ebook img

The transient hard X-ray tail of GX 17+2: new BeppoSAX results PDF

0.31 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview The transient hard X-ray tail of GX 17+2: new BeppoSAX results

Astronomy&Astrophysicsmanuscriptno.ms1567 February5,2008 (DOI:willbeinsertedbyhandlater) The transient hard X-ray tail of GX 17+2: new BeppoSAX results R.Farinelli1,F.Frontera1,2,A.A.Zdziarski3,L.Stella4,S.N.Zhang5,6,M.vanderKlis7,N.Masetti2,andL. 5 2 Amati 0 0 2 1DipartimentodiFisica,Universita`diFerrara,viaParadiso12,44100Ferrara,Italy n 2IstitutodiAstrofisicaSpazialeeFisicaCosmica,SezionediBologna,CNR,viaGobetti101,40129Bologna,Italy a 3N.CopernicusAstronomicalCenter,Bartycka18,00-716Warsaw,Poland J 4OsservatorioAstronomicodiRoma,viaFrascati33,00040MonteporzioCatone,Italy 2 5PhysicsDepartment,UniversityofAlabamainHuntsville,AL35899Huntsville,USA 1 6SpaceSciencesLaboratory,NASAMarshallSpaceFlightCenter,SD50,AL35812Huntsville,USA 7AstronomicalInstitute“AntonPannekoek”,UniversityofAmsterdam,Kruislaan403,1098SJAmsterdam,TheNetherlands 1 v 6 0 Received2July2004 /Accepted17December2004 2 1 Abstract.Wereport onresultsof twoBeppoSAX observations oftheZsourceGX17+2.Inbothcasesthesourceisinthe 0 horizontalbranchofthecolour-intensitydiagram.Thepersistentcontinuumcanbefitbytwo-componentmodelsconsistingof 5 ablackbodyplusaComptonizationspectrum.Withoneofthesemodels,twosolutionsfortheblackbodytemperatureofboth 0 theobservedandseedphotonsforComptonizationareequallyacceptedbythedata.Inthefirstobservation,whenthesourceis / h ontheleftpartofthehorizontalbranch,weobserveahardtailextendingupto120keV,whileinthesecondobservation,when p thesourcemovestowardsrightinthesamebranch,thetailisnolonger detected.Thehard(>∼ 30keV) X-rayemissioncan - bemodeledeitherbyasimplepower-lawwithphotonindexΓ ∼2.7,orassumingComptonizationof∼1keVsoftphotons o off ahybridthermalplusnon-thermal electronplasma. Thespectralindexof thenon-thermal injectedelectronsisp ∼ 1.7. r t TheobservationofhardX-rayemissiononlyintheleftpartofthehorizontalbranchcouldbeindicativeofthepresenceofa as thresholdintheaccretionrateabovewhichthehardtaildisappears.Anemissionlineat6.7keVwithequivalentwidth∼ 30 : eVisalsofoundinbothobservations.Wediscusstheseresultsandtheirphysicalimplications. v i X Keywords.stars:individual:GX17+2—stars:neutron—X-rays:binaries—accretion,accretiondisks r a 1. Introduction (BB) plus a multicolour disk blackbody (DBB, the “Eastern Model”,Mitsuda et al. 1984,1989),a BB plusan unsaturated ZsourcesformthebrightestclassofgalacticLowMassX-ray Comptonization spectrum (F(E) ∝ E−Γexp(−E/E ), the c Binaries (LMXBs), with X-ray luminosities typically in the “WesternModel”,Whiteetal.1986,1988)and,morerecently, range∼0.5–1timestheEddingtonluminosity(whereL ∼ Edd aDBBplustheComptonizationmodelworkedoutbyTitarchuk 1.5 M/M⊙ ×1038 erg s−1). Their name arises from the pat- (1994, COMPTT in XSPEC, Pirainoetal. 2002;DiSalvo etal. tern they trace in the colour-colour or hardness-intensity di- 2002).Inrecentyears,transienthardX-raytailsextendingup agram (CD and HID, respectively) on typical time scales of to100keVhavebeendiscoveredfromtheclassicalZsources days. The three regions which characterize the Z-track, from (GX 5-1, Asai et al. 1994; Cyg X-2, Frontera et al. 1998; Di thetop,arethehorizontalbranch(HB),thenormalbranch(NB) Salvo et al. 2002; GX17+2, Di Salvo et al. 2000, hereafter and the flaring branch (FB). Multifrequency observations of DS2000;ScoX-1,D’Amicoetal.2001;GX349+2,DiSalvo ScoX-1 (Vrtilek et al. 1991a; Hertz et al. 1992; Augusteijn et al. 2001) and from the peculiar Z source Cir X-1 (Iaria et et al. 1992) and Cyg X-2 (van Paradaijs et al. 1990; Vrtilek al. 2001). All these hard tails have been fit with power-laws et al 1990; Hasinger et al. 1990) have shown that the ac- (PL,F(E) ∝ E−Γ) with photonindexΓ rangingfrom∼ −1 cretion rate M˙ increasing as the sources move in the direc- (ScoX-1,whenthesourcewasintheFB)to∼ 3.3(CirX-1). tion HB → NB → FB is consistent with UV observations Thetimebehaviourofthehardtailiscomplexandstillnotwell and some QPO models. Several two-componentmodels have understood. DS2000 observed a strong hard tail in GX17+2 been proposed to fit the low energy (<∼ 20 keV) X-ray spec- when the sourcewas onthe leftpartof the HB; asthe source tra of Z sources, such as a simple or Comptonizedblackbody movedontherightacrossthebranch,anindependentfitofthe photonindexand PL normalizationwas notpossible, and fix- Sendoffprintrequeststo:R.Farinelli ing thephotonindexat2.7yieldedan intensityof the PL that e-mail:[email protected] 2 R.Farinellietal.:ThetransienthardX-raytailofGX17+2 lowered (chance probability of F-test ∼ 10−4) until it disap- GX17+2 were observed with the Einstein (Kahn & Grindlay pearedattheHB-NBapex.InthecaseofCygX-2(DiSalvoet 1984),HAKUCHO(Tawaraetal.1984)andEXOSAT(Sztajno al.2002)thehardtailwasobservedwhenthesourcewasinthe etal.1986)satellites. HB, while in a later observation, when the source was in the Despite the X-ray brightness, the optical counterpart of NB,noevidenceofhardX-rayemissionwasfound.Thehard GX17+2hasnotyetbeenunambiguouslyidentified.Thedif- tailofGX5-1(Asaietal.1994)wasdetectedwhenthesource ficultiesarisemainlybecauseofthepositionofthesourcenear wasin the NB, anddecreasedasthesourcemovedto theFB. theGalacticcenter(l = 16◦.4,b = 1◦.3),wherethechanceof IfM˙ actuallyincreasesfromHBtoFB,theseresultscouldbe superpositiontounrelatedfieldobjectsisveryhigh. indicative of the presence of a anti-correlation between hard In this paper we report on the results obtained from two X-rayemissionandaccretionrate M˙ . However,theresults of BeppoSAX observations of GX17+2, performed before the D’Amicoetal.(2001)contrastwiththisscenario,asinScoX-1 October 1999observationreportedby DS2000.In Sect. 2 we thehardtailwasobservedinallbrancheswithoutanyapparent describe the observations and data analysis, in Sect. 3 we correlationwiththesourcepositionontheCD. presenttheresultsofthetimingandspectralanalysis,inSect.4 wediscusstheresultsandinSect.5wedrawourconclusions. 1.1. GX 17+2 2. Observationsanddataanalysis GX17+2 is one of strongest Galactic X-ray sources, and Weobservedthesourcetwice,on1997April3and21,withthe was detected in the sixties (e.g., Friedman et al. 1967). NarrowFieldInstruments(NFIs)onboardBeppoSAX(Boella Simultaneous X-ray and radio observations, performed by et al. 1997a). The NFIs include a Low-Energy Concentrator White et al. (1978), did not show the presence of signifi- Spectrometer (LECS, 0.1–10 keV; Parmar et al. 1997), three cant radio emission, but revealed correlated X-ray intensity Medium-Energy Concentrator Spectrometers (MECS, 1.5– andspectralvariationssimilarto thosealreadyobservedfrom 10keV;Boellaetal.1997b),aHighPressureGasScintillation ScoX-1. Observationof the sourcewith the Gas Scintillation Proportional Counter (HPGSPC, 4–120 keV; Manzo et al. ProportionalCounter(2–20keV)on-boardEXOSAT(Whiteet 1997),and a Phoswich Detection System (PDS, 15–300keV; al.1986)providedanaccuratedeterminationofthesourcecon- Frontera et al. 1997).Both observationswere performedwith tinuum spectrum, which was fit in the contextof the Western all three MECS units (MECS unit 1 failed on 1997 May 6). model with best fit parameters kT ∼ 1 keV, radius of the Table 1 reportsthe observationslog along with the on-source bb BBemittingsphereRbb ∼15km,Γ∼0.6andEc ∼4.5keV. exposuretimesofeachNFIandthemean1.8–10keVand13– Alsoanemissionlineat∼6.5keVwithequivalentwidth(EW) 200keVcountratemeasuredbyallthethreeMECSunitsand of ∼110 eV was detected. The data analysis of the same ob- by the four PDS units, respectively. During all pointings the servation, but with the Medium Energy ProportionalCounter NFIsworkednominallyandthe sourcewasdetectedbyallof Array, showed that the 1–30 keV source spectrum could be them. Good data were selected from intervals when the NFIs fit with a BB (kTbb ∼ 1.2 keV) plus the Comptonization elevationanglewasabovetheEarthlimbbyatleast5◦and,for model proposed by Sunyaev & Titarchuk (1980), with elec- theLECS,duringthedarkearth.TheSAXDAS2.0.0dataanal- tron temperature kT ∼ 3 keV and optical depth of the elec- ysis package was used for processing the LECS, MECS and e tron cloud of τ ∼ 13 (White et al. 1988). The column den- HPGSPC data, while the PDS data reduction was performed sity along the source direction was determined by Vrtilek et using theXAS packagev2.1(Chiappetti& Dal Fiume1997). al. (1991b)with Einstein (0.2–20keV),whofounda value of TheLECSandMECSspectrawereextractedfromaregionof NH ∼ 1.5×1022 cm−2, assuminga simple BB (kTbb ∼ 1.5 4′radiuscenteredonthesourceposition.Thebackgroundspec- keV)asbestfitspectrum.Hoshi&Asaoka(1993)observedthe trum for the LECS and the MECS was determined using the source with Ginga in both the HB and the NB. By fitting the standardblankfieldspectraasreportedbyFioreetal.(1999), 1–20keVX-rayspectrumwiththefirstversionoftheEastern whilefortheHPGSPCandthePDSthebackgroundwasesti- model(BB+DBB),theseauthorsfoundthattheinnerdisktem- matedwiththerockingcollimatortechnique.Thespectraofall perature and the projected radius of the DBB did not change NFIs were rebinnedto reduce the oversamplingin the energy significantly from the NB to the HB, while the BB tempera- resolution and to have a minimum of 20 counts in each bin, ture graduallyincreased from to 2.1 keV to 2.7 keV. DS2000 inordertoreliablyusetheχ2 statisticsforspectralfitting.For analyzed the 0.1–100 keV X-ray spectrum of GX17+2 with eachinstrumentweperformedthespectralandtemporalanal- BeppoSAX,discoveringa transienthard X-ray tail in addition ysis in the energy range where the response function is well to the persistent continuum. The latter was well described by determined;on the basis of this extension,theenergyrange is a BB plus COMPTT model, with best fit parameters kTbb ∼ 0.4–4.0keV forLECS, 1.8–10keV for MECS and8–30keV 0.6keV,R ∼ 40km,temperatureoftheseedphotonstobe for HPGSPC, while for PDS the range is 13–120 keV in the bb ComptonizedkT ∼ 1keV,electrontemperaturekT ∼3keV firstobservationand13-40keVinthesecondoneasthesource s e andopticaldepthof the Comptonizingcloudτ ∼ 10,assum- wasnotdetectedbeyond40keV.Weperformedspectralanaly- ingasphericalgeometry.Additionally,theyfoundevidencefor sisoverfourdifferentregions,namedI,II,IIIandIV,according an emission line with energycentroidEl ∼ 6.7 keV and EW tothe1.8–10keVMECScountratebeing<∼180s−1,between ∼ 35 eV, and an absorption edge with Eedge ∼ 8.6 keV and ∼ 180and ∼ 185s−1, between∼ 185and ∼ 195s−1 and>∼ optical depth τ ∼ 3 × 10−2. Type I X-ray bursts from 195s−1 (seeFig.1).We notethatregionIisentirelycovered aedge R.Farinellietal.:ThetransienthardX-raytailofGX17+2 3 Table1.LogofthetwoobservationsofGX17+2withtheon-sourceexposuretimeforeachNFI. Obs. StartTime(UT) EndTime(UT) LECS MECS HPGSPC PDS 1.8–10keVMECS 13-200keVPDS ks ks ks ks countrate(s−1) countrate(s−1) 1 1997Apr0300:27:52 1997Apr0306:00:06 2.3 10.7 4.1 3.4 176 35 2 1997Apr2102:29:00 1997Apr2106:13:55 1.7 6.5 2.4 2.3 190 24 by the points of the first observation while the other regions energy ranges adopted by us. From Fig. 2 it is possible to arecoveredbythesecondobservation.Onlyfewpointsofthe see that GX17+2, during our observations, traced almost the secondobservationfallinregionI,sowecouldnotextractsta- entire HB albeit in a slightly shifted position with respect to tistically significant spectralinformationin this regionduring that observed by DS2000. Secular shifts of the Z pattern in the second observation. For the latter we then extracted both the HID of GX17+2 have been previously observed to oc- the averagespectrumand the separatedspectra for regionsII, cur on time scales of several months by RXTE (Homan et al. IIIandIV. 2002)andEXOSAT(Kuulkersetal.1997).Ontheothershand, We used the XSPEC v11.2.0 package to fit the multi- bothRXTEandEXOSATobservationsrevealedstrongstability instrument energy spectra. In the broad band fits, normaliza- (within ∼ 2%) of the hard colour, and this confirms the HB tion factors were applied to LECS, HPGSPC and PDS spec- natureofthesourceduringourobservations. tra followingthe cross-calibrationtests betweenthem andthe We also investigated the source erratic time variability in MECS, constrainingthemwithinthe allowedranges(Fioreet the 1.8–10 keV energy band (MECS data), by deriving the al. 1999).Interstellarphotoelectricabsorption,modeledusing powerspectraldensity(PSD)inthe8×10−4–50Hzfrequency thecrosssectionsimplementedinXSPECandwithsolarabun- range, obtained by averaging data intervals of 131072 points dancesgivenbyAnders&Ebihara(1982),wasincludedinall with a binningtime of 10−2 s, for the first and second obser- spectral models used. Uncertainties in the parameters values vationrespectively.Unfortunately,becauseofthe lowcollect- obtained from the spectral fits are single parameter errors at ingareaofthetelescopes,thestatisticalqualityofthederived 90% confidence level, while upper limits are reported at 2σ PSD did not allow us to resolve the broad band noise com- level.Forthe evaluationof thesourceluminositywe haveas- ponentstypicalofZ sourcesortodetectQPOsobservedwith sumedadistanceof7.5kpc(Penninxetal.1988) othersatellites(EXOSAT,Hasinger&vanderKlis1990;RXTE, Homan et al. 2002). We thus only derived the integrated root meansquarefractionalvariationofthe1.8–10keVfluxwhich 3. Results is7.1%±1.3%inthefirstobservationand6.3%±2.4%inthe secondone. 3.1. Temporalproperties The source 1.8–10 keV light curve of the two observations 3.2. Spectralproperties is shown in Fig. 1. A flux variability on time scales of hours is apparent and is confirmed by the fit with a constant func- Following the results obtained on GX17+2 by DS2000, we tion, which gives χ2/dof = 436/104. Unfortunately, the pres- firstattemptedtofitthesourcespectrawiththeBB + COMPTT ence of several gaps in the light curve prevents us to investi- continuum model plus a fluorescence Fe line and an absorp- gatewhetherthesourceshowsperiodicfluxmodulations.The tionFeK-edge.ThebestfitresultsareshowninFig.3,where HIDofthetwoobservations,obtaineddefiningasintensitythe thetime-averagedcountratespectraoftheobservations1and 1.8–10keVMECScountrateandashardcolourthecountrate 2areshownalongwiththeresidualstothismodel.Ascanbe ratio in the 6.5–10keV and 5–6.5 keV energybands, respec- seen, for the second observation (Fig. 3) the model describes tively, is shown in Fig. 2. As it can be seen, the data points quitewellthedata,withnoapparentsystematicresiduals,even of the first observation are all clustered in the left side of the though the χ2 is not satisfactory (χ2/dof = 192/141). This diagram,while those of the secondobservation,reflectingthe couldbeduetosomespectralevolutionofthesourcewithtime source intensity decrease (from∼ 200 s−1 to ∼ 180 s−1, see (seeSect.3.3.2).Inaddition,nosignificantK-edgeisrequired Fig. 1), trace an extended path (regions II, III and IV) that, by the data (see Table 2). Unlike the second observation, the on the left side, smoothly merges with the data points of the above model does not provide a good description of the data first observation.Howeverfrom the shown HID, it is difficult of the first observation, with a χ2/dof = 222/144, mainly to establish which branch of the Z-track our data correspond due to the residuals to the best fit model above 30 keV (see to. To solve this issue, we plot in the lower panel of Fig. 2 Fig. 3). It is sufficient to add, as also done by DS2000, a PL both our data points and those obtained with BeppoSAX by componentto the above spectral model to get a very good fit DS2000, when the source clearly traced the HB and NB. As (χ2/dof = 143/142).The best fit results are shown in Table DS2000 adopted differentenergy ranges to produce the HID, 2.Afeatureofthedataobtainedfrombothobservationswhen we used the MECS event files of their observations from the they are fit with the above model (with or without the PL) is BeppoSAXpublicdataarchivetoderiveanewHIDinthesame that two equally acceptablesolutionsfor the valuesof the BB 4 R.Farinellietal.:ThetransienthardX-raytailofGX17+2 Fig.1.MECS1.8–10keVlightcurvesofthefirst(upperpanel)andsecond(lowerpanel)observationofGX17+2.Thebinsize inbothcasesis100s.Timeisgiveninsecondsfromthebeginningofeachobservation(seeTable1). temperaturekTbb andtemperatureoftheseedphotonskTsare PAIR in XSPEC), which has the advantage of being general found(see Table 2):onewith kT < kT andthe otherwith and can be used to fit the source spectra of both observa- bb s kT >kT ,whiletheotherparametervaluesremainsubstan- tions. In this model, non-thermalelectrons with energy spec- bb s tiallyunchangedwithinerrors. trum ∝ γ−p (where γ is the Lorentz factor) are injected in Finally,totestthephysicalhypothesisofthethree-layered theplasmacloudatarate∝ γ−p.Theseelectronsloseenergy atmosphericstructureinaccretiondiskssuggestedbyZhanget because of Compton,Coulomband bremsstrahlungprocesses al.(2000)fortheblackholecandidates(BHC)GROJ1655–40 andthusestablishasteady-statedistribution.Athighenergies andGRS1915+105,inthefirstobservationwereplacedthePL (for γ > γmin up to a certain value of γmax) the distribution componentwithafurtherCOMPTTmodelwithhigherelectron is non-thermal (power-law like), but at low energies it joins temperature,whichwe labelas kTh. Approximatingthe seed theMaxwelliandistributionandthefinalresultofthisprocess e photonstemperatureofthishotterelectronstothetemperature isahybridthermalplusnon-thermalplasma.Thetemperature of the electronsof the underlyingwarm layer (an assumption of thethermaldistribution,kTe, is self-consistentlycomputed justifiedbythefactthattheComptonparameteryofthewarm bymeansofenergybalanceandisnotafreeparameterofthe electronsis∼3,sothattheiremergingspectrumisnotfarfrom model.Theplasmapropertiesarecharacterizedbythepowers a Wien-like), namely keeping kTh = kT , does not give any Lsuppliedtothedifferentcomponents.Acompactnessparam- s e stable solution. A good fit is obtained by keeping free all the eterisintroducedanddefinedas: modelparameters(χ2/dof= 149/140),butin this case, unlike σ L T the results by Zhang et al. (2000), the seed photons tempera- ℓ≡ , (1) m c2R tureofthehotterCOMPTTcomponent(kTh ∼1.3keV,witha e s correspondingkTeh ∼75keVandτh ∼0.05)isquitedifferent where R is the characteristic size of the region and σT the fromtheelectrontemperature(∼8keV)ofthewarmelectrons. Thomsoncross-sectionforscattering.Thecompactnessofthe input soft photons is parametrizedby ℓ . The power supplied s totheComptonizingelectronsisparametrizedasℓ =ℓ +ℓ , 3.3. A physical modelforthe hardX-ray tail h th nth whereℓ isthepowersuppliedtoheatthermalparticles,while th In order to investigate the physical origin of the hard X-ray ℓ isthepowergoingintoacceleratingnon-thermalparticles. nth taildetectedduringthefirstobservationofGX17+2,weused Ifℓ =0,thenonehasapurelythermal(Maxwellian)distribu- nth the Comptonization model worked out by Coppi (1999, EQ- tion. EQPAIR canalsotestthe presenceofComptonreflection R.Farinellietal.:ThetransienthardX-raytailofGX17+2 5 Fig.2. Left panel: HID of the two BeppoSAX observations of GX17+2. Diamonds: first observation. Open squares: second observation.Thefourcountrateregionsarealsoshown.Eachpointcorrespondstoabinsizeof100s.Rightpanel:sourceHID ofbothourobservations(samesymbolsasintheleftpanel)andthatperformedbyDS2000(crosses).Thebinsizeofthe1997 Octoberdatapointsis400s.Atypicalerrorbarisshownonthetoprightofeachpanel. Fig.3.Countrate spectraof the firstobservation(leftpanel)andof thesecondobservation(rightpanel)of GX17+2andbest fit folded model WABS(BB + COMPTT + GAUSSIAN) with kTbb < kTs. In the first observation, an absorption edge was also included.Beloweachpanelareshowntheresidualstothemodelinunitsofσ.ThelasttwoPDSpointsofthesecondobservation haveS/N<3,sotheywerenotincludedinthefitandarereportedas2σupperlimits.Similarresultsareobtainedforthesame modelbutwithkT >kT . bb s of the primary photon spectrum from a neutral or a ionized alsoadirectBBcomponentplusaFeKfluorescencelineinthe medium(Magdziarz& Zdziarski1995)allowing for different source model, as discussed in Sect. 3.2. This model well de- metalabundanceswithrespecttothesolarones. scribesthedatabelow30keVbut,asinthecaseofCOMPTT,a systematicexcessisagainobservedintheresidualsabovethis threshold(seeFig.4).Wethusleftfreetovarytheℓ param- nth 3.3.1. First observation eter:sincethestatisticsofthedatadonotallowustosimulta- neouslyconstrainγ ,γ andpinthefits,γ wasfrozen min max max Wefirstassumedthatallthepowergoesinheatingthethermal atvalueof12(the χ2 is poorlysensitive toγ in the range max particles (ℓnth/ℓh= 0, purely thermal Comptonization) with a from2to50).Thechosenvalueofγmaxtakesintoaccountthe simpleBBspectrumoftheseedphotons.WeaddedtoEQPAIR 6 R.Farinellietal.:ThetransienthardX-raytailofGX17+2 Fig.4.ResidualsinunitsofσtothemodelWABS(BB+EQPAIR+GAUSSIAN),assumingpurelythermalComptonization,forthe first(leftpanel)andforsecond(rightpanel)observationofGX17+2. Table 2. Best fit parameters of the multi-component model WABS(BB + COMPTT + GAUSSIAN + K-edge + PL) for the first and second observation of GX17+2. The two solutions of the model are reported. The F-test gives the probability of chance improvementoftheχ2 fortheadditionofthe PL.TheratiosLbb/Ltot andLpl/Ltot arecomputedinthe 0.4–200keVenergy range. Obs.1 Obs.2 Obs.1 Obs.2 I II+III+IV I II+III+IV Parameter Solution1 Solution2 Na 2.5+0.2 2.2+0.1 2.5+0.2 2.3+0.1 H −0.3 −0.2 −0.3 −0.1 kTbb(keV) 0.66+−00..0043 0.61+−00..0033 1.79+−00..1106 1.38+−00..0052 Rbb(km) 35+−44 40+−44 3.7+−00..66 7.4+−00..55 kTs(keV) 1.24+−00..0098 1.09+−00..0064 0.58+−00..0022 0.55+−00..0013 kTe(keV) 3.4+−00..11 3.3+−00..11 3.5+−00..11 3.15+−00..0064 τ 11.0+0.4 10.5+0.4 12.0+0.6 13.0+0.3 −0.5 −0.4 −0.5 −0.5 Γ 2.8+−00..12 [2.8] 2.8+−00..12 [2.8] Nb 2.1+1.2 0.7+0.6 2.3+1.2 1.1+0.2 pl −1.2 −0.6 −1.3 −0.6 F-test 3×10−14 0.11 5×10−12 0.03 E (keV) 6.7+0.1 6.7+0.1 6.7+0.1 6.7+0.1 l −0.1 −0.1 −0.1 −0.1 σ (keV) 0.1+0.1 0.2+0.1 0.1+0.1 0.2+0.1 l −0.1 −0.1 −0.1 −0.1 Ic 3.6+1.2 4.6+1.2 3.8+1.2 4.5+1.6 l −0.8 −1.4 −0.8 −1.0 EW (eV) 26+9 32+9 27+8 31+11 l −6 −9 −6 −7 E (keV) 8.2+0.4 [8.2] 8.3+0.3 [8.3] edge −0.3 −0.2 τ (10−2) 2.5+1.4 <2.0 3.3+1.1 <1.8 edge −0.7 −1.5 Lbb/Ltot 0.16 0.17 0.10 0.15 Lpl/Ltot 0.30 0.13 0.32 0.18 Ld0.4−30keV 1.87 1.62 1.91 1.69 Ld30−200keV 0.02 0.01 0.02 0.01 χ2/dof 143/142 188/140 140/142 189/140 aInunitsof1022cm−2. bPhotonskeV−1cm−2s−1at1keV. cTotalphotonsinthelineinunitsof10−3cm−2s−1. dUnabsorbedluminosityinunitsof1038ergs−1. energyrangeinwhichtheexcessoverthermalComptonization wefindisξ ∼800ergcms−1.Animportantissuetopointout islocatedandthetemperatureoftheseedphotonsfoundfrom isthat,unlikeCOMPTT,with EQPAIRthereisnotadoubleso- thefit.AscanbeseenfromTable3,theagreementbetweenthe lutionasconcernsthedirectBB andseedphotonstemperature modelandthedataisexcellent.TheprobabilitygivenbytheF- values. testthattheχ2reductionobtainedfromtheinclusionofanon- thermalcomponentintheComptonizingcloudisduetochance isverylow(seeTable3).ThepresenceofaComptonreflection component,assuming solar abundancesand a low inclination ReplacingthedirectBBcomponentwithaDBB,westillob- anglei = 30◦ (GX17+2isaSco-likesource,Kuulkers&van tainanacceptable,albeitabitworse,result(χ2/dof=156/142). derKlis1996),isonlymarginallydetected(∆χ2∼7,probabil- If,ontheotherhand,weassumea DBB seedphotonspectrum ityofchanceimprovementof∼3%)withbestfitvalueofthe inEQPAIRplusadirectBBmodel,thefitisevenworse(χ2/dof coveringfactorΩ/2π ∼ 0.04.Theionizationparametervalue =163/142). R.Farinellietal.:ThetransienthardX-raytailofGX17+2 7 Table3.Bestfitparametersofthemulti-componentmodelWABS(BB+EQPAIR+GAUSSIAN)forthefirstandsecondobservation ofGX17+2.TheF-testgivestheprobabilityofchanceimprovementoftheχ2switchingfromthermaltohybridComptonization. Thecompactnessparametersℓ ,ℓ andℓ aredefinedinSect.3.3.TheratioL /L iscomputedintheenergyrange0.4–200 s h nth bb tot keV. Parameter Obs.1 Obs.2 I II+III+IV Na 2.00+0.05 1.97+0.07 H −0.05 −0.06 kTbb(keV) 0.58+−00..0021 0.60+−00..0012 Rbb(km) 33+−22 31+−33 kTs(keV) 0.88+−00..1048 0.95+−00..0035 kTe(keV) 3.5 3.5 ℓs 7600+−73040000 [7600] ℓh/ℓs 0.87+−00..0022 0.63+−00..0013 ℓnth/ℓh 0.11+−00..0022 <0.04 τ 8.4+1.5 8.4+0.1 −0.7 −0.2 p 1.7+1.1 [1.7] −0.6 γmin 1.15+−10..5145 [1.15] γmax [12] [12] F-test 4×10−11 0.07 E (keV) 6.7+0.1 6.7+0.1 l −0.1 −0.1 σ (keV) 0.2+0.1 0.2+0.1 l −0.1 −0.1 Ib 4.4+1.3 4.8+2.2 l −0.8 −0.8 EW (eV) 32+9 33+15 l −6 −6 Lbb/Ltot 0.11 0.11 Lc0.4−30keV 1.44 1.46 Lc30−200keV 0.019 0.006 χ2/dof 143/142 185/141 aInunitsof1022cm−2. bTotalphotonsinthelineinunitsof10−3cm−2s−1. cUnabsorbedluminosityinunitsof1038ergs−1. Table4.SameasinTable3butforregionsII,IIIandIVofthesecondobservationasreportedinFig.2andassumingthermal Comptonization. Parameter II III IV Na 2.03+0.11 2.05+0.10 1.93+0.18 H −0.05 −0.13 −0.14 kTbb(keV) 0.61+−00..0013 0.53+−00..0096 0.55+−00..0086 Rbb(km) 37+−33 32+−1100 29+−99 kTs(keV) 1.17+−00..0027 0.85+−00..0058 0.90+−00..1004 kTe(keV) 4.0 3.5 3.1 ℓs [7600] [7600] [7600] ℓh/ℓs 0.47+−00..0013 0.71+−00..0043 0.59+−00..0022 τ 6.7+0.2 8.6+0.4 8.9+0.3 −0.5 −0.3 −0.2 El(keV) 6.6+−00..11 6.7+−00..22 6.8+−00..11 σl(keV) 0.2+−00..42 0.3+−00..32 0.1+−00..21 Ib 5.0+3.6 6.5+4.8 5.3+2.4 l −2.3 −3.1 −1.8 EW (eV) 35+25 44+33 36+16 l −16 −21 −12 Lbb/Ltot 0.17 0.07 0.07 Lc0.4−30keV 1.47 1.50 1.48 Lc30−200keV 0.01 0.007 0.004 χ2/dof 145/142 133/142 145/142 aInunitsof1022cm−2. bTotalphotonsinthelineinunitsof10−3cm−2s−1. cUnabsorbedluminosityinunitsof1038ergs−1. 8 R.Farinellietal.:ThetransienthardX-raytailofGX17+2 Fig.5.UnabsorbedEF(E)spectrumofthefirst(leftpanel)andofthesecond(rightpanel)observationofGX17+2alongwith the best fit model WABS(BB + EQPAIR + GAUSSIAN). A hybrid spectrum of the Comptonizing electrons is assumed. The 2σ upperlimitofthe lasttwo PDSpointsofthe secondobservationisalso reported.Beloweachpanel,the residualsbetweenthe data andthe modelin unitsof σ areshown.Differentline stylesrepresentthe singlecomponents.Dotted: BB. Dotted-dashed: EQPAIR.Dashed:Gaussianemissionline. 3.3.2. Secondobservation a BB, we findthattwosolutionsarepossible,whichareremi- niscentofthewellknownEastern(Mitsudaetal.1984,1989) As reported in Sect. 3.2, during the second observation there andWestern(Whiteetal.1986,1988)models.Indeed,looking wasslightevidenceofa spectralevolutionofthesource,sug- attheresultsofTable2,forsolution1,wecaninterpretthe∼ gested by the somewhat worse fit of the COMPTT model to 0.6keVBBasthedirectemissionfromtheaccretiondisk,with the data, in spite of the fact that no systematic residuals to Comptonizationmainlyoccurringinthehotterboundarylayer thebestfitmodelareapparent(seeFig.3).Thisresultiscon- (kT ∼ 1.2keV,EasternModelscenario).Butthesamespec- s firmedalsobyusingtheEQPAIRmodel,assumingpurelyther- trum can be described (solution 2) by a ∼ 1.5 keV BB plus a mal Comptonization, to fit the whole observation (χ2/dof = Comptonizationregionofcoolerphotons(kT ∼ 0.6keV).In 186/142). In this case we also find that the soft compactness s this case the direct BB emission can be interpretedas coming ℓ isunconstrainedso,duringthefit, wefixeditatthebestfit s fromtheboundarylayer,whileComptonizationtakesplacein valueofthefirstobservation.Inordertoputanupperlimiton the disk (Western modelscenario). From a statistical pointof the power supplied in accelerating non-thermal electrons, we view,wedonotfindstrongreasonsforfavouringonesolution allowed the ℓ /ℓ parameterto vary,by keepingγ and p nth h min overtheother;however,theformersolutionistheonlyonewe frozenatthebestfitvaluesofthefirstobservation.Theresults findwhenCOMPTTisreplacedbyEQPAIR. arereportedinTable3.Asitcanbeseen,thepowergoinginac- celeratingnon-thermalelectronsisconsistentwithzeroandits The soft compactness estimated by EQPAIR (see Table 3) 2σ upperlimitislowerthanthevalueofthefirstobservation. is much higher than that reported in the case of BHCs (e.g., It is worth pointing out that this upper limit value on ℓnth/ℓh Frontera et al. 2001; Gierlin´ski & Done 2003); this is how- is obtained even including in the fit the last two PDS points ever not surprising given that in neutron star systems, unlike (see Fig. 3),in order to have the same energy coverage of the BHCs, the source environment in the inner disk region has firstobservation.The2σupperlimitonthe40-120keVsource an additionalsource of soft luminosity coming from the neu- flux,assumingasbestfitmodeltheonereportedinTable3,is tron star. Apartfromthis crucialdifference,related to the na- ∼7×10−11ergcm−2s−1(seeFig.5)avaluebelowthatfound tureofthe compactobject,therearesomephysicalcharacter- inthefirstobservation(∼1.0×10−10ergcm−2s−1).Wesub- istics which link in some way GX17+2 to BHCs. First, the sequently performedspectral analysis separately for the three spectralindexofthe non-thermalinjectedelectrons(p ∼1.7) regionsoftheHIDlabeledinFig.2;theresultsarereportedin is consistent, within errors, with that found, e.g., in Cyg X- Table4. 1 (Frontera et al. 2001) and GRS1915+105 (Zdziarski et al. 2001).Moreover,thespectralshapeofthesourceintheEF(E) diagram (see Fig. 5) strongly resembles that of BHCs in the 4. Discussion so-called ultrasoft state, when L ∼ L (e.g., GX339–4, X Edd Some relevant results have been derived from our observa- GRS1915+105, XTEJ1550-564, see the review by Zdziarski tions of GX17+2 with BeppoSAX. The persistent continuum &Gierlin´ski2004),wherethepeakoftheenergyemissionoc- X-rayemission of GX17+2canbe describedby severaltwo- cursbelow10keV.ThesimilaritywithGRS1915+105,inpar- componentmodels. When we adopt the COMPTT model plus ticular,resultsevenmoreintriguinglookingattheX-rayspec- R.Farinellietal.:ThetransienthardX-raytailofGX17+2 9 tral parameters foundby Zdziarskiet al. (2001)by fitting the reviewbyCoppi1999).Inthiscaseparticleaccelerationcannot sourceRXTE/OSSE3–600keV X-rayspectrumwith EQPAIR: be100%efficientintheproductionofnon-thermalhighenergy the authors indeed found kT ∼ 3.6 keV, τ ∼ 4.4, kT ∼ particles(e.g.,Zdziarskietal.1993).Thiscanoccuronlyabove e s 1.3 keV and ℓ /ℓ ∼ 0.1. Only the ratio ℓ /ℓ was lower (∼ acertainmomentumthresholdwhentheaccelerationtimescale nth th h s 0.3) than that found in GX17+2 by us. As Z sources stably foraparticlebecomessignificantlyshorterthanitscorrespond- accrete at near-Eddington rate, these similarities lead to sug- ingthermalization(orenergy-exchange)timescale.Belowthis gest that Comptonization/acceleration processes in X-ray bi- threshold particles are tightly coupled and their acceleration narysystemsinthisphasedonotstronglydependonthepres- goes mainly in a bulk heating of the thermal plasma compo- enceor notofa solid surfaceatthe innerboundaryof theac- nent. cretiondisk. We have also explored the physical scenario proposed by Animportantresultofourstudyconcernsthetransienthigh Zhangetal.(2000)forGROJ1655–40andGRS1915+105,in energyX-raytail.We confirmitspresencewhenthesourceis which a much hotter, optically thin thermal corona is located intheupperleftHBoftheZdiagram,asalreadyobservedby abovea warm layer with lower temperatureand highopacity. DS2000. But, unlike DS2000, who found that the hard X-ray This scenarioseems notsuitable for GX17+2. In fact, in this excessgraduallydecreasedasthesourcemovedtowardsright hypothesis,onewouldexpectthattheseedphotonsofthehot- intheHB, completelydisappearingwhenthesourceachieved ter layer are those coming from the underlyingone, and thus theNB,wefindthatthisdisappearanceoccurswhenthesource shouldhaveatemperaturesimilartothatofthecolderelectrons is still in the HB, in particular during its transition from re- (kTw ∼ 3–5 keV). This is indeed what Zhang et al. (2000) e gion I to region II of the HID (Fig. 2). The hard X-ray ex- foundwithASCA/RXTEdatainthecaseofGROJ1655–40and cessisdescribedbyaPLwiththesamephotonindexfoundby GRS1915+105.However,inourcasekThsignificantlydiffers s DS2000(Γ∼2.7,seeTable2).Inordertogainsomeinsighton fromkTw (∼ 1.3keVand∼8keV,respectively),thusruling e thephysicaloriginofthe hardX-raycomponent,wereplaced outthethree-layeredaccretionhypothesis. theCOMPTTmodelwiththeComptonizationmodelEQPAIRof In addition to the origin of the hard X-ray emission, its Coppi (1999).In this model, in addition to a thermal popula- correlation with the position of Z sources in the CD/HID tion of electrons, a non-thermalelectron tail can be included. is still unclear. As discussed in Sect. 1, the results obtained AssumingapurelyMaxwelliandistributionoftheelectronen- fromGX17+2, CygX-2 and GX5-1(butnot, however,from ergies,thehardX-rayexcessisstillapparentabovetheBBplus ScoX-1), could suggest the possibility of an anti-correlation EQPAIRmodel(seeFig.4).Onlyassumingathermalplusnon- between presence of hard X-ray emission and accretion rate thermalplasmathe EQPAIR modelgivesagooddescriptionof M˙ inZsources,inasimilarfashiontowhatobservedbothin thehighenergyexcess.Toourknowledge,thisisthefirsttime atollsourcesandBHCs,wherethehardspectraareusuallyob- thatthe transienthardX-raytailofa Zsource(see Sect.1)is served duringthe low inferredM˙ states (e.g., Barret & Olive describedintermsofhybridComptonization. 2002;McClintock&Remillard2004).OurresultsonGX17+2 An important question is whether the two electron pop- do notcontrastwith this possibility but, when comparedwith ulations (thermal and non-thermal) are physically connected. thosefoundbyDS2000,theypointtothepresenceofathresh- Unfortunatelythepresentdatadonotallowtoanswerthisques- old, that we thus tentatively identify with a threshold in M˙ , tion.Weconsidertwocasesseparately.Ifthetwoelectronpop- abovewhichthehardtaildisappears.Adefiniteanswertothis ulations are not physically related, a likely origin of the non- suggestion could come from very sensitive monitoring of the thermalelectronsisarelativisticjetescapingthesystem.Inre- sourceathighenergiesinregionIofFig.2duringthesecond centyears,relativisticjetshaverevealedtobeaquitecommon observation, but this was not possible because of the too few property of LMXBs, providing a link between these systems pointsfallinginthatregion. and AGNs (for a review see, e.g., Fender 2002). In this ther- Animportantissue iswhatwe meanbyM˙ :itappearsev- mal plus non-thermal scenario, the Comptonized spectrum is identthatthisM˙ isnottheonethatdrivestheX-rayluminos- producedby a thermal corona (likely located above the inner ity,sincethelatterdoesnotchangealongthetrack(seeTables diskclosetotheboundarylayer)plusarelativisticnon-thermal 3 and 4). Thus, if some M˙ increases along the Z-track, it is electronjet,withthesoftseedphotonsmainlycomingfromthe not correlated with the X-ray luminosity: an intriguing way innerdisk.Theenergyoftheseedphotons(∼1keV,seeTable out to this problem was proposed by van der Klis (2001) to 3) is indeed consistent with the value expected for the inner explain the “parallel tracks” phenomenon. He suggested that disk temperature of LMXBs hosting a neutron star (see, e.g., what does change along the track is not the prompt disk ac- thereviewbyBarret2001).Thuswecouldtentativelyidentify cretion rate M˙ (t) but rather the ratio η = M˙ (t)/hM˙ (t)i, d d d the decrease of the power supplied to non-thermal electrons wherehM˙ (t)iisthelong-termM˙ (t)average.Theluminos- d d (ℓ /ℓ dropsfrom∼0.1tolessthan∼0.04fromthefirstto ityissupposedtoberelatedtothesumofM˙ (t)plushM˙ (t)i nth h d d the second observation),as a switching-offof the mechanism (L ∝ M˙ (t)+ αhM˙ (t)i) while the curve length S across X d d producingthejet. thetrackisameasureofη.Thethresholdabovewhichwesee Ontheotherhand,ifthetwoelectronpopulationsarephysi- thedisappearanceofthehardtailcouldthusbea thresholdin callyrelated,apossibleoriginofthenon-thermalcomponentis M˙ (t)/hM˙ (t)i. It is quite difficult to establish whether this d d inprocessesofmagnetohydrodynamicturbulenceoccurringin hypothesisis correct. In the positive, one has to explain what thecorona(e.g.,magneticreconnection),inanalogywithwhat producesthehardtail:thephysicalprocessshouldbestrongly observedin the solar corona(Crosby et al. 1998, see also the dependentonwhathappensin the disk. Whenthe hardX-ray 10 R.Farinellietal.:ThetransienthardX-raytailofGX17+2 componentisnolongerdetected(regionsII,IIIandIVofthe ingtheoriginoftheFeemissionlineandtodetermineunam- HID), we observe a slight decrease of the temperature of the biguouslythepresence/absenceofanabsorptionedge.Onthe scatteringcloud,asthesourcemovesfromthelefttotheright other hand, simultaneousX-ray/radio observationswould test in theHB. Inthe vanderKlis (2001)model,thisis relatedto the possibility of a correlation between hard X-ray and radio the variation of M˙ : a higherpromptdisk accretionrate is ex- emissioninthissource,withpresenceornotofrelativisticex- pectedtopushtheinnerradiustowardstheneutronstarwitha pandinglobes. consequentlargerproductionofseedandhotterphotonsforthe Acknowledgements. This research is supported by the Italian Space corona, which is thus more efficiently Compton-cooled (kT e Agency(ASI)andMinistryofUniversityandScientificResearchof decreases fromregionsII to IV, see Table 4). We confirm the Italy(PRINN.2002027145).AAZhasbeensupportedbyKBNgrants presence of the Fe K emission line at ∼ 6.7 keV, while the PBZ-KBN-054/P03/2001and1P03D01827. edgedetection(firstreportedbyDS2000)isnotsoevidentand should be treated carefully. Indeed we find that the EQPAIR References model well fits the data (see Table 3) and neither Compton- reflection nor absorption edge are required, showing that the Anders, E., & Ebihara, M. 1989, Geochim. Cosmochim. Acta, 46, presenceofsuchcomponentsinthespectraareverysensitiveto 2363 thecontinuummodeladopted.Oneshouldbecarefulinclaim- Asai,K.,Dotani,T.,Mitsuda,K.etal.1994,PASJ,46,479 ingthepresenceofthesecomponentsinthecaseofGX17+2. Augusteijn,T.,Karatasos,K.,Papadakis,M.etal.1992,A&A,265, 177 Barret,D.2001,Adv.SpaceRes.,Vol.28,p.307 5. Conclusions Barret,D.,&Olive,J.2002,AJ,576,391 Boella,G.,Butler,R.C.,Perola,G.C.etal.1997a,A&AS,122,299 We have investigated two BeppoSAX observations of the Z Boella,G.,Chiappetti,L.,Conti.,G.etal.1997b,A&AS,122,327 sourceGX17+2performedon1997April3 and21.The per- Chiappetti, L., & Dal Fiume, D. 1997, in Proceedings of the Fifth sistent continuum X-ray emission can be described by two- InternationalWorkshoponDataAnalysisinAstronomySystem,ed. component models, which support the well known accre- V.diGesu`,M.J.B.Duff,A.Heck,M.C.Maccarone,L.Scarsi,&H.U. tion scenarios suggested by the Western and Eastern model. Zimmerman,WorldScientificPress,p.101 However,in the first observation,when the source was in the Coppi, P.S. 1999, in High Energy Processes in Accreting Black upperleftHB of the HID diagram,we observeda hardX-ray Holes,ASPConf.Ser.161,ed.J.Poutanen,&R.Svensson,p.375 tail (up to 120 keV), which disappeared in the second obser- Crosby,N.,Vilmer,N.,Lund,N.,&Sunyaev,R.1998,A&A,334, 299 vation performedtwo weeks later, when the source moved to D’Amico,F.,Heindl,W.A.,Rothschild,R.E.,&Gruber,D.E.2001, the right in the HB. Our results confirm those obtained by ApJ,547,L147 DS2000, but provide a stronger evidence for the presence of Di Salvo, T., Stella, L., Robba, N. R. et al. 2000, ApJ, 544, L119 a threshold in the accretion rate M˙ in the HB, above which (DS2000) the intensity of the hard tail is below the instrumentsensitiv- DiSalvo,T.,Robba,N.R.,Iaria,R.etal.2001,ApJ,554,49 ityordisappears.GiventhattheX-rayluminosityisnotcorre- DiSalvo,T.,Farinelli,R.,Burderi,L.etal.2002,A&A,386,535 latedwith the positionof thesourcein theHID, M˙ isnotthe DiSalvo,T.,&Stella,L.2002,astro-ph/0207219 one we ascribe to X-ray luminosity but has a somewhat dif- Fender,R.2002, inRelativisticoutflowsinAstrophysics,ed.A.W. ferentmeaning.We proposeasworkinghypothesisthemodel Guthmann, M. Georganopoulos, A. Marcowith, & K. Manolakou, byvan derKlis (2001),in whichthe X-rayluminosityispro- LectureNotesinPhysics,vol.589,p.101(astro-ph/0109502) portionalto the promptdisk accretion rate plus its own long- Fiore, F., Guainazzi, M., & Grandi, P. 1999, Technical Report 1.2, BeppoSAX scientific data center, available on- term average, while motion along the Z track dependson the line at ftp://ftp.asdc.asi.it/pub/sax/doc/ ratio of these two quantities. To testify whether this hypothe- software docs/saxabc v1.2.ps sis is correct, more observational and theoretical work is re- Friedman,H.,Byram,E.T.,&Chubb,T.A.1967,Science,156,374 quired. The hard X-ray excess observed in the first observa- Frontera,F.,Costa,E.,DalFiume,D.etal.1997,A&AS,122,357 tioncanbedescribedbyComptonizationofsoftseedphotons Frontera, F., Dal Fiume, D., Malaguti, G. et al. 1998, The Active (kTs ∼ 1 keV) off non-thermalelectrons injected with spec- X-raySky,ed.L.Scarsi,H.Bradt,P.Giommi,&F.Fiore,Nuclear tralindexp∼1.7.Inaddition,athermalcomponentdescribed Physics.(Proc.Suppl.)69/1–3p.286 by a BB with kTbb ∼ 0.6 keV is observed. An emission line Frontera,F.,Palazzi,E.,Zdziarski,A.A.etal.2001,ApJ,546,1027 at ∼ 6.7 keV is foundin both observations.The origin of the Hasinger,G.,vanderKlis,M.,Ebisawa,K.,Dotani,T.,&Mitsuda, non-thermalelectronscannotbeestablishedonthebasisofthe K.1990,A&A,235,131 BeppoSAXdataalone.Wehavetwoequallyacceptableoptions: Hertz,P.,Vaughan,B.,Wood,K.S.etal.1992,ApJ,396,201 Homan,J.,vanderKlis,M.,Jonker,P.G.etal.2002,ApJ,568,878 electronsfromjetsorelectronsproducedinmagnetohydrody- Hoshi,R.,&Asaoka,I.1993,PASJ,45,567 namic turbulenceprocesses occurringin the corona.Only the Iaria,R.,Burderi,L.,DiSalvo,T.,LaBarbera,A.,&Robba, N.R. determinationofthesourcespectrumathigherenergies(>∼200 2001,ApJ,547,412 keV) can provide more constraints on the origin of the high Kahn,S.M.,&Grindlay,J.E.1984,ApJ,281,826 energy excess. A step forward could be done by INTEGRAL Kuulkers,E.,&vanderKlis,M.1996,A&A,314,567 throughalongmonitoringobservationofthesource.Alsohigh Magdziarz,P.,&Zdziarski,A.A.1995,MNRAS,273,837 energyresolutionobservationsbelow 10keV, performedwith Manzo, G.,Giarrusso, S., Santangelo, A. et al. 1997, A&AS, 122, Chandra or XMM-Newton, could be very helpful in clarify- 341

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.