotplayasignificantroleintheseaicesimulationexcepttoimprovelocaldynamicsbecauseofbetter 10 coastlinerepresentation.Seaicegrowthisdecomposedintothermodynamicanddynamic(includingallnon-thermodynamic processesinthemodel)contributionstostudytheicethicknessevolution.Relativelysmallerthermodynamiccontributionto icegrowthbetweenDecemberandthefollowingAprilisfoundinthethickandverythickiceregions,withlargercontributions inthethinicecoveredregion.Waveletanalysisofthehourlysimulatedicefieldsclearlyshowsthethermodynamiccontribution haveseasonalanddiurnalcycleswhileonlytheseasonalcycleissignificantforthetotalicethickness.Highfrequencychanges 15 arefoundinbothfieldsduringtheseaicemeltingandformationprocess,particularlyinthemeltingseason. 1 Introduction The Canadian Arctic Archipelago (CAA), the complex network of shallow-water channels adjacent to the Arctic ice pack, has been a scientific research hot spot for a long time. Scientifically, it is an important pathway delivering cold fresh Arctic water downstream (e.g., PrinsenbergandHamilton, 2005; Mellingetal., 2008; Dicksonetal., 2007; Petersonetal., 2012), 20 that eventually feeds the North Atlantic Ocean, where the watermass formation and ocean dynamics play a key role in the largescalemeridionaloverturingcirculation(MOC)andglobalclimatevariability(e.g.,Rheinetal.,2011;Hátúnetal.,2005; Marshalletal.,2001;VellingaandWood,2002).Economically,underthecontextthatNorthernHemisphereseaicecoverhas 1 TheCryosphereDiscuss.,https://doi.org/10.5194/tc-2017-197 ManuscriptunderreviewforjournalTheCryosphere Discussionstarted:10October2017 c Author(s)2017.CCBY4.0License. (cid:13) been declining dramatically (e.g., Parkinsonetal., 1999; Serrezeetal., 2007; ParkinsonandCavalieri, 2008; Stroeveetal., 2008;Comisoetal.,2008;ParkinsonandComiso,2013),especiallysince2007,shippingthroughtheCAA,viatheNorthwest Passage(NWP),isofparticularinteresttocommercialtransportbetweenEuropeandAsiabecauseofthegreatdistancesavings comparedtothecurrentroutethroughthePanamaCanal(e.g.,Howelletal.,2008;Pizzolatoetal.,2016,2014).Besidesthe 5 harshweatherandothersecurityissues(e.g.,icebergs),thebiggestconcernfortheopeningoftheNWPisstillthecondition ofseaice,especiallyhighconcentrationsofthickmultiyearice(MYI)(Melling,2002;Howelletal.,2008;HaasandHowell, 2015). Lietaeretal.(2008)estimatedabout10%ofthetotalNorthernHemisphereseaiceisstoredwithintheCAA.Seaicewithin theCAAregionisacombinationofbothfirst-yearice(FYI)andMYI.MYIisbothlocallyformedandimportedfromtheArctic 10 Ocean,andnormallylocatedinthecentral-westParryChannelandthenorthernCAA(e.g.,Melling,2002;Howelletal.,2008, 2013). Since the late 1970s, the ice free season has extended by about one week per decade (Howelletal., 2009), with a statistically significant decrease of 8.7% per decade in the September FYI cover. Reduction in the MYI cover is also found (-6.4%perdecade)butnot“yetstatisticallysignificant”duetotheinflowofMYIfromtheArcticOceanmainlyviatheQueen ElizabethIslands(QEI)gatesinAugusttoSeptember(Howelletal.,2009,2013).EventhoughtheArcticOceanicepackalso 15 extendstotheCAAregionthroughM‘ClureStrait,thenetseaicefluxissmallandusuallyleadstoanoutflowfromtheCAA (Kwok,2006;Agnewetal.,2008;Howelletal.,2013). Althoughthereisincreasingdemandforseaicethicknessinformationwithinthisregion,thereisstillverylimitedrecords available(HaasandHowell,2015).Melling(2002)analyzeddrill-holedatameasuredinwintersduring1971–1980withinthe SverdrupBasin(themarineareabetweenParryChannelandQEIgates,seeFig.1),andfoundseaiceinthisregionislandfast 20 (100%concentration)formorethanhalfoftheyear(fromOctober-NovembertolateJuly)withameanlatewinterthickness of3.4m.Sub-regionalmeansoftheicethicknesscanreach5.5m,butverythickmultiyearicewasfoundtobelesscommon, which is likely due to the melting caused by tidally enhanced oceanic heat flux in this region (Melling, 2002). The seasonal export of the old ice from the Sverdrup Basin down to south was known in the past (Bailey, 1957), which helps to create anothermajorregionwithsevereMYIconditionintheCAA,thecentralParryChannelandM’ClintockChannel(seeFig.1 25 forthelocation).Basedontwoairborneelectromagnetic(AEM)icethicknesssurveysconductedinMay2011andApril2015, HaasandHowell(2015)estimatedtheicethicknesstobe2to3minthisregionwithMYIthickerthan3monaverage.This supportsthegeneralspatialdistributionoficethicknesswithintheCAA,thickerinthenorthandrelativelythinnerinthesouth. Observations were not only limited in time but also in spatial coverage, thus, numerical simulations are required to bet- ter understand the ice distribution and variability in the CAA (e.g., Dumasetal., 2006; SouandFlato, 2009; HuandMyers, 30 2014).Dumasetal.(2006)evaluatedofthesimulatedicethicknessatCAAmeteorologicalstationsbutwithauncoupledone dimensional(1D)seaicemodel(FlatoandBrown,1996).ThevariabilityandtrendsoflandfasticethicknesswithintheCAA were systematically studied by a recent paper from Howelletal. (2016) based on historical records at observed sites (Cam- bridgeBay,Resolute,EurekaandAlert)andnumericalmodelsimulationsoverthe1957–2014period.Theyfoundstatistically significant thinning at the sites except at Resolute, and this downward trend is mostly associated with the changes in snow 35 depth. Although some of the numerical simulations used in Howelletal. (2016) produced a reasonable seasonal cycle, gen- 2 TheCryosphereDiscuss.,https://doi.org/10.5194/tc-2017-197 ManuscriptunderreviewforjournalTheCryosphere Discussionstarted:10October2017 c Author(s)2017.CCBY4.0License. (cid:13) erally,thesesimulationsoverestimatedicethicknessanddidnotdoagoodjobincapturingthetrend.Inaddition,thelackof horizontalresolutioninthesemodelswerealsopointedoutinHowelletal.(2016). Inthispaper,wewillfocusonthesimulatedCAAseaicethicknessoverrecentyears(2002–2016),andaddresstheskillofa seaicemodel,includingbutnotlimitedtothosementionedinHowelletal.(2016).Tobemorespecific,thispaperwilldiscuss 5 1) the relative importance of thermodynamic and dynamic processes in sea ice growth/melting in simulating the possible variability of sea ice and ocean surface fields in the CAA; 2) high frequency changes in ice growth/melting processes. This paperstartswithabriefdescriptionofthenumericalsimulationsandobservationaldatausedinthisstudy.Thentheevaluation of simulated ice thickness in the CAA region is presented in section 3.1. The spatial distribution and temporal evolution (at selected sites) of thermodynamic and dynamic ice thickness change are discussed in section 3.2. Section 3.3 focuses on the 10 highfrequency(uptodiurnalcycle)variabilityinicegrowth/meltingprocesses.Concludingremarksandadiscussionaregiven insection4. 3 TheCryosphereDiscuss.,https://doi.org/10.5194/tc-2017-197 ManuscriptunderreviewforjournalTheCryosphere Discussionstarted:10October2017 c Author(s)2017.CCBY4.0License. (cid:13) 2 MethodandData 2.1 Numericalmodelsetup In this study, the coupled ocean sea ice model, the Nucleus for European Modeling of the Ocean (NEMO, available at https://www.nemo-ocean.eu)version3.4(MadecandtheNEMOteam,2008),isutilizedtoconductthenumericalsimulations. 5 The model domain covers the Arctic and the Northern Hemisphere Atlantic (ANHA) with two open boundaries, one close to Bering Strait in the Pacific Ocean and the other one at 20 S across the Atlantic Ocean (Fig. 1, inset). The model mesh ◦ is extracted from the the global tripolar grid, ORCA (DrakkarGroup, 2007) with two different horizontal resolutions, 1/4 ◦ (hereafterANHA4)and1/12 (hereafterANHA12).Thehighesthorizontalresolutionis 2kmforANHA12and 6kmfor ◦ ∼ ∼ ANHA4inCoronationGulf–DeaseStraitregion,whichisneartheartificialpoleovernorthernCanada(Fig.1),andthelowest 10 resolution is 9km for ANHA12 and 28km for ANHA4 at the equator. In the vertical, there are 50 geopotential levels ∼ ∼ withhighresolutionfocusedintheupperocean.Layerthicknesssmoothlytransitionsfrom 1matsurface(22levelsforthe ∼ top100m)to458matthelastlevel. TheseaicemoduleusedhereistheLouvainla-neauveIceModelVersion2(LIM2)withanelastic-viscous-plastic(EVP)rhe- ology(HunkeandDukowicz,1997),includingboththermodynamicanddynamiccomponents(FichefetandMaqueda,1997). 15 Itisbasedonathree-layer(onesnowlayerandtwoicelayersofequalthickness)modelproposedbySemtnerJr(1976)with twoicethicknesscategories(meanthicknessandopenwater).Theseaicemoduleiscoupledtotheoceanmoduleeverymodel step.TheelastictimescaleistunedsmallenoughtodamptheelasticwaveintheEVPapproach(seeTable1),basedonthedis- cussionsinHunkeandDukowicz(1997).Ano-slipboundaryconditionisappliedforseaiceinthesimulations,whichmeans theicecanhavezerovelocityalongthecoast.However,itshouldbenotedthattheseaicemoduleusedinthisstudydoesnot 20 includearepresentationoflandfastice(e.g.,Lemieuxetal.,2016),whichmaynegativelyimpacttheseaicesimulationwhere landfasticeexists. Table1.Seaicemoduleparametersusedinoursimulations parameter ANHA4 ANHA12 timestep(seconds) 1080 180 subsyclingiterations 150 120 timescaleofelasticwave(seconds) 320 60 Two simulations, ANHA4-CGRF and ANHA12-CGRF, are integrated from January 1st 2002 to December 31 2016. The initialconditions,includingthreedimensional(3D)oceanfields(temperature,salinity,zonalvelocityandmeridionalvelocity) as well as two dimensional (2D) sea surface height (SSH) and sea ice fields (concentration and thickness) are taken from 25 fromtheGlobalOceanReanalysisandSimulations(GLORYS2v3)producedbyMercatorOcean(Masinaetal.,2015).Open boundaryconditions(temperature,salinityandhorizontaloceanvelocities)arederivedfromthemonthlyGLORYS2v3product aswell.Atthesurface,themodelisdrivenwithhightemporal(hourly)andspatialresolution(33km)atmosphericforcingdata 4 TheCryosphereDiscuss.,https://doi.org/10.5194/tc-2017-197 ManuscriptunderreviewforjournalTheCryosphere Discussionstarted:10October2017 c Author(s)2017.CCBY4.0License. (cid:13) 75oN 5.0 n e a YLT/LT1 n d c ti c O c e e nla r r A G Q E I WEU 4.5 M C S 70oN YRB 4.0 B a M n B C ay C YCB 3.5 65oN YUX YFB 3.0 YZS 60oN 9 8 7 H 2.5 u d s 6 o n B a 5 y 4 2.0 100oW 90oW 80oW 70oW Figure1.ANHA12(inset)modelmesh(every10thgridpoint)andhorizontalresolution(colours,unit:kilometers)intheCanadianArctic Archipelago(QEI:QueenElizabethIslands;MCS:M‘ClureStrait;MCC:M’ClintockChannel)andHudsonBayregion(thickblackbox highlightedintheinset).Notethecolourscaleisdifferentfromthatusedintheinset).Icethicknessobservationsites(seetable2forthe details)areshownwithblackcirclesonthemap. provided by Canadian Meteorological Centre (CMC) Global Deterministic Prediction System (GDPS) ReForecasts (CGRF) dataset(Smithetal.,2014),including10mwind,2mairtemperatureandhumidity,downwellingandlongwaveradiationflux, andtotalprecipitation.Inter-annualmonthly1 1 riverdischargedatafromDaietal.(2009)aswellasGreenlandmeltwater ◦ ◦ × (5km 5km)providedbyBamberetal.(2012)iscarefully(volumeconserved)remappedontothemodelgrid. × 5 WiththesamesettingasANHA4-CGRFbutdrivenwiththeinter-annualatmosphericforcingsfromtheCoordinatedOcean- iceReferenceExperimentsversion2(CORE-II)(LargeandYeager,2009),anotherANHA4simulation,ANHA4-CORE,in- tegratedfromJanuary1st2002toDecember312009,isalsoconductedtostudythesensitivityoftheseaicesimulationtothe 5 TheCryosphereDiscuss.,https://doi.org/10.5194/tc-2017-197 ManuscriptunderreviewforjournalTheCryosphere Discussionstarted:10October2017 c Author(s)2017.CCBY4.0License. (cid:13) atmosphericforcings.TheCORE-IIprovidesfieldsatvarioustemporalresolutions,a)6-hourly10-msurfacewind,10-mair temperature and specific humidity; b) daily downward longwave and shortwave radiation; c) monthly total precipitation and snowfall. Notemperatureorsalinityrestoringisappliedinanyofthesimulationsusedinthisstudy.Withoutsuchconstrainsthemodel 5 evolvesfreelyintimetohelpunderstandbetterthelimitationsofthephysicalprocessesrepresentedbythemodel. Monthly ice thickness at 1/4 resolution from the GLORYS2v3 product with sea ice assimilation is also utilized in this ◦ studytobetterunderstandtheinitialconditionissue. 2.2 EnvironmentandClimateChangeCanadaNewArcticIceThicknessProgram Toevaluatetheperformanceofthemodelintermsoficethickness,simulatedicethicknessiscomparedtotheobserveddata 10 from Environment and Climate Change Canada (ECCC) New Icethickness Program (hereafter ECCC thickness). The new ECCC thickness program, the second stage of the Original Ice Thickness Program Collection used in Dumasetal. (2006), startedinthefallof2002,andcontinuedtothepresentatonly11stations(includingsitesinlakes).Measurementswerecon- ductedweeklyatapproximatelythesamelocationclosetoshorebetweenfreeze-upandbreak-upperiod(whentheicewassafe towalkon)withaspecialaugerkitorahotwireicethicknessgauge.DataismadeavailabletothepublicbyEnvironmentand 15 ClimateChangeCanadaundertheOpenGovernmentLicense(Canada)onhttp://open.canada.ca/data/en/dataset.Eightcoastal sites,CarolHarbour(YZS),HallBeach(YUX),Iqaluit(YFB),CambridgeBay(YCB),Resolute(YRB),Eureka(WEU),Alert YLT(YLT)andAlertLT1(LT1),wereusedinthisstudy.ThedetailedlocationinformationofeachsitecanbefoundinFig.1 andTable2. Table2.ECCCicethicknessstationlocations(onlysitesusedinthisstudy) site longitude latitude CarolHarbour(YZS) 83.153◦W 64.130◦N HallBeach(YUX) 81.230◦W 68.780◦N Iqaluit(YFB) 68.517◦W 63.726◦N CambridgeBay(YCB) 105.06◦W 69.113◦N ResoluteBay(YRB) 94.884◦W 74.684◦N Eureka(WEU) 85.942◦W 79.986◦N AlertLT1(LT1) 62.593◦W 82.602◦N AlertYLT(YLT) 62.420◦W 82.753◦N Unlikethe1DmodelusedinDumasetal.(2006),whichcanbeappliedattheexactlocationwherethemeasurementswere 20 carried out, three dimensional (3D) models usually have horizontal resolution issues in resolving the observation sites, even with the high resolution ANHA12 configuration used in this study. Interpolation is needed to do the comparison between simulated fields and observations. This is also mentioned in Howelletal. (2016). To interpolate simulated fields onto the 6 TheCryosphereDiscuss.,https://doi.org/10.5194/tc-2017-197 ManuscriptunderreviewforjournalTheCryosphere Discussionstarted:10October2017 c Author(s)2017.CCBY4.0License. (cid:13) nearest water point (x ,y ) of each observation site (x ,y ), we utilized a modified inverse distance weighting (IDW) k k obs obs method(eq.(1))proposedbyRenka(1988): R d f = [ w− k]2 (1a) i R d w k f i w = (1b) i N f i=1 i N P 5 Qtarget = Qiwi (1c) i=1 X whereR istheinfluenceradiusaboutpoint(x ,y ),d isthedistancefrompoint(x ,y )toeachneighboringpoint(x ,y ), w k k k k k i i f istheinversedistancefunction,w istheweightfunctiononeachneighboringpoint(x ,y ),N isthenumberofneighboring i i i i pointswithinR ,Q isvariablevalueoneachneighboringpointandQ isthefinalresult.Inpractice,nineneighboring w i target points,includingpoint(x ,y ),wereconsideredinthecalculated.AsR issettothemaximumvalueofd andlandpoints k k w k 10 shouldbeexcluded,eventuallyuptoeighteffectivepointsareusedinourinterpolationprocess. 7 TheCryosphereDiscuss.,https://doi.org/10.5194/tc-2017-197 ManuscriptunderreviewforjournalTheCryosphere Discussionstarted:10October2017 c Author(s)2017.CCBY4.0License. (cid:13) 3 Results Inthissection,first,theicethicknessreproductionabilitywithintheCAAoftheNEMOLIM2configurationsusedinthisstudy will be examined via comparisons with the ECCC thickness. Then the detailed thermodynamic and dynamic ice thickness changes,boththespatialdistributionandtemporalevolutionatselectsites(CambridgeBayandResoluteBay),basedonthe 5 simulation outputs willbepresented. Then, thehigh frequency ice growth/melting processes resolved by thesimulation will bestudied. 3.1 Icethicknesscomparison Figure 2 shows the ice thickness comparison with observations. In general, both ANHA4-CGRF (blue lines) and ANHA12- CGRF(redlines)simulationsproducesimilarseasonalandinter-annualvariationsinicethickness,whichcomparereasonably 10 well at some sites (i.e., YCB, YZS, YUX, YRB,YFB) but not at the rest (WEU, YLT, LT1). Although the observations are missingintheseaicemeltingseason,anasymmetricseasonalcycle(ashorterfastermeltingperiodfollowsarelativelylonger slow growth period), is evidenced by the available data, and reproduced by the simulations. Taking account of the model resolution,theinterpolatedsimulatedicethicknessreflectsactuallythevariabilitysomedistanceoffthecoastratherthanthe exactobservationlocations.Thegeographiclocationdifferences,whichisalsorelatedtomodelresolution,couldalsoleadto 15 discrepanciesinthecomparisonshere.Thus,ifthemodelcancapturetheseasonalcycle(e.g.,multipledatapointsinbothice growthandmeltingseasons),themodelislikelycapableofsimulatingtheprocess. AtYFB,themodeldoesagoodjobinmostyearsbutfailedtocatchtheverythickseaicein2014,2015and2016(Fig.2h). Thiscouldbealocalatmosphericforcingfieldbias,oramodelresolutionissue,i.e.,themeasurementscapturedverylocalized extremesbeyondtheabilityofmodeltoresolve.SimilarbehaviorhappensatYZS,YUX.Furtherinvestigationisneeded. 20 AtWEU,YLTandLT1sites(Fig.2e,f,andg),thereisaclearinitialvalueissue( 2matYLT/LT1and 1matMEU)that ∼ ∼ leadstotoothickseaiceinthesimulations.NotethatneitherANHA4orANHA12hasthecapabilitytoresolvethedifference between YLT and LT1, thus, the same simulated values are shown on the figure for both YLT and LT1. At YLT/LT1, both ANHA4-CGRF (blue line) and ANHA12-CGRF (red line) show similar inter-annual trends to that in GLORYS2v3 (which extends back to 1993, greenline), meaning it is likely a pure initial value problem rather than the model equilibrium issue 25 mentioned in Howelletal. (2016). In addition, the seasonal cycle is not clear in the GLORYS2v3 product. The issue is also presentinsomeyears,i.e.,2005–2007,intheANHA4-CGRFandANHA12-CGRFsimulations.ANHA4-CORE(orangeline) isgenerallyimprovedcomparedwiththeobservationsinboththeamplitudeandseasonalcycle.However,thisimprovement wasachievedbyaccident,andisrelatedtoasnowdepthissueinthissimulation(moredetailswillbeinthediscussionsession). Thus,itdoesnotindicatethatCORE-IIforcingisperformingbetterthanotheratmosphericforcingdatasetsinthisregion.The 30 equilibriumissue,i.e.,icethicknesskeepincreasing,mighthappenatWEUinoursimulationswitheitherCGRForCORE-II forcing.Theupwardtrendover2005to2007isalsopresentintheobservationsbutismissingintheGLORYS2v3although GLORYS2v3hasasmallthickness(whichislikelyduetodataassimilationoranatmosphericforcingissuein2005).Itstrend doesnotreflecttherealchange/variability 8 TheCryosphereDiscuss.,https://doi.org/10.5194/tc-2017-197 ManuscriptunderreviewforjournalTheCryosphere Discussionstarted:10October2017 c Author(s)2017.CCBY4.0License. (cid:13) (e) 2.5 6.0 LT1 5.0 2.0 1.5 4.0 1.0 3.0 0.5 2.0 0.0 1.0 (a) YRB (f) 2.0 6.0 YLT 5.0 1.5 4.0 1.0 3.0 0.5 2.0 0.0 1.0 (b) YCB (g) 2.0 5.0 WEU 1.5 4.0 1.0 3.0 0.5 2.0 0.0 1.0 (c) YUX (h) 1.5 1.5 1.0 1.0 0.5 0.5 0.0 0.0 (d) YZS YFB 04 06 08 10 12 14 16 04 06 08 10 12 14 16 Figure2.SimulatedicethicknessateachselectedECCCthicknesssite(figure1andtable2,unit:meters)fromJanuary2003toDecember 2016(orange:ANHA4-COREsimulation;green:GLORYS2v3product;blue:ANHA4-CGRFsimulation;red:ANHA12-CGRFsimulation) againstweeklyECCCobservations(blackdots).NotetheGLORYS2v3productisamonthlymeanfieldwhiletherestofthesimulationsuse 5-dayaverages. At YCB, simulations (red and blue lines in Fig. 2b) with CGRF forcing show very good agreement with the observations exceptduringthewintersof2013and2014.Consideringthehorizontalresolutionofoursimulationsisnotcapableofresolving theinnerbayattheCambridgeBay,thematchinicethicknessbetweenthesimulationandobservationsindicatesthevariation oficethicknesswithintheinnerBaymightbesmall.BothANHA4-COREandGLORYS2v3simulationsunderestimatedthe 5 maximum values in winters by 0.5m. This indicates CGRF forcings might provide more realistic surface inputs in this ∼ region. 9 TheCryosphereDiscuss.,https://doi.org/10.5194/tc-2017-197 ManuscriptunderreviewforjournalTheCryosphere Discussionstarted:10October2017 c Author(s)2017.CCBY4.0License. (cid:13) AtYRB,itismorecomplicated(Fig.2a).Priortothesignificantseaicemeltingin2007,noneofthesimulationsshowice free conditions in this region in summer. GLORYS2v3 shows relatively thinner ice in summer months but it is still 0.5m to 1.5mthick.Itcouldbetheinitialvalueproblem.However,highfrequentlyvariationseveninwinterintheANHAsimulations suggest that the ice growth process is not dominated by a smoothly changing physical process (e.g., air temperature). Thus, 5 itislikelyduetothephysicalprocess(e.g.,advectionfromsurroundingareas).Thiswillbediscussedmoreinthefollowing section.Post2007,theseasonalcycleintheseaicefieldismoredistinct,althoughicefreesummerconditionsdonothappen everyyear.After2010,simulationsproducewinterseaicethicknessmuchclosetotheobservations. 3.2 Thermodynamicanddynamicicethicknesschange In the real world, both the thermodynamic and dynamic ice thickness processes are coupled together (occurring at the same 10 time).However,withtheassistanceofnumericalmodel,thetwoprocessescanbedecoupled(showninequation(2))tobetter understandtherelativeimportanceofeachprocess. ∆H = ∆H +∆H (2) total thermal dynamic where ∆H is the total ice thickness change over a specific time interval; ∆H is the ice thickness change due total thermal toverticalheatfluxes(throughtheatmosphere-ice-oceaninterfaces);∆H istheicethicknesschangeduetodynamic dynamic 15 processes.Inpractice,asimpleapproachisutilizedtocomputethetwotermsontherightside.∆Hthermaliscalculatedbased onthemodelthermaliceproduction.∆H istakenastheresidualfromthe∆H . dynamic total 3.2.1 Spatialdistribution HerewefocusonicegrowthprocessbetweenDecemberandAprilofthefollowingyear.Figure3aand3bshowthesimulated ice thickness in ANHA12 at the beginning of December and at the end of April, respectively. Geographically, at the end of 20 April,a)verythickseaiceislocatedinthenorthernCAA( 4mbytheendofApril)withregionalmaximum(> 4.5m)at ∼ theopeningstotheArcticOcean.b)lessthickseaicecoverswestern,andcentralParryChannel(justabovethesiteYRB)and M’Clintock Channel with a thickness of 2.5m to 3m. c) relatively thin ice (<2m) is mainly in the southern CAA, eastern Parry Channel, coasts of Baffin Islands and within Hudson Bay. Invasion of the Arctic Ocean ice pack through the northern CAAopeningsandtheadvectionfromthereintocentralParryChannelareclearlyshowninthefigures,consistedwithprevious 25 studies(e.g.,Melling,2002;Howelletal.,2008;HaasandHowell,2015). During the winter, sea ice grows everywhere in the CAA regions due to the thermodynamic cooling (Fig. 3c). But the totalincreaseoverthewinterisnotevenlydistributedinspace.Norisicegrowthlargestinthenorth.Largethermodynamic ice growth is seen in the eastern CAA (eastern Parry Channel, Nares Strait, Baffin Island coast and western Hudson Bay), Amundsen Bay and many coastal regions (e.g., western coast of Banks Island, northern coast of western Parry Channel). 30 Regions covered by thick sea ice (i.e., the northern CAA, west-central Parry Channel and M’Clintock Channel) show less thermodynamicicegrowthoverthewinter.ThisisparticularlytrueinthenorthernCAA,likelyduetotheexistenceofalready thickicereducingtheheatexchangebetweentheoceanandatmosphere. 10

Description:
simulated breakup dates, open water duration and snow ablation) compared to the non-diurnal-resolved forcing (e.g., daily). The significant differences is caused by the nonlinearities in surface energy balance that affects the snow.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.